FINAL REPORT

Analysis of Long-Term Performance of Zero-Valent Iron Applications

ESTCP Project ER-201589

DECEMBER 2018

Jovan Popovic NAVFAC EXWC

Laura Cook Dean Williamson **CH2M Hill**

Richard Wilkin U.S. EPA, National Risk Management Research Laboratory

> Distribution Statement A This document has been cleared for public release

Page Intentionally Left Blank

This report was prepared under contract to the Department of Defense Environmental Security Technology Certification Program (ESTCP). The publication of this report does not indicate endorsement by the Department of Defense, nor should the contents be construed as reflecting the official policy or position of the Department of Defense. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the Department of Defense. Page Intentionally Left Blank

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188		
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.						
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 09/27/2018 ESTCP Final Report				3. DATES COVERED (From - To)		
4. TITLE AND SU	UBTITLE				5a. CO	NTRACT NUMBER
Analysis of Lo	ng-Term Perfo	ormance of Ze	ero-Valent Iron Appl	lications	51-05	
					5D. GR	ANINUMBER
					5c. PR	OGRAM ELEMENT NUMBER
6. AUTHOR(S)					5d. PR	OJECT NUMBER
Jovan Popovio	C				ER-20	1589
					5e. TA	SK NUMBER
					5f WO	
					51. WO	
7. PERFORMING	G ORGANIZATIO	N NAME(S) AND	DADDRESS(ES)			8. PERFORMING ORGANIZATION
NAVFAC EXV	VC					FR-201589-PR
Port Hueneme	e, CA 93043					
Environmental Security Technology Certification Program				ESTCP		
4800 Mark Center Drive, Suite 16F16			-			
Alexanuna, VA	4 22300-3000					11. SPONSOR/MONITOR'S REPORT NUMBER(S)
						ER-201589
Distribution A; unlimited public release						
	uninnited pub					
13. SUPPLEMENTARY NOTES						
14. ABSTRACT						
This project involves the assessment of long-term performance of ZVI both as a source-zone treatment and as a barrier						
treatment for chlorinated volatile organic compounds (VOCs). This document details the field activities and data evaluation that were conducted in support of this project. The project approach consisted of a desktop review and field assessment						
The field assessment was conducted at two selected sites. The first site was a Zero-valent Iron (ZVI) permeable reactive						
barrier (PRB) for plume control assessment at Allegany Ballistics Laboratory (ABL) Site 5. The other was at St. Louis						
15. SUBJECT TERMS						
permeable reactive barrier, PRB, Allegany Ballistics Laboratory, ABL, St. Louis Ordnance Plant, zero-valent iron, ZVI, chlorinated volatile organic compounds, chlorinated VOCs, source-zone treatment, barrier treatment, groundwater,						
16. SECURITY C		OF:	ABSTRACT	OF	Iguan Dan	OF RESPONSIBLE PERSON
				PAGES	19b. TELEP	HONE NUMBER (Include area code)
UNCLASS	UNCLASS	UNCLASS	UNCLASS	524	805-982-60	081
			· · · · · · · · · · · · · · · · · · ·	1		

Page Intentionally Left Blank

CONTENTS

1.0	INTF	RODUCTION	1
	1.1	BACKGROUND	1
		1.1.1 ZVI Technology Background	1
		1.1.2 Results of Desktop Study	2
	1.2	OBJECTIVE OF THE DEMONSTRATION	8
		1.2.1 Specific PRB Site Objectives	8
		1.2.2 Specific Source Area (Soil Mixing Site) Objectives	8
	1.3	REGULATORY DRIVERS	9
2.0	Tech	nology	10
	2.1	TECHNOLOGY DESCRIPTION	10
		2.1.1 Zero-valent Iron Technology Development and Application	10
	2.2	ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY	11
		2.2.1 Advantages Identified in Desktop Review Phase of Project	11
		2.2.2 Disadvantages Identified in Desktop Review Phase of Project	11
		2.2.3 Advantages Identified During Field Phase of the Project	11
		2.2.4 Disadvantages Identified During the Field Phase of the Project	12
	2.3	TECHNOLOGY DEVELOPMENT	12
3.0	PER	FORMANCE OBJECTIVES	13
40	SITF	DESCRIPTION	17
1.0	4 1	Site Location and History ABL Site 5 Rocket Center West Virginia	17
		4 1 1 Site History – ABL Site 5	17
		4.1.2 Physical and Hydrogeologic Setting – ABL Site 5.	
		4.1.3 Contaminant Distribution – ABL Site 5	
		4.1.4 ZVI Treatment Summary – ABL Site 5	19
	4.2	Site Location and History: Former St. Louis Ordnance Plant OU1, St. Louis,	
		Missouri	21
		4.2.1 Site History – Former St. Louis Ordnance Plant OU1	21
		4.2.2 Physical and Hydrogeologic Setting – Former St. Louis Ordnance	
		Plant OU1	22
		4.2.3 Contaminant Distribution – Former St. Louis Ordnance Plant OU1	23
		4.2.4 ZVI Treatment Summary – Former St. Louis Ordnance Plant OU1	24
5.0	TEST	۲ DESIGN	
	5.1	CONCEPTUAL EXPERIMENTAL DESIGN	26
	5.2	BASELINE CHARACTERIZATION	26
		5.2.1 Utility Location	26
	5.3	FIELD TESTING	26
		5.3.1 ZVI Sampling – ABL Site 5	26
		5.3.2 ZVI Sampling – Former St. Louis Ordnance Plant OU1	28
		5.3.3 Well Installation – ABL Site 5	29
		5.3.4 Well Installation – Former St. Louis Ordnance Plant OU1	31
		5.3.5 Groundwater Sampling – ABL Site 5 and Former St. Louis Ordnance	37

		5.3.6	Water Level Survey – ABL Site 5 and Former St. Louis Ordnance	
			Plant OUI	
		5.3.7	Slug Testing – Former St. Louis Ordnance Plant OU1	
		5.3.8	Decontamination	
		5.3.9	IDW Management	
		5.3.10	Laboratory Testing	
	5.4	STUD	Y RESULTS	35
		5.4.1	Field Parameter and Geochemistry Results	35
		5.4.2	Mineralogical Testing Results	53
		5.4.3	Reactivity Testing Results	71
		5.4.4	Microbial Results	73
		5.4.5	Water Level and Slug Testing Results	81
6.0	PER	FORMA	ANCE ASSESSMENT	94
	6.1	Geoch	emical and Chemical Impacts of ZVI Treatment	94
	6.2	Miner	alization of ZVI	94
	6.3	Reacti	vity of ZVI	95
	6.4	Micro	bial Community Changes	95
	6.5	Groun	dwater Flow Changes	96
	6.6	Best P	ractices	96
7.0	COS	Г ASSE	SSMENT	97
8.0	IMP	LEMEN	TATION ISSUES	98
9.0	REC	OMME	NDATIONS	99
	9.1	Best P	ractice Recommendations	99
	9.2	Recon	nmendations for Further Study	100
10.0	REF	ERENC	ES	102

Tables

Table 1-1. Nine Site Summary of ZVI Treatment Performance	3
Table 1-2. Nine Site Analysis ZVI Design Metrics and Performance	7
Table 1-3. Nine Site Analysis ORP Time to Rebound	8
Table 3-1. Performance Objectives.	13
Table 5-1. Iron Core Depths	28
Table 5-2. Well Construction Details	31
Table 5-3. Water Quality Parameters, ABL Site 5	41
Table 5-4. Laboratory Analytical Detections, ABL Site 5	42
Table 5-5. Water Quality Parameters, Former St. Louis Ordnance Plant OU1	50
Table 5-6. Laboratory Analytical Detections, Former St. Louis Ordnance Plant OU1	51
Table 5-7. Concentrations of Inorganic Carbon and Acid-Volatile Sulfur in Cores from the	
ABL Site 5 PRB	53
Table 5-8. Concentrations of Inorganic Carbon and Acid-Volatile Sulfur in Cores from	
Former St. Louis Ordnance Plant OU1	63

Table 5-9. Quantarray-Chlor Microbial Analysis Results, ABL Site 5	74
Table 5-10. Summary of Next Generation Sequencing Results, ABL Site 5	76
Table 5-11. Quantarray-Chlor Microbial Analysis Results, Former St. Louis Ordnance Plant, OU1	78
Table 5-12. Summary of Next Generation Sequencing Results, Former St. Louis	
Ordnance Plant OU1	79
Table 5-13. Groundwater Elevations, ABL Site 5	82
Table 5-14. Groundwater Elevations, Former St. Louis Ordnance Plant OU1	83
Table 5-15. Slug Testing Results, Former St. Louis Ordnance Plant OU1	93
Table 9-1. Recommended Best Practices	99

Figures

Figure 4-1. ABL Site 5 Location Map	17
Figure 4-2. ABL Site 5 Groundwater Contour Map (August 2012)	18
Figure 4-3. ABL Site 5 TCE Plume – Pretreatment	20
Figure 4-4. ABL Site 5 Treatment Area	21
Figure 4-5. Former St. Louis Ordnance Plant OU1 Site Location Map	22
Figure 4-6. Former St. Louis Ordnance Plant OU1 Groundwater Contour Map (April 2015)	23
Figure 4-7. Former St. Louis Ordnance Plant OU1 Total VOC Plume (December 2011)	24
Figure 4-8. Former St. Louis Ordnance Plant OU1 Treatment Area and Wells	25
Figure 5-1. DPT Boring Locations, ABL Site 5	27
Figure 5.2. Iron Core Drilling Configuration	27
Figure 5.3. Sample Locations, Former St. Louis Ordnance Plant OU1 Site	30
Figure 5-4. Well Locations, ABL Site 5	30
Figure 5-5. Select Field Parameter Results (January 2017), ABL Site 5	36
Figure 5-6. Geochemical Parameters (January 2017), ABL Site 5	37
Figure 5-7 VOC Detections (January 2017), ABL Site 5	38
Figure 5-8. Total Metals Detections (January 2017), ABL Site 5	39
Figure 5-9. Dissolved Metals Detections (January 2017), ABL Site 5	40
Figure 5-10. Select Field Parameter Results (January 2017), Former St. Louis Ordnance	
Plant OU1	45
Figure 5-11. Geochemical Parameters (January 2017), Former St. Louis Ordnance Plant	
OU1	46
Figure 5-12. Chlorinated VOC Detections (January 2017), Former St. Louis Ordnance Plant	
OU1	47
Figure 5-13. Total Metals Detections (January 2017), Former St. Louis Ordnance Plant	
OU1	48
Figure 5-14. Dissolved Metals Detections (January 2017), Former St. Louis Ordnance	
Plant OU1	49
Figure 5-15. Inorganic Carbon Concentrations in ABL Site 5 Core DP001	55
Figure 5-16. Inorganic Carbon Concentrations in ABL Site 5 Core DP003	55
Figure 5-17. X-ray Diffraction Results for ABL Site 5 Core DP001	56
Figure 5-18. X-ray Diffraction Results for ABL Site 5 Core DP003	57
Figure 5-19. Scanning Electron Microscopy Images from ABL Site 5 Core DP001	58

Figure 5-20. Energy-Dispersive X-ray Spectroscopy Element Maps from ABL	
Site 5 Core DP001	. 59
Figure 5-21. Diagram of ABL Site 5 Core DP001 Showing the Locations of the Individual	
Core Segments Relative to the ZVI/Aquifer Interface	. 60
Figure 5-22. SEM Photographs and EDS Maps from ABL Site 5 Core DP003	. 61
Figure 5-23. Additional SEM Photographs and EDS Maps from ABL Site 5 Core DP003	. 62
Figure 5-24. Inorganic Carbon vs. Depth in Former St. Louis Ordnance Plant OU1 in ZVI	
Core Samples	64
Figure 5-25. Stacked X-Ray Diffraction Patterns for Former St. Louis Ordnance Plant OU1	
Core DP002	64
Figure 5-26 X-Ray Diffraction Pattern of the Original ZVI-M Granular Iron used at	
Former St. Louis Ordnance Plant OU1	65
Figure 5-27 SFM Micrographs for Samples from St. Louis Core DP002/TW02 and the	. 00
Original ZVI-M Material	66
Figure 5-28 Histograms and Cumulative Frequency Diagram of Particle Diameters from the	. 00
Original ZVI-M Zero-valent Iron and Iron Oxide Grains from Six St. Louis Samples	67
Figure 5-29 XANES Analysis of Five St. Louis Aquifer Samples	68
Figure 5-30 Energy Dispersive Line Scans across Two ZVI-M Grains	69
Figure 5-31 Energy Dispersive Line Scans Across Three Grains Observed in the St. Louis	. 07
Cores	70
Figure 5-32 ZVI Content of St. Louis Samples (Percent of Sample Dry Mass) Based on	. /0
Acidification and Hydrogen Generation Testing	71
Figure 5-33 Magnetic Fraction in St. Louis Samples DP001 and DP003	72
Figure 5-34 Magnetic Fraction in St. Louis Samples DP001 and DP002	72
Figure 5-35 1-hour Mixing Area (DP001) Reaction with Resazurin (in Pink) in Comparison	. /2
with Ungradient Reference Sample (DP003) St Louis Site	73
Figure 5-36 Groundwater Contours (January 23, 2017) ABL Site 5	. 75
Figure 5-37 Groundwater Contours (February 15, 2017), ABL Site 5	85
Figure 5-38 Groundwater Contours (March 9 2017) ABL Site 5	86
Figure 5-39 Groundwater Contours Using All Locations (February 28, 2017) Former	. 00
St. Louis Ordnance Plant OU1	87
Figure 5-40 Groundwater Contours Using All Locations (March 8, 2017) Former St. Louis	. 07
Ordnance Plant OU1	88
Figure 5-41 Groundwater Contours MW-119 Omitted (February 28, 2017) Former	. 00
St. Louis Ordnance Plant OU1	89
Figure 5-42 Groundwater Contours MW-119 Omitted (March 8, 2017) Former St. Louis	. 07
Ordnance Plant OU1	90
Figure 5-43 Groundwater Contours DP001 and DP002 Omitted (February 28, 2017)	. 70
Former St. Louis Ordnance Plant OU1	91
Figure 5-44 Groundwater Contours DP001 and DP002 Omitted (March & 2017)	. 71
Former St. Louis Ordnance Plant OU1	92
	. /4

Appendices

- A Analysis of Long-term Performance of Zero-valent Iron Treatment at Nine Sites
- B Field Notes
- C Boring Logs
- D Well Construction Diagrams
- E IDW Disposal Paperwork
- F Reactivity SOP
- G Complete Analytical Results
- H Trend Graphs ABL
- I Trend Graphs St. Louis
- J Slug Test Results
- K Points of Contact

LIST OF ABBREVIATIONS

°C	degrees Celsius
µg/g	micrograms per gram
μg/L	micrograms per liter
1,1,2,2-PCA	1,1,2,2-tetrachloroethane
ABL	Allegany Ballistics Laboratory
AFB	Air Force Base
Al	aluminum
amsl	above mean se level
ATK	ATK Tactical Systems Company LLC
AVS	acid-volatile sulfur
bgs	below ground surface
btoc	below top of casing
Ca	calcium
CH2M	CH2M HILL, Inc.
cm/s	centimeters per second
CO ₂	carbon dioxide
DNAPL	dense non-aqueous phase liquid
DO	dissolved oxygen
DPT	direct push technology
EDS	energy-dispersive x-ray spectroscopy
ESTCP	Environmental Security Technology Certification Program
EtnC	alkene monooxygenase
EtnE	epoxyalkane transferase
eV	electron-volt
EXWC	Engineering and Expeditionary Warfare Center
Fe	iron
FeO	ferrous oxide
ft	feet

ft/d	feet per day
GOCO	government-owned, contractor-operated
IDW	investigation-derived waste
ITRC	Interstate Technology and Regulatory Council
lb	pound/pounds
MCL	maximum contaminant level
mg/L	milligrams per liter
mL	milliliter
mS/cm	milliSiemens per centimeter
mV	millivolt
NA	not applicable
NAVFAC	Naval Facilities Engineering Command
ND	not detected
NGS	next generation sequencing
NR	not recorded
NS	not sampled
NTU	nephelometric turbidity unit
OHSU	Oregon Health and Science University
ORP	oxidation/reduction potential
OU	Operable Unit 1
PCE	tetrachloroethene (perchloroethene)
PDF	Powder Diffraction File
PHE	phenol hydroxylase
РММО	particulate methane monooxygenase
PRB	permeable reactive barrier
PVC	polyvinyl chloride
RDEG	toluene monooxygenase 2
RPM	remedial project manager
SANG	Savannah Air National Guard
SEM	scanning electron microscopy

SiO ₂	silicon dioxide
SMMO	soluble methane monooxygenase
SOP	standard operating procedure
SWMU	Solid Waste Management Unit
TCE	trichloroethene
TOC	total organic carbon
TOD	toluene dioxygenase
USACE	United States Army Corps of Engineers
USEPA	United States Environmental Protection Agency
VC	vinyl chloride
VOC	volatile organic compound
XANES	x-ray absorption near edge structure
XRD	x-ray diffraction
ZVI	zero-valent iron

ACKNOWLEDGEMENTS

Funding of this work was provided by the Department of Defense, Environmental Security Technology Certification Program (ESTCP). The authors wish to thank Dr. Andrea Leeson and Ms. Macrina Xavier of ESTCP and for their support during the demonstration and for comments provided on the work and on the report. In-kind funding for this project was provided by the United States Environmental Protection Agency's National Risk Management Research Laboratory and Oregon Health and Science University. Dr. Rick Johnson, Dr. Paul Tratnyek, and Mr. Chris Kocur provided numerous hours of analysis and review of the data. The work would not have been possible without the cooperation and support from project staff at Allegany Ballistics Laboratory, the former St. Louis Ordnance Plant, Naval Facilities Engineering Command Mid-Atlantic, and the United States Army Corps of Engineers, including Mr. Walter Bell and Ms. Josephine Newton-Lund.

1.0 INTRODUCTION

Environmental Security Technology Certification Program (ESTCP) Project Number ER-201589-PR, Analysis of Long-Term Performance of Zero-valent Iron (ZVI) Applications (the project), involves the assessment of long-term performance of ZVI applications both as a source-zone treatment and as a barrier treatment for chlorinated volatile organic compounds (VOCs).

This project was completed through both desktop review and field investigations. The results of the desktop review were previously detailed in *Analysis of Long-term Performance of Zero-valent Iron Treatment at Nine Sites* (CH2M HILL, Inc. [CH2M] and Naval Facilities Engineering and Expeditionary Warfare Center [NAVFAC EXWC], 2016) (see **Appendix A**) and are summarized in the background section of this report. The remaining portions of the document detail the performance objectives, field activities and data evaluation that were conducted in support of the field study portion of the project. The recommendations in the report consider both phases of the project (desktop and field study).

Field data were collected at Allegany Ballistics Laboratory (ABL), located in Rocket Center, West Virginia, and the former St. Louis Ordnance Plant Operable Unit 1 (OU1), located in St. Louis, Missouri. Geochemical, contaminant concentration, mineralogical, reactivity, and hydraulic data were collected and evaluated for each site to determine the long-term efficacy of the ZVI treatments implemented at these sites and to assess the remaining active degradation mechanisms at each site.

1.1 BACKGROUND

1.1.1 ZVI Technology Background

ZVI technologies have been incorporated into remedies at many contaminated groundwater sites since the mid-1990s. ZVI applications began with their use in permeable reactive barriers (PRBs), the first of which was installed at Intersil Site, a private industrial site in Sunnyvale, California, in 1994. This PRB now has a history of more than 20 years. However, long-term monitoring data from this and other early sites (e.g., Denver Federal Center) have generally been sparse, either because these were private sites with limited interest in the mechanism behind the outcome, or because the sites moved on to supplement the PRBs with other remedies. ESTCP was in the forefront of evaluating the long-term performance of granular-particle-sized ZVI PRBs through projects such as CU-199907 (ESTCP, 2002). The Interstate Technology and Regulatory Council (ITRC) prepared a well-received Technical/Regulatory Guidance Permeable Reactive Barrier: Technology Update (2011) that identified issues related to long-term performance of PRBs. Among the key issues the ITRC guidance identified are the lack of conclusive evidence of a clean front emerging on the downgradient side of PRBs, uncertainty of the role of precipitates (e.g., oxides, carbonates, sulfides) forming on ZVI surfaces, and the lack of verification of hydraulic performance (groundwater flow through the PRB) as key questions that still needed to be answered for the technology.

In the early 2000s, another door opened to ZVI technologies when nano-scale, micro-scale, and granular ZVI began to be injected into dense non-aqueous phase liquid (DNAPL) source zones by a variety of processes, such as pneumatic fracturing, hydraulic fracturing, and augering. The United States Navy conducted a study of the short-term performance of injected ZVI in source zones (Naval Facilities Engineering Command [NAVFAC] Engineering Service Center, 2005). They found that the governing factor for success in an injected application was the ratio of ZVI

mass to soil mass in the target treatment zone. At optimal ZVI:soil ratios, considerable decline in oxidation/reduction potential (ORP) of the aquifer to -400 millivolts (mV) was observed, leading to desirable abiotic reactions that led to compounds such as trichloroethene (TCE) degrading to acetylene through the β -elimination pathway. Many of the short-term studies reviewed during the Navy's 2005 evaluation ended at approximately 6 months, with the aquifer ORP beginning to rebound to -200 mV, at which point reduction of TCE continued through biodegradation, but with the generation of some cis-1,2-dichloroethene (cis-1,2-DCE) and vinyl chloride (VC).

As part of the *Analysis of Long-term Performance of Zero-valent Iron Treatment at Nine Sites* (CH2M and NAVFAC EXWC, 2016) a desk top review of existing data was completed as part of the first phase of this project. This review indicated reduced ZVI reactivity a few years after treatment (higher dissolved oxygen [DO] and ORP, reduced contaminant degradation rate, and evidence of movement from an abiotic degradation pathway to a biological reductive dechlorination pathway [increased generation of daughter products]). The second phase of the project involved fieldwork to confirm these findings.

1.1.2 Results of Desktop Study

The following sites were evaluated during the desktop review to assess long-term performance trends of ZVI based on existing data and to select the field study sites:

- PRB Sites
 - ABL Site 5, Rocket Center, West Virginia
 - Boeing Michigan Aeronautical Research Center OT-16, Joint Base McGuire-Dix-Lakehurst, New Hanover Township, New Jersey
- Injection Sites
 - St. Julien's Creek Annex Site 21, Chesapeake, Virginia
 - Naval Surface Warfare Center White Oak Site 13, White Oak, Maryland
 - Savannah Air National Guard (SANG) Base, Site 8, Garden City, Georgia
- Soil Mixing Sites
 - Arnold Air Force Base (AFB), Solid Waste Management Unit (SWMU) 16, Manchester, Tennessee
 - United States Army Corps of Engineers (USACE) St. Louis Ordnance Plant OU1, St. Louis, Missouri
 - Marine Corps Base Camp Lejeune Site 89, Jacksonville, North Carolina
 - Naval Support Facility Indian Head Site 17, Indian Head, Maryland

A summary of results for each site is provided as **Table 1-1**.

Site Name	Primary Contaminants and Highest Baseline Concentration(s)	Groundwater Velocity (feet per year [ft/year])	ZVI Dosage (pounds [lbs] ZVI/lb soil)	Conclusions and Comments
		PRB Site	s	
ABL Site 1	TCE: 110µg/L	293	40 percent - 8+50 mesh Envirometal ZVI/60 percent sand PRB (trenched)	Reductions of 70% were observed downgradient of the PRB. pH downgradient of the PRB continues to increase (a positive indicator of continued flow through the PRB). ORP has returned to near baseline levels in downgradient wells, but is still lower than in upgradient wells. Other geochemisty parameters (e.g., sulfate) do not indicate highly reducing conditions.
McGuire OT-16	TCE: 400 μg/L	376	0.5 percent Hepure ZVI, injected PRB using Ferox (nitrogen) process	Average reduction of 33% was observed, based on wells within, downgradient, and crossgradient of the PRB. No generation of daughter products was observed. Minimal and short-lived changes in field parameters (pH, ORP, DO) were observed. No changes in hydraulic characteristics were observed.
		Injection Si	ites	
St. Julien's Creek Site 21	TCE: 12,500 μg/L	72	0.8 percent Hepure ZVI using Ferox	ZVI injections were very effective in reducing all chlorinated VOCs to levels at or near MCLs in all monitoring wells within the ZVI treatment areas. A 96% reduction in total VOCs was observed. Geochemical changes and concentration trends indicate mechanisms behind the chlorinated VOC reductions are both β - elimination and reductive dechlorination. Elevated pH and alkalinity remain in treatment areas. Indicators of reducing conditions, such as sulfide, have returned to near baseline levels. Arsenic concentrations have increased significantly.

Table 1-1. Nine Site Summary of ZVI Treatment Performance

Site Name	Primary Contaminants and Highest Baseline Concentration(s)	Groundwater Velocity (feet per year [ft/year])	ZVI Dosage (pounds [lbs] ZVI/lb soil)	Conclusions and Comments
White Oak Site 13	1,1,2,2-tetrachloroethane 1,1,2,2-PCA: 946 μg/L TCE: 535 μg/L cis-1,2-DCE: 755 μg/L trans-1,2-DCE: 148 μg/L	35	0.2 percent (on-site) 0.4 percent (off-site) Hepure ZVI injected using Ferox	ZVI was effective in reducing concentrations of chlorinated VOCs by ~85% in the two treated areas (on- and off-site). Efficacy was inconsistent from location to location, particularly in the on-site treatment area. Highly reducing conditions were achieved in only one well and clean up goals were only attained in two treatment area wells. Inconsistent treatment in the on-site area was noted and may be a result of a lower dose used in that area, varying redox conditions across the site or possible sorbed mass in the source zone resulting in continued back diffusion following treatment.
SANG Site 8	cis-1,2-DCE: 1,200 μg/L	37	0.4 percent Hepure ZVI injected using Ferox	Concentrations of chlorinated VOCs in monitoring wells within the treatment area were reduced to less than MCLs (~99.4%). Because concentrations were already decreasing as a result of previous treatments in the area, it is uncertain the degree to which the ZVI contributed to site clean-up. pH increased following treatment, and DO was maintained at levels less than 1 mg/L throughout most of the post-treatment monitoring period. ORP was also reduced, but not to levels ideal for abiotic reduction of chlorinated ethenes.

 Table 1-1. Nine Site Summary of ZVI Treatment Performance

Site Name	Primary Contaminants and Highest Baseline Concentration(s)	Groundwater Velocity (feet per year [ft/year])	ZVI Dosage (pounds [lbs] ZVI/lb soil)	Conclusions and Comments
		Mixing Sit	es	
Arnold AFB SWMU 16	TCE: 5,616 μg/L	81	0.2-percent (injections) 0.8-percent ZVI (mixing)	Substantial decreases of TCE were observed in the source area as well as in downgradient wells. Nitrate was also effectively treated with ZVI. Strongly reducing conditions were not achieved at this site and significant generation of daughter products occurred. This, in conjunction with movement of contaminants, resulted in an overall increase of total VOCs at the site. Daughter products produced did not subsequently degrade.
St. Louis Ordnance Depot OU1	Tetrachloroethene (PCE): 36,100 μg/L	No aquifer testing completed	1-percent ZVI – mixed with no clay addition or water	Concentrations of chlorinated VOCs in monitoring wells within the treatment area and the downgradient area were reduced to less than the site clean-up goal of 21,000 μ g/L (average reduction of 99.8%). Highly reducing conditions favorable for β -elimination were achieved in the mixing area. Some evidence of reductive dechlorination was also observed. pH increased and DO was maintained at levels less than 1 mg/L throughout post-treatment monitoring period in the soil-mixing area. DO was also reduced to less than 1 mg/L during most rounds of downgradient well monitoring. Some reduction in concentrations downgradient also occurred.
Camp Lejeune Site 89	1,1,2,2-PCA: 110,000 μg/L TCE: 490,000 μg/L cis-1,2-DCE: 140,000 μg/L trans-1,2-DCE: 26,000 μg/L VC: 3,400 μg/L	17-55	2-percent ZVI, 3- percent bentonite mixture	Concentrations were reduced by >99.9% in all treatment area wells (in most cases to less than laboratory detection levels). No rebound of VOCs was observed. ORP was reduced to -711 mV. DO was also reduced and pH increased, but some rebound of these parameters has occurred.

Table 1-1. Nine Site Summary of ZVI Treatment Performance

Site Name	Primary Contaminants and Highest Baseline Concentration(s)	Groundwater Velocity (feet per year [ft/year])	ZVI Dosage (pounds [lbs] ZVI/lb soil)	Conclusions and Comments
Indian Head Site 17	TCE: 870,000 μg/L cis-1,2-DCE: 170,000 μg/L VC: 14,000 μg/L	43-400	1-percent ZVI, ZVI/bentoni te slurry	Concentrations were reduced by >99%, to levels just greater than MCLs. Highly reducing conditions were achieved in the mixing area. pH increased following treatment, DO was reduced to levels less than 1 mg/L. No rebound of contaminants was observed.

 Table 1-1. Nine Site Summary of ZVI Treatment Performance

Notes:

1,1,2,2-PCA = 1,1,2,2-tetrachloroethane

MCL = maximum contaminant level

The amount of performance data available for the ZVI treatment systems varied widely between sites. In most cases, the amount of upgradient, treatment zone, and downgradient data was suitable for compliance assessments but was less optimal or insufficient for conducting a comprehensive evaluation of performance. Nevertheless, some general conclusions were made from the desktop study.

The degree of VOC degradation achieved by the various ZVI treatment systems varied from as little as 33 percent to nearly 100 percent. The greatest degree of VOC treatment was achieved within ZVI soil mixing zones and was more effective with increasing ZVI dose (ZVI to soil ratio). Baseline ORP was also a factor, with sites already under reducing conditions at the time of treatment performing slightly better than sites under oxidizing conditions. Evidence of degradation through the sequential reductive dechlorination pathway was found at all the injected ZVI treatment systems, downgradient of one PRB, and at two of the four soil mixing sites. The least amount of evidence for the reductive dechlorination pathway was found at Camp Lejeune Site 89 (dose of 2 percent) and Indian Head Site 17 (dose of 1 percent) where the β -elimination pathway appeared to dominate. A summary of dose, initial ORP, lowest ORP achieved, percent reduction in contaminant concentration, and daughter product generation is provided as **Table 1-2**.

Site	Iron Dose (ZVI:soil mass ratio)	Initial ORP (millivolts [mV]) ¹	Lowest ORP Achieved During Treatment (mV) ¹	Percent Reduction/ Increase in Concentrations ¹	Generation of Daughter Products Observed	If Yes, with or without subsequent Reductions
ABL Site 5	40*	128	-212	-70.7%	Yes (but may be due to migration)	Without
McGuire OT- 16	0.5	19.92	-501.4	-33%	No	NA
St. Julien's Creek Site 21	0.8	-2.8 to 128.5	-418.1	-96.3%	Yes	With
White Oak Site 13	0.2 (onsite) /0.5 (offsite)	-1 to 328	-303	-58.6% (onsite)/- 85.6% (offsite)	Yes	With
SANG Site 8	0.4	-68 to -143	-184.9	-99.4%	Yes	With
Arnold Air Force Base SWMU 16	0.2	79-151	-205	+397%	Yes	Without
St. Louis Ordnance Depot OU1	1	98.7-232	-400	-99.8%	Yes	With (source area)
Camp Lejeune Site 89	2	-71 to -51	-711	-99.99%	No	NA
Indian Head Site 17	1	-54 to 123	-308	-99.98%	No	NA

 Table 1-2. Nine Site Analysis ZVI Design Metrics and Performance

Notes:

* Based iron: sand ratio in PRB

¹ Treatment Area, or downgradient for the ABL PRB

NA = not applicable

Downgradient geochemical changes in groundwater quality most frequently observed include increases in pH and decreases in ORP, DO and other terminal electron acceptors (e.g., sulfate). Dissolved iron was commonly noted to increase following treatment. At the only site where arsenic data were available (St. Julien's Creek Site 21), arsenic concentrations increased considerably in ZVI treatment areas, a possible result of mobilization due to reducing conditions. Microbial data were not available post-treatment at any of the nine sites evaluated.

Rebound of geochemical conditions to baseline levels generally took over a year, with some sites not reaching baseline conditions at the time of this study. However, conditions optimal for β -elimination were generally not observed 5-12 years following treatment. **Table 1-3** shows time to ORP rebound for each site evaluated.

Site	Time to ORP Rebound in Treatment Area (days)	Time to ORP Rebound in Downgradient Wells (days)
ABL Site 5	N/A	1461
McGuire OT-16	151	609
St. Julien's Creek Site 21	1826	NA
White Oak Site 13 (on site)	NA*	NA
White Oak Site 13 (off site)	NA*	NA
Savannah ANG Site 8	NA*	NA
Arnold Air Force Base SWMU 16	304	1,218
St. Louis Ordnance Depot OU1	1673	915
Camp Lejeune Site 89	426	NA
Indian Head Site 17	NR	NR

Table 1-3. Nine Site Analysis ORP Time to Rebound

Notes:

*Time to rebound not calculated for White Oak and Savannah ANG as ORP results are still decreasing as of the most recent sampling event

NR indicates baseline data not recorded

ABL Site 5 was identified as the preferred PRB site for field study because the remedy for this site was the more effective of the PRB sites and the trenched wall configuration was ideal for collection of remaining iron. St. Louis Ordnance Plant OU1 was selected as the preferred source area treatment site because the remedy was highly effective (average concentration reduction of 99.8%) and no clay was mixed with the ZVI, making it possible to attribute all reductions in concentrations to ZVI treatment rather than sorption.

1.2 OBJECTIVE OF THE DEMONSTRATION

The overarching objective of this demonstration is to evaluate the long-term effectiveness of ZVI groundwater remedies with respect to reactivity, hydraulic performance, and mechanisms of action. Following completion of the desktop study, two field test sites were evaluated to achieve the overarching project objective: one PRB Site (ABL) and one soil mixing site (former St. Louis Ordnance Plant). Specific objectives for the field efforts at each site are listed below.

1.2.1 Specific PRB Site Objectives

- 1. Evaluate the current reactivity of the ZVI
- 2. Evaluate the hydraulic flow characteristics of the PRB
- 3. Evaluate abiotic and biological degradation processes that are occurring in the vicinity of the PRB

1.2.2 Specific Source Area (Soil Mixing Site) Objectives

- 1. Evaluate the current reactivity of the ZVI
- 2. Evaluate hydraulic flow characteristics within the mixing area and outside of the mixing area

3. Evaluate abiotic and biological degradation processes that are occurring within the source treatment area

1.3 REGULATORY DRIVERS

Based on 40 Code of Federal Regulations §300.430(f)(4)(ii), "if a remedial action is selected that results in hazardous substances, pollutants, or contaminants remaining at the site above levels that allow for unlimited use and unrestricted exposure, the lead agency shall review such action no less often than every five years after initiation of the selected remedial action." The five-year review process requires an assessment of whether the existing remedy is functioning as intended, and if the remedy is not determined to be functioning as intended, an assessment of recommended additional actions is prepared (United States Environmental Protection Agency [USEPA], 2001). The results of this study are intended to help the Department of Defense end users, regulators, and other stakeholders better assess of functionality of ZVI remedies as part of the five-year review process and during other remedy optimization efforts.

2.0 TECHNOLOGY

2.1 TECHNOLOGY DESCRIPTION

2.1.1 Zero-valent Iron Technology Development and Application

Metal-based reductive chemistry was first used to dechlorinate VOCs in the late 1970s and was designed as a possible treatment for metals-laden industrial wastewater streams (Sweenv, 1980). Utilization of this technology to treat contaminated groundwater, primarily through application of ZVI, took off in the 1990s. In 1994, the first full-scale commercial PRB was approved for use in the State of California by the San Francisco Regional Water Quality Control Board, and in 1994, the first "chemical treatment wall" was identified as the preferred alternative in a Somersworth Municipal Landfill, Somersworth, New Hampshire Record of Decision (USEPA, 1994). The USEPA guidance document Permeable Reactive Barrier Technologies for Contaminant Remediation (1998) made performance and compliance monitoring recommendations for PRB sites. A source area at a former manufacturing facility in Fairfield. New Jersey was also treated with granular iron and sand backfill that same year (ITRC, 2005). This represented a different application for ZVI in comparison with the downgradient barrier approaches previously employed. In the 2000s, technology advances including microscale and nanoscale ZVI materials, use of bimetallic coatings, biological enhancements, and improved application technologies such as injection and soil mixing with stabilizing agents allowed for more effective source area treatment. More remedies were implemented which involved direct treatment of source areas with ZVL.

In the early 2000s, evaluations of PRBs installed in the 1990s indicated formation of a number of mineral species on iron surfaces in PRBs, including insoluble species like calcium carbonates, iron carbonates, and iron hydroxides. Additionally, precipitates that conduct electrons, such as magnetite and carbonate green sand, were shown to form (Wilkin at al., 2003). Column studies completed by Zhang and Gillham (2005) demonstrated a 7 percent loss of porosity due to mineral precipitates. Additionally, these column tests showed the iron reactivity rate of decline occurred more rapidly than a loss of permeability. In Technical/Regulatory Guidelines Permeable Reactive Barriers: Lessons Learned/New Directions (ITRC, 2005), ITRC made additional recommendations for performance monitoring of PRBs and source zone treatments and specified some areas for further investigation at source treatment sites. These included the longevity of the iron as a function of amount and size, potential for loss of iron due to unproductive reactions, the potential for biologically mediated reactions, ability to treat DNAPL, migration of DNAPL resulting from injection, ability to address contaminants in low permeability layers, and optimal performance monitoring approaches. In Technical/Regulatory Guidelines Permeable Reactive Barrier: Technology Update (2011), ITRC identified areas for further research including studies needed to better understand what geochemical phases become important or become inactive as the iron ages and changes hydraulic characteristics of the aquifer over time. While the USEPA and ITRC guidance documents have recommended specific performance monitoring procedures including coring for precipitate build-up evaluation and tests for permeability alterations, in the interest of cost-savings, monitoring at most ZVI-treatment sites has generally focused on compliance with groundwater standards.

2.2 ADVANTAGES AND LIMITATIONS OF THE TECHNOLOGY

Data from nine ZVI sites were evaluated to better assess the advantages and limitations of the technology for remediation of sites with VOC contamination. Based on the results of the desktop study (**Appendix A**, the following advantages were noted:

2.2.1 Advantages Identified in Desktop Review Phase of Project

- Significant dose-dependent VOC concentration reductions were observed at most sites evaluated, in some cases without the generation of daughter products, indicating degradation through the β -elimination pathway
- Greatest VOC concentration reductions were generally observed at soil-mixing sites
- Evidence of degradation through the sequential reductive dechlorination pathway was also found at all of the injected ZVI treatment systems, downgradient of one PRB, and at two of the four soil mixing sites reviewed
- Reducing conditions generally remained for years after treatment
- Most sites reviewed did not show VOC rebound to baseline levels at the time the desktop review was completed, which was in most cases more than 5 years following treatment

2.2.2 Disadvantages Identified in Desktop Review Phase of Project

- Microscale ZVI cannot be injected using methods commonly used for liquid phase reagents it must be fractured into the formation or mixed in using augers; delivery by fracturing may not achieve uniform reagent delivery throughout the aquifer and was generally not as effective as ZVI treatment through mixing
- Longevity of the ZVI may not be adequate to fully treat some VOC source zones
- Contact with contaminants is key treatment efficacy was often limited by ZVI emplacement access restrictions due to infrastructure (buildings and utilities) and terrain
- Treatment is dependent on initial site conditions, with sites already under reducing conditions performing better

2.2.3 Advantages Identified During Field Phase of the Project

- Some reactivity of iron remained many (5-11) years following treatment, as indicated by lower than baseline ORP, presence of iron precipitates favorable for continued abiotic degradation (e.g., magnetite), reactivity with resazurin, and geochemical and microbial changes across both treatment areas indicating reducing conditions are present within the treatment areas.
- No changes in groundwater flow characteristics were noted which would impact remedy effectiveness at either field study site.
- No rebound of VOC concentrations was noted at either field study site over time, indicating long-term efficacy of treatment
- Presence of anaerobic reductive dechlorinating bacteria at the St. Louis site in addition to aerobic ethenotrophs and cometabolizers capable of VC degradation supports continued degradation potential.

2.2.4 Disadvantages Identified During the Field Phase of the Project

- Concentrations downgradient of the treatment areas at both sites were higher than within the treatment areas; while this was known or suspected prior to treatment at both sites, it highlights the value of additional monitoring points before design and following treatment.
- Some reductions in reactivity, formation of precipitates on ZVI, and weathering of ZVI to other iron species was observed; however, given the 11- and 5-year lifetime of these remedies, this was not entirely unexpected.

2.3 TECHNOLOGY DEVELOPMENT

This study did not involve development of a new technology, but rather involved evaluation of long-term performance of an existing technology. The desired outcome of the project was the generation of a tool kit of best practices for optimal design and performance monitoring of ZVI remedies. These best practices are provided in Section 9 of this report.

3.0 PERFORMANCE OBJECTIVES

The overall objective of the field demonstration portion of this project was to evaluate the longterm performance of ZVI applications at a PRB site and a soil mixed/injection source area treatment site to develop a design and performance monitoring tool kit for remedial project managers (RPMs). The technical objective of this project was to collect biogeochemical, mineralogical, and potentiometric data to evaluate the effectiveness of ZVI at each site, its influence on the microbial community, and its impact on hydraulic conditions. Performance objectives for data discussed in Section 5 are tabulated in **Table 3-1**.

Performance Objective	Data Requirements	Performance Criteria	Results					
	Quanitative Objectives							
Assess continued zero valent iron (ZVI) influence on geochemistry and contaminant chemistry	Groundwater and field measurements were collected from 12 wells at theABL permeable reactive barrier (PRB) and seven wells at the St. Louis soil mixing site. The samples were analyzed for site contaminants, total and dissolved metals, total organic carbon (TOC), chloride, fluoride, nitrate, nitrite, sulfide, sulfate, phosphate, alkalinity, hardness, sulfide, ammonia, methane, ethane, ethene, and acetylene. Field measurements including pH, DO, and oxidation/reduction potential (ORP) were also collected.	Recognition of horizontal geochemical changes along the flow path through the ZVI application area.	Geochemical differences (changes in ORP, DO, pH, and anions and other geochemical indicators) were noted within the St. Louis Operable Unit 1 (OU1) treatment area in comparison to outside of the treatment area, consistent with continued abiotic reactions. Similar observations were made in one of the two transects downgradient of the PRB at ABL Site 5. Highly reducing conditions were observed in some portions of both of the test sites. A clean front was observed across one transect at the PRB site. Additionally, in the location within the mixing site which was monitored before and after treatment, no rebound was observed. Data indicated continued ZVI effectiveness.					

 Table 3-1. Performance Objectives

Performance Objective	Data Requirements	Performance Criteria	Results
Determine the current degree of ZVI reactivity	Evaluate reactivity of remaining iron material through acidification and hydrogen generation, and resazurin dye testing.	Reacted ZVI material from the application areas will be compared against unreacted control material and background reference soil samples. Reacted ZVI will show more reducing capacity than background soil samples.	Reactivity analysis was completed using acidification and hydrogen generation as well as with resazurin testing for the St. Louis site and indicated low presence of ZVI (<0.04% of sample dry mass) in the mixing area. However, 100% reactivity to resazurin was observed in mixing area soil/iron in comparison to little reactivity in surrounding soils, indicating potential for continued abiotic reactions. Due to laboratory availability, this testing was not completed on ABL samples.
		Qualitative Objectives	
Determine the degree of mineralization of the ZVI	ZVI samples in two locations in the former St. Louis Ordnance Plant soil mixing area and at four locations (two upgradient and two downgradient) at the ABL PRB were collected to allow for analyses by scanning electron microscopy, x-ray diffraction (XRD), thermogravimetric, x-ray absorption spectroscopy, and carbon/sulfur analyses to determine particle morphology, size, composition, mineral identification, and iron oxidation states and bonding environments.	The remaining iron observed will be ZVI, bivalent or mixed valence iron precipitates (magnetite, iron carbonate hydroxide, iron sulfide, and green rust). Extrapolate individual sample results and consider other findings to draw conclusions about long-term performance of the ZVI application area.	XRD, x-ray absorption near edge structure (XANES) spectroscopy, magnetic susceptibility, magnetic separation, hydrogen production, and energy dispersive line scans across identified iron particles indicated very little ZVI remaining in the cores collected at both sites. However, magnetite and hematite were observed at ABL, while magnetite was dominant with some goethite (observed in XANES) at St. Louis. Magnetite may still facilitate abiotic reactions. Mineral precipitates (calcium carbonate and iron oxide) were observed coating the iron particles in the upgradient portion of the ABL PRB, but were not significant enough to interfere with hydraulic performance of the PRB. Overall data indicate some passivation of the ZVI treatments at both sites, although degradation is still likely to be occurring through secondary reactivity and possibly by ZVI present in areas not represented by the samples analyzed. Due to laboratory availability, the downgradient portion of the PRB at ABL was not evaluated and the sample sets at both sites were very limited

Table 3-1. Performance Objectives

Performance Objective Data Requirements		Performance Criteria	Results	
Assess microbial community changes due to ZVI application	Nine groundwater samples at the ABL PRB site and seven at the St. Louis soil mixing site were collected for Next Generation Sequencing (NGS) and QuantArray-Chlor analysis.	Recognition of horizontal microbial changes along the flow path through the ZVI application area.	Differences in microbial populations downgradient of (at the ABL PRB) and within the treatment area (at the St. Louis site) were noted. While dechlorinating microbial populations at the ABL site (reductive dechlorinators, ethenotrophs capable of dechlorination, and cometabolizers) were not impacted by the presence of the wall, sulfur oxidizing bacteria (Sulfurimonas) were found in abundance just downgradient of the wall, but not in other areas of the site, indicating some continued impact of the wall on site microbiology. At the St. Louis site, populations of reductive dechlorinators capable of at least partial dechlorination of trichloroethene (TCE) (such as Dehalogenimonas sp.) were enhanced in the treatment area, but Dehalococcoides sp. functional genes associated with complete dechlorination were generally absent. NGS data were indicative of significant changes in microbial populations in the mixing area (e.g. higher populations of Firmicutes), supporting geochemical data indicating long-term continuing impacts from ZVI at the site.	
Determine if ZVI application changed groundwater flow	Wells within the monitoring network were surveyed as necessary and gauged to assess flow direction. Slug tests were performed within and outside of the ZVI- treated area at the source area treatment site.	Groundwater potentiometric elevations were used to distinguish hydraulic flow near ZVI application. Hydraulic conductivity was assessed within and outside of the iron treated area to determine if changes occurred as a result of treatment.	No significant changes (mounding, diversion around the wall, etc.) were noted in the groundwater flow at the ABL site. At the St. Louis site, flow patterns were difficult to discern because of differences in well-screen intervals. Similar hydraulic conductivity values were measured within and outside of the treatment area at St. Louis Ordnance Plant during slug testing, indicating minimal impacts to hydraulic characteristics from ZVI treatment.	

Table	3-1.	Performance	Obi	ectives
Lanc	J T.	I ci ioi mance	CDJ	

Performance Objective	Data Requirements	Performance Criteria	Results
Develop pre- and post-treatment data requirements for RPM tool kit	Field data were evaluated in consideration of the desktop review performed as the first phase of this project.	Based on data evaluation, prepare summary of most useful information for RPM to design and monitor ZVI applications, distribute to Navy RPMs, and solicit feedback.	Recommended best practices are included in Section 9.

Table 3-1. Performance Objectives

4.0 SITE DESCRIPTION

4.1 SITE LOCATION AND HISTORY: ABL SITE 5, ROCKET CENTER, WEST VIRGINIA

The following sections describe site histories at the two selected demonstration sites, ABL Site 5 and the former St. Louis Ordnance Plant OU1.

4.1.1 Site History – ABL Site 5

ABL is a U.S. Navy-owned, contractor-operated (ATK Tactical Systems Company LLC [ATK]) research, development, testing, and production facility for solid propellants and motors used for ammunition, rockets, and armaments. The facility is located in Mineral County in the northeastern part of West Virginia, along the West Virginia and Maryland border (**Figure 4-1**). The facility lies between the North Branch Potomac River to the north and west, and Knobly Mountain to the south and east. The land surrounding the ABL facility is primarily rural agricultural and forest. ABL consists of about 1,634 acres of land with about 350 buildings. The facility is divided into two distinct operating plants, Plant 1 and Plant 2. Plant 1 is the government-owned, contractor-operated (GOCO) facility owned by the Navy and leased to ATK by the Naval Sea Systems Command through a Facilities Use Contract. It occupies about 1,577 acres in area (including a large undeveloped area). Plant 2, owned and operated by ATK, occupies the remaining 57 acres.

Figure 4-1. ABL Site 5 Location Map

Site 5 is a former landfill on the GOCO portion of the facility. The landfill operated from the early 1960s to 1985, accepting wastes generated by ABL that were deemed to be inert. Inert wastes were defined as wastes not contaminated with explosives nor generated at an area on the facility where explosives were managed. Wastes reported to have been disposed of at Site 5 include drums that previously contained tetrachloroethene (PCE), methylene chloride, and acetone; fluorescent tubes (potential mercury source); unknown laboratory and photographic chemicals; fiberglass and other resin-coated fibers; metal and plastic machining wastes; and construction and demolition debris (CH2M, 2003). The landfill covers 1.3 acres and was capped in 1997.

4.1.2 Physical and Hydrogeologic Setting – ABL Site 5

Site 5 is located on a terrace above the North Branch Potomac River. The Site 5 topography gently slopes toward the North Branch Potomac River, then becomes steeper immediately adjacent to the river. Site 5 is underlain by unconsolidated alluvial deposits of fill, silty clay, and clayey gravel (alluvium) and predominantly shale bedrock. The depth to bedrock at Site 5 is approximately 15 to 20 feet below ground surface (bgs). Depth to shallow groundwater is between 1 to 12 feet bgs. Shallow (alluvial) groundwater flow is northwestward, subparallel to the river (**Figure 4-2**). Alluvial groundwater velocity downgradient of the landfill was estimated to be 0.81 foot per day, or 293 feet per year. Groundwater level data in the vicinity of the wall collected as part of this investigation is summarized in Section 5.

Figure 4-2. ABL Site 5 Groundwater Contour Map (August 2012)

4.1.3 Contaminant Distribution – ABL Site 5

The highest historical TCE concentrations at ABL Site 5 have been in the 100 to 150 micrograms per liter (μ g/L) range, on the downgradient edge of the landfill boundary within the alluvium. The dissolved phase TCE plume in the alluvial aquifer originated within the landfill, and prior to the installation of the PRB, extended over 700 feet downgradient toward the North Branch of the Potomac River (**Figure 4-3**); while groundwater flow is to the north-northwest, the contaminant plume extends mostly northward. The landfill and resultant groundwater contaminant plume are located in a former meander bend of the river. The depositional environment (i.e., paleochannel) likely has more influence on the contaminant migration then the groundwater potentiometric gradient, resulting in this discrepancy. While TCE has been detected in wells installed in the fractured shale bedrock, detections in these wells have been sporadic and have typically not exceeded the maximum contaminant level (MCL) of 5 μ g/L. TCE daughter products (cis-1,2-DCE, VC) have also been detected in groundwater, but have not exceeded their respective MCLs of 70 and 2 μ g/L (CH2M, 2013).

4.1.4 ZVI Treatment Summary – ABL Site 5

In June 2006, in order to address the migration of TCE from the landfill towards the Potomac River, a 200-foot-long, 2-foot-wide, and 17- to 21.5-foot-deep PRB was installed through the alluvial aquifer and keyed into the bedrock (**Figure 4-4**) at the downgradient edge of the landfill. A trench was excavated nominally 24 inches wide and up to 21.5 feet deep, depending on the elevation of the bedrock. As the trench was excavated, a biopolymer slurry was added to the trench for side wall support. A total of 357,000 pounds (lb) of ZVI (EnviroMetal Technologies Inc. CC-1004 [-8+50 mesh] manufactured by Connelly GPM, Inc.) were mixed with 536,000 lb of sand that was then added to the excavation for completion. The trench was then covered with a 6-ounce geotextile, and a 3-foot-deep clay cap was placed over top of the barrier. While the required residence time for treatment of the ZVI only required a 7-inch-thick PRB based on initial calculations (AGVIQ and CH2M, 2006), the wall was constructed to be 2 feet thick due to trenching limitations. The remedy for TCE in the portion of the plume already downgradient of the PRB at the time of installation was identified as monitored natural attenuation (CH2M, 2013).

All aerial maps contained in this document are provided by Esri; road and terrain maps are sourced from installation-specific geodatabases and are cross referenced with local GIS data.

Figure 4-4. ABL Site 5 Treatment Area

4.2 SITE LOCATION AND HISTORY: FORMER ST. LOUIS ORDNANCE PLANT OU1, ST. LOUIS, MISSOURI

4.2.1 Site History – Former St. Louis Ordnance Plant OU1

The former St. Louis Ordnance Plant is located on the western boundary of the city limits of St. Louis (Figure 4-5). The St. Louis Ordnance Plant operated from 1941 to 1945 as a small arms ammunition production facility. The plant was divided into two areas designated No. 1 (east of Goodfellow Boulevard) and No. 2 (west of Goodfellow Boulevard). The former Hanley Area consists of the 14.68 acres at the northeastern end of Plant Area No. 2 at the intersection of Stratford Avenue and Goodfellow Boulevard (Figure 4-5). The processes there consisted of the blending of primary explosives and incendiary compounds, and the tracer charging of .30- and .50-caliber projectiles as part of the assembly of the final product. Powder wells installed in 1941 received wastewater from buildings and magazines until 1945. The powder wells provided sediment collection before discharge to the sanitary sewer. The former Hanley Area takes its name from Hanley Industries, Inc., which leased the area in 1959 and conducted operations there through 1979. Hanley used the site for research, development, manufacture, and testing of various explosives. Over that time, Hanley produced specialty ordnance and non-ordnance devices for the U.S. military and the National Aeronautics and Space Administration. Hanley used most of the buildings to load detonators and primers and to mix explosives. Explosives were dried in magazines by leaving cans of explosives exposed to the air, and a lead azide reactor was operated in one of the magazines, the location of which is unknown. Hanley reportedly did not use the powder wells or sumps on the property for wastewater disposal (USACE, 2010).

All aerial maps contained in this document are provided by Esri; road and terrain maps are sourced from installation-specific geodatabases and are cross referenced with loc Figure 4-5. Former St. Louis Ordnance Plant OU1 Site Location Map

The site ground surface consists of paved areas and landscaped vegetation. The site is completely fenced (partially with iron fencing and the remaining with a 6-foot-tall chain link fence). The site contains underground rooms (former basements and bunkers), tunnels for service utilities, and a combined underground wastewater and stormwater collection system. The underground structures are still intact. Most other buildings have been demolished or are currently only used for storage. Building 219G is occupied during business hours (USACE, 2010).

4.2.2 Physical and Hydrogeologic Setting – Former St. Louis Ordnance Plant OU1

Overburden soils at the former St. Louis Ordnance Plant site consist primarily of clay. Fill material including gravel, concrete rubble, brick debris, and sand has been observed in portions of the site as deep as 11 feet. A layer of interbedded clay and silt is observed between roughly 20 to 25 feet bgs in the north part of the former Hanley Area. A hard, dry, completely weathered shale is present beneath the clay (USACE, 2010). The thickness of the weathered shale ranges from 6 to 12 feet in boreholes advanced to depths at which the competent bedrock is encountered. Groundwater is present within more permeable silt and clay lenses that are locally discontinuous within the upper clay unit. Depth to groundwater is generally between 3 and 10 feet bgs. Saturated conditions are not observed within the weathered shale beneath the clay unit. Groundwater is encountered in a 6-inch saturated coal layer within the competent shale zone. Groundwater within the coal does not appear to be connected to groundwater in the silt and clay lenses. Based on previous investigations groundwater in the silt and clay generally flows from the south and west to the east-northeast (**Figure 4-6**).

Figure 4-6. Former St. Louis Ordnance Plant OU1 Groundwater Contour Map (April 2015)

4.2.3 Contaminant Distribution – Former St. Louis Ordnance Plant OU1

Dissolved-phase groundwater contamination was identified in three distinct plumes containing one or more chlorinated VOCs at the site. Only one of these plumes was treated with ZVI. Consequently, the remainder of this nature and extent description is focused on that area, designated as Plume A. Plume A consisted of elevated concentrations of PCE, TCE, and cis-1,2-DCE, with PCE at a maximum concentration of 43,300 µg/L. The plume originates on the north side of a parking lot near a sewer system. A former building (220) was previously located in this area and is suspected to have been the source. The presence of TCE and cis-1,2-DCE may be attributed to reductive dechlorination of PCE. There is no historical record of a single large spill, but sporadic discharge of small quantities of spent product is assumed to have occurred. **Figure 4-7** illustrates the areal extent of total VOC concentrations in and around the treatment area prior to the Remedial Action. The depth of groundwater contamination extends from the water table (3 to 10 feet bgs) to the weathered shale interface at roughly 26 to 28 feet bgs.

Figure 4-7. Former St. Louis Ordnance Plant OU1 Total VOC Plume (December 2011)

4.2.4 ZVI Treatment Summary – Former St. Louis Ordnance Plant OU1

In March 2012, soil mixing was performed to reduce PCE concentrations in groundwater below the active treatment remediation goal of 21,000 μ g/L. ZVI soil mixing occurred over an area of 1,491 square feet to an average depth of 25 feet, for a total treatment volume of 1,383 cubic yards of soil. The treatment depth was based on the depth to the weathered shale bedrock. To mix the soil, ZVI was placed directly into an open borehole advanced to the depth of each column. The column was then mixed using an auger 5 feet in diameter.

An estimated 659 pounds of contaminant mass were present in the subsurface within the treatment area: 23 pounds dissolved in groundwater and 636 pounds adsorbed to soil. The mass of contaminants dissolved in groundwater and adsorbed to the soil was estimated based on various site assumptions including estimated porosity (0.25), soil density (1.5 tons per cubic yard), average concentrations of PCE detected in soil (169 milligrams per kilogram, and maximum concentrations of PCE in groundwater (43,300 μ g/L). Based on those calculations and a factor of safety of 25, a minimum ZVI dosage of 0.6 percent by mass was determined to be needed to effectively treat PCE in groundwater and adsorbed to soil. A remediation dosage of 1 percent ZVI, by mass of soil, was used. Twenty-two tons of ZVI were incorporated into 1,383 cubic yards of soil. Five hundred pounds of ZVI was introduced into each of 88 soil mixing columns (**Figure 4-8**) to distribute the ZVI evenly throughout the treatment area. Soil mixing was conducted without adding water (CH2M, 2012).

Figure 4-8. Former St. Louis Ordnance Plant OU1 Treatment Area and Wells

5.0 TEST DESIGN

5.1 CONCEPTUAL EXPERIMENTAL DESIGN

This section provides details regarding the conceptual experimental design, site characterization activities, and data analysis associated with the technology demonstration performed at ABL Site 5 and former St. Louis Ordnance Plant OU1.

5.2 **BASELINE CHARACTERIZATION**

Because this project involves evaluation of existing remedies and not testing of a new technology, baseline measurements are not applicable. However, the following sections describe activities completed in preparation for fieldwork. Fieldnotes for this work are included in **Appendix B**.

5.2.1 Utility Location

Prior to completing intrusive activities, utilities were located at each site and a dig permit was obtained to avoid damage to existing underground utilities. Underground Detective provided locating services for the former St. Louis Ordnance Plant site. Accumark provided locating services for the ABL site. No underground utilities requiring movement of sample locations proposed in the Demonstration Plan for this project (NAVFAC EXWC and CH2M, 2016) were noted at either site. At the ABL site, Accumark also used a metal detector to mark the outside of the PRB at the site to assist in accurate placement of sample locations relative to the PRB.

5.3 FIELD TESTING

5.3.1 ZVI Sampling – ABL Site 5

Profile samples of ZVI across the PRB at ABL were collected using direct push technology (DPT) drilling technology in locations shown on Figure 5-1. Pilot holes were installed prior to completion of cores collected for laboratory analysis to allow for logging of the ZVI contact with the native soil. Cores were collected by beginning at the ground surface and advancing the 2-inch-diameter DPT drive point diagonally into the wall. All points were completed with the boring started 5 feet from the center line of the wall. Drilling methods were adjusted to ensure the wall interface was encountered at a 67-degree angle as shown on Figure 5-2. The angle at which the core barrel was positioned relative to the ground was measured frequently during drilling. Because of some shifting of the angle during coring, adjustments were made in some cases to begin the core at an angle of up to 70 degrees to achieve the desired 67 degrees at depth. Once a pilot hole was installed and logged, two additional borings were completed within 1 to 2 feet of the pilot hole parallel to the wall for the purpose of collecting cores for laboratory analysis (Figure 5-1). The depth on the diagonal at which the iron was encountered varied from one core to the next, even when cores were only a foot or two away from one another and approached the wall at the same angle, indicating possible inconsistencies in the wall thickness. Depths on the diagonal at which iron was encountered in each core and soil descriptions are included in Table 5-1.

All aerial maps contained in this document are provided by Esri; road and terrain maps are sourced from installation-specific geodatabases and are cross referenced with local GIS data. **Figure 5-1. DPT Boring Locations, ABL Site 5**

Figure 5-2. Iron Core Drilling Configuration

Core ID	Depth on Diagonal at which Iron Was Encountered (ft)	Description – Notes		
DP001	11	Native soil is reddish brown silt, some gravel and sand.		
DP001-EPA	13.5*	ZVI staining of native soil 0.4 feet from actual ZVI		
DP001-OHSU	13.5*	material.		
DP002	14			
DP002-EPA	14*	Native soil is light brown saturated, sandy silt		
DP002-OHSU	14*			
DP003	12			
DP003-EPA	12*	Native soil is brown silty clay		
DP003-OHSU	10*			
DP004	12			
DP004-EPA	13*	Native soil is reddish brown sandy silt		
DP004-OHSU	13*			

 Table 5-1. Iron Core Depths

Notes:

*Observation based on soil visible through unopened acetate liner

OHSU = Oregon Health and Science University

ZVI = zero-valent iron

The 4-foot-long acetate cores collected for laboratory analysis were cut into 2-foot-long sections for ease of shipping. Sleeve sections were capped on both ends. Ends were labeled to indicate placement within the wall and depth. In most cases, two cores per location were necessary to capture the wall interface and the wall centerline. Once collected, the samples were frozen immediately on dry ice. One set of samples was shipped overnight on dry ice to USEPA's National Risk Management Research Laboratory for mineralogical analysis as described in **Section 5.3.10**. The duplicate set of cores was sent to the Oregon Health and Science University (OHSU) for reactivity testing. A manufacturer-provided reference sample of ZVI from the same iron source was also sent to each of the laboratories for mineralogical baseline comparison purposes.

5.3.2 ZVI Sampling – Former St. Louis Ordnance Plant OU1

DPT soil/ZVI cores were also collected within the ZVI soil mixing area at the former St. Louis Ordnance Plant in locations shown on **Figure 5-3**. Soils were collected from acetate sleeves and were visually inspected to evaluate lithology. Field notes are included in **Appendix B**. Boring logs are included in **Appendix C**. Cores for laboratory analysis were collected from 16 to 20 feet bgs, consistent with the depth of the middle to lower portion of the mixing zone (which extends from the water table at approximately 5 feet bgs to 25 feet bgs). Cores were collected at one upgradient, one downgradient, and two soil mixing locations. Duplicates were collected within

2 feet of the primary samples within the ZVI mixing area only. One set of samples was shipped overnight on dry ice to OHSU for reactivity testing (Section 5.1.10). The duplicate set of mixing area cores was sent to USEPA's National Risk Management Research Laboratory for mineralogical analysis (Section 5.3.10). An iron reference sample from the ZVI supplier was also sent to each lab.

5.3.3 Well Installation – ABL Site 5

Two transects of groundwater monitoring wells were installed perpendicular to the PRB (**Figure 5-4**), with one upgradient well and two downgradient wells in each transect. Wells were installed in alignment with existing groundwater monitoring wells 5GW18 and 5GW25. The new upgradient wells were placed approximately 5 feet away from the PRB. The new downgradient wells were placed approximately 5 feet and 10 feet away from the PRB. Two wells were also installed cross-gradient of the PRB to the east and west of the PRB to evaluate the potential for flow around the PRB.

Well installation was completed using rotosonic drilling. Drill rods with a core barrel and a minimum 6-inch inside diameter were used to drill monitoring well boreholes. Continuous core samples (4-inch outside diameter) were collected for lithologic classification. Boring logs are included in Appendix C. Monitoring wells were constructed inside the override casing(s) once the borehole was advanced to the desired depth (bottom of alluvial aquifer at ABL). The wells were constructed of 2-inch-diameter polyvinyl chloride (PVC) casing and 0.010-inch slotted PVC. The screen length for all wells was 10 feet with the exception of 5GW32. Because bedrock was encountered at 11 feet bgs at the location of 5GW32, a 5-foot screen was installed for this well location. A primary sand pack was placed around the screen to a depth of 2 feet above the top of the screen. A bentonite seal was placed above the sand pack. Following setting the well screen, riser, filter pack, and bentonite seal, each well was grouted to the surface with a cementbentonite grout. The wells were completed at the surface with steel protective covers and locks. Following installation, and at least 24 hours after grouting, wells were developed using pump and surge development methods. Well construction diagrams are included in Appendix D. Well construction details are summarized in Table 5-2. Existing wells discussed in this study are also included in this table for the purpose of completeness.

Figure 5-3. Sample Locations, Former St. Louis Ordnance Plant OU1 Site

Figure 5-4. Well Locations, ABL Site 5

Monitoring Well	Installation Date	Ground Elevation (ft amsl)	Top of PVC Casing Elevation (ft amsl)	Total Well Depth (ft bgs)	Length of Screen (ft)	Elevation of Top of Screen (ft amsl)	Elevation of Bottom of Screen (ft amsl)
		А	llegany Balli	stics Lab Site	5		
5GW13*	11/18/1994	686.60	688.82	24	10	672.60	662.60
5GW17*	1/17/1996	674.44	676.39	24	15	665.44	650.44
5GW18*	10/15/1997	672.12	674.75	25	15	662.12	647.12
5GW25*	8/4/2006	672.61	674.86	25	15	672.61	672.61
5GW26	1/19/2017	673.29	675.74	22	10	661.29	651.29
5GW27	1/17/2017	671.97	674.82	22	10	659.97	649.97
5GW28	1/17/2017	671.95	674.63	20	10	661.95	651.95
5GW29	1/19/2017	674.82	677.32	21.5	10	663.32	653.32
5GW30	1/18/2017	672.40	674.98	19	10	663.40	653.40
5GW31	1/18/2017	672.29	674.82	19	10	663.29	653.29
5GW32	1/18/2017	673.86	676.49	10	5	668.86	663.86
5GW33	1/19/2017	673.22	676.07	21.5	10	661.72	651.72
		Forme	er St. Louis O	rdnance Plan	t OU1		
MW-119*	5/9/2012	542.15	541.63	30	20	532.15	512.15
DP-001	1/11/2017	540.59	543.81	30	10	520.59	510.59
DP-002	1/11/2017	543.81	546.70	26	10	527.81	517.81
DP-003	1/9/2017	543.13	546.09	25	10	528.13	518.13
DP-004	1/11/2017	537.69	540.63	25	10	522.69	512.69
DP-005	1/9/2017	542.52	545.87	25	10	527.52	517.52
DP-006	1/10/2017	540.99	543.81	28.3	10	522.69	512.69

Table 5-2. Well Construction Details

Notes:

* Historical well included for completeness

ft bgs = feet below ground surface

ft amsl = feet above mean sea level

5.3.4 Well Installation – Former St. Louis Ordnance Plant OU1

Six new monitoring wells were installed following collection of ZVI and soil cores at former St. Louis Ordnance Plant OU1. Wells were installed in the locations of the ZVI cores (one upgradient of the mixing area, one downgradient of the mixing area, and two within the mixing area) as well as in two locations cross-gradient of flow along the east and west sides of the mixing area as shown on **Figure 5-3**. Wells were installed using hollow-stem auger drilling

methodology. Where not already available from ZVI and soil coring, cores were collected in acetate sleeves for lithologic characterization. Soil boring logs are included in **Appendix C**. Wells were drilled to the depth of the soil mixing or top of shale. Wells were constructed of 2-inch-diameter PVC casing and 0.010-inch slotted PVC. The screen length for each well was 10 feet. A primary sand pack was placed around the screen to a depth of 2 feet above the top of the screen. A bentonite seal was placed above the sand pack. The wells were installed as temporary wells and no surface completions were installed. Following installation, at least 24 hours after grouting, wells were developed using pump and surge development methods. Well construction diagrams are included in **Appendix D**. Well construction details are summarized in **Table 5-2**. Existing wells discussed in this study are also included in this table for the purpose of completeness.

5.3.5 Groundwater Sampling – ABL Site 5 and Former St. Louis Ordnance Plant OU1

Following completion of well installation and development at each site, new wells and select existing wells were sampled using low-flow sampling methodology. Wells 5GW13, 5GW17, 5GW18, and 5GW25 at the ABL site were sampled in addition to the new wells (**Figure 5-4**). At the former St. Louis Ordnance Plant, existing well MW-119 was sampled in addition to the new wells (**Figure 5-3**). Wells were purged prior to sample collection using a peristaltic pump. During purging, DO, ORP, temperature, conductivity, turbidity, salinity, and pH were monitored using a field meter and flow-through cell. Once parameters were stabilized to within 10 percent and at least one well volume was purged, samples were collected into laboratory-prepared bottles. Samples were then shipped overnight on ice to Microbac Laboratory in Boulder, Colorado for analysis of VOCs, total and dissolved metals, silica, strontium, sulfide, nitrate, nitrite, ammonia, total organic carbon (TOC), hardness, alkalinity, methane, ethane, ethene, acetylene, and the following anions: sulfide, chloride, phosphate, and fluoride. Additionally, one round of microbial samples was collected by pumping water through laboratory-provided biofilters and sending the filters and volume pumped to Microbial Insights of Knoxville, Tennessee for next generation sequencing (NGS) and QuantArray-Chlor analysis.

Quality assurance/quality control samples were collected for VOC and metals analyses only and included trip blanks (for VOCs only), field duplicates, and temperature blanks. Field duplicates were collected at a frequency of ten percent.

5.3.6 Water Level Survey – ABL Site 5 and Former St. Louis Ordnance Plant OU1

Three water level surveys were completed at each site to evaluate flow in the vicinity of the treatment areas. Water levels were collected using an electronic water level indicator and measured to the nearest 0.01 foot. Results of the water level surveys are included in **Section 5.4.5**.

5.3.7 Slug Testing – Former St. Louis Ordnance Plant OU1

At the former St. Louis Ordnance Plant Site, slug tests were completed beginning on January 30th and ending on February 1st for wells within and outside of the mixing area to determine whether hydraulic conductivity changes have occurred as the result of treatment. Most tests were completed as falling head tests in accordance with the Demonstration Plan (NAVFAC EXWC and CH2M, 2016). The test at DP006 was completed as a rising head test.

Before each test, a digital data-logger (Level Troll 700) was installed in the well to a depth of several feet below the static water level. Prior to insertion of the data logger, the static water level was measured using an electronic water level indicator. The data logger was securely fastened in the well and programmed to logarithmically record the depth of water above the sensor at a maximum of 15-second intervals. A displacement slug was lowered into the well and held steady as the water level stabilized. For the well at which a rising head test was completed, data were recorded as the water level stabilized. For all other wells, once the water level stabilized to within 90 percent of the original static water level, the slug was removed to conduct the rising head test, monitoring the return of the water to its original static level. Recovery at the site was very slow, with tests running at least a half hour each, with one test running over 8 hours (DP004). The slug tests data sets were analyzed by AQTESOLV using the Bouwer-Rice solution method.

5.3.8 Decontamination

Override casings, core barrel, DPT equipment, and other downhole drilling tools were decontaminated prior to the installation of wells and soil borings, between each location, and before demobilization from each site. Equipment was decontaminated by steam cleaning at a designated area in accordance with the Demonstration Plan.

5.3.9 IDW Management

Investigation-derived waste (IDW) consisting of soil from well installation, purge water (from well development and groundwater sampling), and decontamination fluids was generated and managed in accordance with the Demonstration Plan. IDW disposal paperwork is provided as **Appendix E** of this document.

5.3.10 Laboratory Testing

This section summarizes laboratory testing to meet the project objectives.

5.3.10.1 Chemical and Microbial Analysis

Geochemical, VOC, metals, and microbial analyses were completed using the analytical methods specified below:

- VOCs SW846 8260B/PAT01/MSV01
- Metals (total and dissolved) SW846 3005A/6010C/6020A/ME401/ME600E/ME600G/ ME700A
- Nitrogen and ammonia USEPA 350.1/SM 4500-NH3 B,G-1997 (2011 Editorial Revision)
- Phosphate USEPA 365.2/SM 4500-P E-1997 (2011 Editorial Revision)
- TOC USEPA 415.1/SW 846 9060A/SM5310C-2000 (2011 Editorial Revision)
- Anions USEPA 9056/IC01
- Alkalinity USEPA 310.1/SM2320B -1997 (2011 Editorial Revision)
- Sulfide USEPA 376.1/ SM4500-S-F-2000(2011 Editorial Revision)/K3761
- Hardness USEPA 130.2, Standard Method 2340C-1997 (2011 Editorial Revision)

- Methane, ethane, ethene, and acetylene RSK-175
- Microbial analysis QuantArray-Chlor and Next Generation Sequencing by Microbial Insights

5.3.10.2 Mineralogical Analysis

Upon arrival to USEPA's Risk Management Research Laboratory, frozen cores were transferred from a walk-in freezer to a Coy Laboratories anaerobic glove box containing an atmosphere of nitrogen gas and <4 percent hydrogen gas. The cores were opened, partitioned into ~6-inch segments, and the aquifer solids were allowed to dry anaerobically. Materials from each core segment were homogenized and disaggregated using an agate mortar and pestle. Subsamples were obtained for analyses of inorganic carbon concentrations, acid-volatile sulfur (AVS), and mineralogy/composition using x-ray diffraction, scanning electron and optical microscopy, and x-ray absorption spectroscopy.

Solid-phase inorganic carbon concentrations were determined using acid digestion and carbon dioxide (CO₂) detection with a carbon coulometer (UIC Model CM5014; Paul et al., 2003). Each sample was analyzed in duplicate or triplicate. Solid-phase concentrations of AVS were determined using acid digestion (Wilkin and Bischoff, 2006).

X-ray diffraction (XRD) analyses were conducted using a Rigaku Miniflex diffractometer using manganese-filtered FeK α radiation ($\lambda = 0.1937$ nanometers). Diffraction data were collected from 5° to 90° 20 with 0.01° 20 step increments at a scan rate of 6 seconds per step. National Institute of Standards and Technology 640b standard reference material (silicon powder) was used as a quality control check of d-spacing accuracy. XRD scans were imported into the Jade (Materials Data, Inc.) software package for analysis and matched to the Powder Diffraction File Data Base (PDF, International Centre for Diffraction Data). Samples were prepared by sonicating anaerobically dried materials in methanol and collecting the dispersed fine fraction. The fine-grained solid fraction was dried in a vacuum desiccator prior to XRD analysis.

Particle morphology and composition was studied using an optical microscope (Olympus BX60) in reflected-light mode and using scanning electron microscopy (SEM) (TESCAN Vega3 microscope) coupled with Energy-Dispersive X-ray Spectroscopy (EDS) (EDAX Element EDS System). An accelerating voltage of 30,000 electron-volts (eV) was used and images were obtained with secondary and backscattered electron detectors. Polished sections were prepared by Spectrum Petrographics. The polished samples were coated with gold to prevent sample charging.

For samples from St. Louis only, X-ray absorption near edge structure (XANES) measurements were made on the bending magnet located at Materials Research Collaborative Access Team Sector 10 (beamline 10-BM) at the Advanced Photon Source (Argonne National Laboratory). The fluorescent x-ray signal was monitored using a four-element Vortex energy dispersive detector. Sample pellets were pressed between layers of Kapton tape. Three scans each of five samples were collected and each scan was energy-corrected using an iron reference foil (7,112 eV). The raw data were background corrected, summed, and step-height normalized using the Athena software package (Ravel and Newville, 2005).

Results of the mineralogy testing are discussed in Section 5.4.1.

5.3.10.3 Reactivity Analysis

Upon arrival at OHSU, frozen cores for the St. Louis site only were processed into 1-inch-thick slices in an anaerobic glove box. Slices were collected every half foot from 16.5 to 19.5 feet for both upgradient and downgradient reference samples (DP003 and DP004) and mixing area samples (DP001 and DP002). ZVI content analysis via acidification and hydrogen generation analysis was completed for each sample. Magnetic and gravimetric analysis was then performed to determine the magnetically separable fraction of material. Finally, reactivity was assessed using the chemical reactive dye, resazurin. An ultraviolet–visible spectrophotometer was utilized to assess the presence of resazurin, and its reduced form, resorufin, in a select subset of samples (DP001 and DP003). All analyses were completed in accordance with the standard operating procedure (SOP) in **Appendix F** (note that this SOP was not included in the Demonstration Plan). Due to resource restrictions, ABL cores were not analyzed.

5.4 STUDY RESULTS

5.4.1 Field Parameter and Geochemistry Results

5.4.1.1 ABL Site 5 Field Parameters, Geochemical Results, Metals, and VOC Results

Graphical illustrations of field and laboratory analytical results on ABL Site 5 maps are included as **Figures 5-5 through 5-9.** All laboratory analytical results are provided as **Appendix G.** Field analytical results for ABL are presented in **Table 5-3.** A summary of laboratory analytical detections is provided as **Table 5-4.** Graphs showing changes in select parameters across the PRB and cross-gradient are provided as **Appendix H.**

Increases in pH were observed from the close upgradient location to the downgradient locations in both PRB transects (**Figure 5-5**). Decreases in ORP were also observed across the wall. The immediate downgradient wells, 5GW27 (western transect) and 5GW30 (eastern transect), indicate ORP values of -36 mV and -88 mV, respectively. The second-tier downgradient wells, 5GW28 (western transect) and 5GW31 (eastern transect) indicated ORP values of -68 mV and -104.5 mV, respectively. DO concentrations downgradient of the wall were consistently less than 0.2 mg/L, indicating anoxic to anaerobic conditions. Cross-gradient locations and all but one upgradient location (GW29, close upgradient to the wall) had DO concentration of greater than 1 mg/L, indicating aerobic conditions on the upgradient side.

TOC concentrations decreased from the close upgradient (6.83 mg/L to 7.81 mg/L) to the immediate and second tier downgradient (2.74 mg/L to 5.39 mg/L) close downgradient sample locations in both transects. Alkalinity and hardness decreased across both transects (**Figure 5-6 and Appendix H-1A**). Sulfate also decreased across the PRB, as expected due to reduction to sulfide. However, no sulfide was detected, presumably due to precipitation of iron sulfide minerals. No increase in chloride was noted across the PRB, but because VOC concentrations are very low at this site, no notable increase was anticipated. Detections of nitrate were sporadic across the site and nitrite was not detected. No notable change in ammonia concentrations was observed across either transect, but the concentration of ammonia was higher in the entire eastern transect in comparison to the western transect and cross-gradient, possibly due to a source in the landfill in this area. Methane, ethane, and ethene concentrations increased downgradient of the wall in comparison to close upgradient locations and cross-gradient locations (**Appendix H-1B**).

R:\N\Navy\CLEAN\MULTI_REGION\ZVI\MapFiles\Results\ABL\Figure 5-27 -	Field Parameters.mxd9/25/2017bmailhes			A CORD AND THE OWNER			
A SALES AND A SALES	AS05-GW25	all the second		AS05-GW18	A CONTRACTOR OF THE OWNER		and the second
	Dissolved Oxygen (mg/L)	0.16	· · · · · · · · · · · · · · · · · · ·	Dissolved Oxyge	en (mg/L) 0.18		
	Redox Potential (mV)	-136.3		Redox Potential	(mV) -46.6		STATE A
	pH (pH units)	7.26	CALCULATION OF A CALCUL	pH (pH units)	6.71	and the second second	(The second
	COLUMN STATES				1000日の1000日日間間間に	Note the second	18/2111
	网络马尔林 尔马马斯						Saltas
					The state of the second		- Strates
					ALL MARKEN STREET	A \$05 CW/21	- Andrew
						Dissolved Oxygen (mg/L)	0.1
	1962 AND 1929					Redox Potential (m\/)	-104 5
	CONTRACTOR DATE:	BET MARKEN WARRANT			Contractory of the	pH (pH units)	6 84
						pri (pri dinito)	
AS05-GW28	CONTRACTOR OF THE OWNER OWNE	STATISTICS AND ADDRESS OF		ALC: N. LEWIS	The second second		1
Dissolved Oxygen (mg/L) 0.0					1 de la constance de		19 - 201
Redox Potential (mV) -68	7	DE CARECO DE LA C			and the second second	AS05-GW30	
		No. 1	Q		Later Constant	Dissolved Oxygen (mg/L)	0.13
ALL OF					1	Redox Potential (mV)	-88
				28781111		pH (pH units)	6.74
	57						- ALL
Dissolved Oxygen (mg/L) 1.3 Rodox Rotontial (m)() 17				Ville in the			CT I
pH (pH upits)	.2		•	XIONE			CIP Sou
					248 A		19 may 19
and the second							
							No.
							the second
MARKEL .							
	A CARLE AND ALL					A SOF CIM22	
AND TREE						Dissolved Oxygen (mg/L)	6 13
AS05-GW17					and a show	Redox Potential (mV)	167.6
Dissolved Oxygen (mg/L) 1.	12			-04- 3 - 3-2 X	ALL ALLAND	pH (pH units)	6.51
Redox Potential (mV) 171		IN COLOR				Private and a second se	
pH (pH units) 6.0	07						
The second second		Contraction and the second		4			Nov 1 1
THE PART OF STREET			Sector of the sector	COLOR AND	Taxas 1 1 1 1 1 1 1 1 1	Relation of the second	
						State of the second second	
AS05-GW	V27	AS05-GW26	AS05-GW1	3	A\$05-GW29		に、乙基
Dissolved	Oxygen (mg/L) 0.1	Dissolved Oxygen (mg/L)	1.23 Dissolved C	Dxvaen (ma/L) 3.59	9 Dissolved Oxygen (mg/L)	0.1	Sec. 14
Redox Po	otential (mV) -36	Redox Potential (mV)	55.6 Redox Pote	ential (mV) 191.8	8 Redox Potential (mV)	-4.5	
pH (pH ur	nits) 6.78	pH (pH units)	6.65 pH (pH units	s) 6.7	5 pH (pH units)	6.51	
	COMPANY TO SERVICE AND A DATA			ALL	CTCR DIMERSION		a data da ser a
				\wedge			Figure 5-5
				[∠] N	Sel	ect Field Parameter Results - Jar	uary 2017
Estimated Groundwater Flow Direction			^	50 100		Rocket (Center. WV
Site Boundary			0	50 TUU Feet			· ·····
Notes: mV - millivolts			1 i	nch = 100 feet			
mg/L - milligrams per Liter							2m.
· ·							

R:\N\Navy\CLEAN\MULTI_REGION\ZVI\MapFiles\Results\ABL\Figure 5-28 - Geochemical Parameters.mxd9/25/2017bmailhes

Ž

10000470.0			
	Sec.		
AS05-GW28	n	ng/L	
Carbon dioxide	39.2		
Ethane	0.0069		
Ethene	0.00174	J	
Methane	2.11		
Alkalinity	188		
Ammonia	0.187	J	
Chloride	27		
Fluoride	0.151	J	
Hardness	304		
Nitrate	0.2	U	
Nitrite	0.2	U	
Phosphate	0.05	U	Ĩ
Sulfate	96.5		
Sulfide	1.0	U	
TOC	1 1 2		

	AS05-GW25	r	ng/L
	Carbon dioxide	21.7	
887.	Ethane	0.00575	
10	Ethene	0.002	U
57	Methane	NS	
	Alkalinity	224	
	Ammonia	0.253	
14	Chloride	26.4	
	Fluoride	0.133	J
20	Hardness	320	
2.	Nitrate	0.2	U
- 61	Nitrite	0.2	U
12	Phosphate	0.05	U
	Sulfate	95.6	
	Sulifide	1	U
	TOC	5.1	

	AS0 Car
K AL AL	
	/
	ł
	P
• •	<u>a)</u>

	10 10 10 10 10 10 10 10 10 10 10 10 10 1	
AS05-GW18	r	ng/L
Carbon dioxide	60.3	
Ethane	0.002	U
Ethene	0.002	U
Methane	3.09	
Alkalinity	186	
Ammonia	0.587	
Chloride	22.1	
Fluoride	0.158	J
Hardness	260	
Nitrate	0.2	U
Nitrite	0.2	U
Phosphate	0.05	U
Sulfate	58.5	
Sulifide	1	U
TOC	3.66	

A BE GER AND		
AS05-GW33	n	ng/L
Carbon dioxide	188	
Ethane	0.002	U
Ethene	0.002	U
Methane	0.0125	
Alkalinity	99.4	
Ammonia	0.176	J
Chloride	19.5	
Fluoride	0.4	U
Hardness	340	
Nitrate	0.4	U
Nitrite	0.4	U
Phosphate	0.05	U
Sulfate	233	
Sulfide	1	U
TOC	7.62	

			The second s			and the second se						
AS05-GW17	mg/L	2764	AS05-GW27	mg/L		AS05-GW26	mg/L	AS05-GW13	mg/L	6	AS05-GW29	
Carbon dioxide	217	61.11	Carbon dioxide	72		Carbon dioxide	98	Carbon dioxide	78.2		Carbon dioxide	
Ethane	0.002 U	1.00	Ethane	0.00385 J	21	Ethane	0.002 U	Ethane	0.002 U	10	Ethane	
Ethene	0.002 U	149	Ethene	0.00108 J	1.	Ethene	0.002 U	Ethene	0.002 U		Ethene	
Methane	0.00127 J		Methane	1.5	200	Methane	0.0367	Methane	0.002 U		Methane	
Alkalinity	166	162	Alkalinity	226	6.3	Alkalinity	295	Alkalinity	320		Alkalinity	
Ammonia	0.0753 J	246	Ammonia	0.226		Ammonia	0.205	Ammonia	0.167 J	3	Ammonia	
Chloride	22.7	1.6	Chloride	30.5		Chloride	18.5	Chloride	52.9		Chloride	
Fluoride	0.118 J	1001	Fluoride	0.161 J		Fluoride	0.228 J	Fluoride	0.4 U		Fluoride	
Hardness	308	2.84	Hardness	392	é.	Hardness	570	Hardness	680		Hardness	
Nitrate	0.33 J	100	Nitrate	0.2 U		Nitrate	0.622 J	Nitrate	0.362 J	÷.	Nitrate	
Nitrite	0.2 U		Nitrite	0.2 U	14	Nitrite	0.4 U	Nitrite	0.4 U		Nitrite	
Phosphate	0.05 U	4.2	Phosphate	0.05 U		Phosphate	0.05 U	Phosphate	0.05 U	8	Phosphate	
Sulfate	127	1000	Sulfate	147		Sulfate	192	Sulfate	326	£.,	Sulfate	
Sulfide	1 U	80	Sulfide	1 U	6	Sulifide	1 U	Sulfide	1 U	1	Sulfide	
TOC	8.71		TOC	4.74		TOC	7.81	TOC	7.69		TOC	
	COLUMN NUMBER	1000	and the second se	And the second sec		The second s	The second second	A DESCRIPTION OF A DESC				

Legend

Well Location

PRB

Estimated Groundwater Flow Direction
 Site Boundary

Notes:

U - The material was analyzed for, but not detected mg/L - milligrams per Liter Shaded cell indicates detection Acetylene was not detected in any samples; therefore, results are not included on this figure.

1 inch = 100 feet

0	AS05-GW31	n	ng/L	Sec.	and start	
29 M.	Carbon dioxide	77.6			100 C	
	Ethane	0.00337	J			
	Ethene	0.002	U	1.2	a little ba	8.4
20.00	Methane	2.17		Sector Sector	2.81	2
	Alkalinity	212		1000		T
Suga	Ammonia	0.675		111	1 NA L	8.
SIL	Chloride	22.3		S 39	1.50	TP
Sale	Fluoride	0.143	J	Real	6 3	2
	Hardness	352				<u>e.</u>
2.51	Nitrate	0.2	U			200
	Nitrite	0.2	U			
2.5	Phosphate	0.05	U	Sector		
\mathbf{k}	Sulfate	118		1.1.1.1	23.20	
1005	Sulfide	1	U	1000		2
100	TOC	2.74		10 - 5 - 5		
100	and the second	and the		2251.34		2
		1.500	AS	05-GW30	m	ng/L
1.40	Sec. 1	1. 10	Ca	arbon dioxide	94.6	-
4.6	Contraction of the second s	1000		Ethane	0.00321	J
80. I		5.282	1	Ethene	0.002	U
1900		1. A. S. A.		Methane	1.42	
64 C		200		Alkalinity	259	
	1944 A. S. 1946	10		Ammonia	0.677	
		A. 1024		Chloride	21.2	
1				Fluoride	0.137	J
1		1.5.10		Hardness	416	
				Nitrate	0.2	U
				Nitrite	0.2	U
HE LAND		Sec. 14		Phosphate	0.05	U
		1.1		Sulfate	159	
100		1 Bac	2	Sulfide	1	U
ALC: NO				TOC	5.39	
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			111 11	12.52	
m	ng/L	9- CS-8	AS	05-GW32	rr	ng/L
123			Ca	arbon dioxide	76.5	Ŭ
0.002	0.578.028		1	Ethane	0.002	U
0.002	J			Ethene	0.002	U
0.219				Methane	0.00807	
332	Canada Co			Alkalinity	149	
0.68	J			Ammonia	0.135	J
18.4	1	161		Chloride	19.7	
0.204	J	39		Fluoride	0.4	U
610	States and			Hardness	344	
0.664	U	1000		Nitrate	2.81	
0.4	U	in the second		Nitrite	0.4	U
0.05	υ	Sec.		Phosphate	0.05	U
212	CONTRACTOR IN	S. Sectors		Sulfate	196	
1	U	Sec. The		Sulfide	1	U
6.83	Contraction of the local distribution of the	14 14		TOC	5.74	

Figure 5-6 Geochemical Parameters - January 2017 Allegany Ballistics Laboratory Site 5 Rocket Center, WV

R:\N\Navy\CLEAN\MULTI REGION\ZVI\MapFiles\Results\ABL\Figure 5-29 - Detected VOCs.mxd9/25/2017bmailhes

AS05-GW25	Ļ	ιg/L
Benzene	0.541	J
cis-1,2-Dichloroethene	4.1	
trans-1,2-Dichloroethene	0.5	U
Trichloroethene	0.5	U
Vinyl chloride	0.5	U
The second se		-

CONTRACTOR AND STREET	TA: 40 KINE (1990)			
AS05-GW18	цg/L			Section of the
Benzene	0.25 U	8 8 8 T Z		Carlos Para 10
cis-1,2-Dichloroethene	2.38	The second		Carrier Co.
trans-1,2-Dichloroethene	1.74	14 6 2	A second second	1. STR. 0
Trichloroethene	9.95	1.12	and all the second second	1 Jalaria
Vinvl chloride	0.592 J	COSSAL C		
	A CONTRACTOR OF THE	Martin .		A COLORED
and share have		Jan 10		La Die to
		- Mary		
A PERSONAL STREET	ALC: NO CONTRACTOR	E CAR	AS05-GW31	μg/L
			Benzene	0.25 U
		87 ° 28	cis-1,2-Dichloroethene	0.5 U
	2012 - 10 Aug - 5 (c)		trans-1,2-Dichloroethene	0.5 U
医白色 法法公司保护	ALC: NOT	Cadita	Trichloroethene	0.331 J
		1000 1	Vinyl chloride	0.5 U
LEV LOUDE ST	Carl Starks	and the	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sector Land
	1 Mar 1998			100 C 100
		100 100	AS05-GW30	μg/L
C. States	Stores and	1000	Benzene	0.25 U
CORT CARRY SA	Sala Sala Sala	1.11.192	cis-1,2-Dichloroethene	0.5 U
			trans-1,2-Dichloroethene	0.5 U
	and the		Trichloroethene	0.5 U
	and the second		Vinyl chloride	0.5 U
		Strange and	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
X DIRE POINT				STATES ST
	and and		a second s	S. 88 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1000			
	Section 14			
	The Courses		CONCERNMENT AND	distant in the
		Ser Se .	A COLORIDAN	S PERSONAL AND
		and the	AS05-GW32	μg/L
March Carl			Benzene	0.25 U
		Sect 16	cis-1,2-Dichloroethene	0.422 J
Contraction of the second s	100	and a second	trans-1,2-Dichloroethene	0.5 U
		30.00	Trichloroethene	7.77
A TRUE A	V Dates (3)	1. 1. 1. 1.	Vinyl chloride	0.5 U
and the second	A LASSING	S Sale		
		B Bar	All	PAY 1
A CONTRACTOR		E 1999	SALES STATES	
SAM NO DEPART.		12000000	ANG	The second
μg/L A	S05-GW29	u(g/L	

AS05-GW28	Ļ	₁g/L
Benzene	0.576	J
cis-1,2-Dichloroethene	5.28	
trans-1,2-Dichloroethene	0.5	U
Trichloroethene	0.5	U
Vinyl chloride	0.5	U
AND THE REAL PROPERTY OF THE R		

AS05-GW33	Ļ	₁g/l
Benzene	0.25	U
cis-1,2-Dichloroethene	2.75	
trans-1,2-Dichloroethene	0.5	U
Trichloroethene	4.03	
Vinyl chloride	0.5	U

	ALC: NOT A REAL PROPERTY.		
162	AS05-GW17	Ļ	₁g/l
	Benzene	0.25	U
	cis-1,2-Dichloroethene	5.43	
6	trans-1,2-Dichloroethene	0.5	U
8.1	Trichloroethene	6.23	
	Vinyl chloride	0.5	U

1000 C		100						
AS05-GW27	μg/L	65	Ye 1	AS05-GW26	μ	ιg/L		AS05-GW13
Benzene	0.293 J			Benzene	0.25	U	100	Benzene
cis-1,2-Dichloroethene	2.87			cis-1,2-Dichloroethene	0.5	U		cis-1,2-Dichloroethene
trans-1,2-Dichloroethene	0.5 U	6		trans-1,2-Dichloroethene	0.5	U		trans-1,2-Dichloroethene
Trichloroethene	0.5 U		H.	Trichloroethene	0.338	J		Trichloroethene
Vinyl chloride	0.5 U			Vinyl chloride	0.5	U		Vinyl chloride

Legend

Well Location

PRB

- Estimated Groundwater Flow Direction
 Site Boundary

Notes:

J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outisde the quantitation range). U - The material was analyzed for, but not detected μg/L - micrograms per Liter Shaded cell indicates detection

0.25 U

0.5 U

0.5 U

0.889 J

8.53

1 inch = 100 feet

AS05-GW29	H	₁g/L
Benzene	0.25	U
cis-1,2-Dichloroethene	15.4	
trans-1,2-Dichloroethene	0.278	J
Trichloroethene	16.7	
Vinyl chloride	0.5	J

Figure 5-7 Detected VOCs - January 2017 Allegany Ballistics Laboratory Site 5 Rocket Center, WV

R:\N\Navy\CLEAN\MULTI_REGION\ZVI\MapFiles\Results\ABL\Figure 5-30 - Total Metals.mxd9/25/2017bmailhes

ž

mg/L 0.101 J 0.188 0.1 U 72.5 0.02 U -

5.67

30.6

1.1

3.71

13.5 1.93

0.001 U

0.0044

1.21 J

	AND A DESCRIPTION OF A			
Ŗ	AS05-GW25	m	g/L	
ł	Aluminum	0.2	U	
ł.	Barium	0.186		
ī,	Boron	0.0613	J	
	Calcium	63.2		
	Cobalt	0.02	U	
Ş	Iron	4.85		
	Magnesium	40.1		
	Manganese	0.782		
	Potassium	1.37	J	
	Silicon	4.12		
	Sodium	15.4		
	Strontium	1.03		
	Uranium	0.001	U	
	Zinc	0.02	U	

		ALC: NO DECISION	201
	AS05-GW18	m	g/L
	Aluminum	0.2	U
	Barium	0.194	
È	Boron	0.0526	J
2	Calcium	71.8	
í	Cobalt	0.02	U
ŧ	Iron	9.45	
ŝ	Magnesium	11.1	
	Manganese	0.395	
	Potassium	0.679	J
	Silicon	7.69	
	Sodium	16.3	
	Strontium	0.137	
/	Uranium	0.000643	J
	Zinc	0.02	U

Zinc	0.0211	J
10000	1000	
AS05-GW33	m	g/L
Aluminum	0.218	J
Barium	0.0406	
Boron	0.1	U
Calcium	86.4	
Cobalt	0.0127	J
Iron	0.268	
Magnesium	28.5	
Manganese	1.28	
Potassium	1.24	J
Silicon	3.16	
Sodium	10.6	
Strontium	0.279	
Uranium	0.001	U
Zinc	0.0813	

AS05-GW28

Aluminum Barium

Boron

Calcium

Cobalt

Iron

Magnesium

Manganese

Potassium

Silicon Sodium

Strontium Uranium

Legend

Well Location

PRB

Estimated Groundwater Flow Direction

C Site Boundary

Notes:

J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outisde the quantitation range).

U - The material was analyzed for, but not detected

mg/L - milligrams per Liter

Shaded cell indicates detection

1 inch = 100 feet

All aerial maps contained in this document are provided by Esri; road and terrain maps are sourced from installation-specific geodatabases and are cross referenced with local GIS data.

	ALC: NO DECISION OF	1 C 1
AS05-GW31	m	g/L
Aluminum	0.2	U
Barium	0.555	
Boron	0.0536	J
Calcium	98.7	
Cobalt	0.02	U
Iron	21.5	
Magnesium	17.2	
Manganese	0.484	
Potassium	1.19	J
Silicon	5.48	
Sodium	14.2	
Strontium	0.45	
Uranium	0.001	U
Zinc	0.02	U

	C - MA	è
1 6 1 2		2.
A A G S S		X
AS05-GW30	m	g/L
Aluminum	0.2	U
Barium	0.591	
Boron	0.1	U
Calcium	129	
Cobalt	0.02	U
Iron	22.2	
Magnesium	21.8	
Manganese	0.6	
Potassium	1.12	J
Silicon	6.3	
Sodium	12.3	
Strontium	0.365	
Uranium	0.001	U
Zinc	0.02	U

	22	A DESCRIPTION OF THE OWNER OF THE			1.00
m	g/L		AS05-GW32	mę	g/L
0.2	U	26.5.194 4 .5.1977	Aluminum	0.2	U
0.0515		STANDARD STATE	Barium	0.0399	
0.1	U		Boron	0.1	U
151			Calcium	109	
0.02	U		Cobalt	0.02	U
4.14		Star All	Iron	0.1	U
35			Magnesium	20	
9.49			Manganese	0.0181	J
1.21	J	and the second	Potassium	0.689	J
3.67			Silicon	3.93	
11.2		ZAR LENGT	Sodium	14.2	
2.98		Second Contraction	Strontium	0.307	
0.00513			Uranium	0.000991	J
0.02	U		Zinc	0.02	U

Figure 5-8 Total Metals - January 2017 Allegany Ballistics Laboratory Site 5 Rocket Center, WV

1988	87Ea		
AS05-GW28	m	g/L	
Barium	0.195		
Boron	0.1	U	
Calcium	75.3		
Cobalt	0.02	U	
Iron	6.05		
Magnesium	30.3		
Manganese	1.04		
Nickel	0.04	U	
Potassium	1.35	J	
Silicon	3.7		
Sodium	13.6		
Strontium	2.03		
Uranium	0.001	U	
Zinc	0.02	U	

R:\N\Navy\CLEAN\MULTI	_REGION\ZVI\Map	pFile	s\Results\ABL\Figure 5-31 - Dissolved Metals.mxd9/25/2017t	omailhes	
A DOLLAR DOLLAR	1			AS05-GW25	mg/
				Barium	0.182
AS05-GW28	ma	ı/L		Boron	0.061 J
Barium	0.195	, –		Calcium	63.1
Boron	0.11	υ		Cobalt	0.02 U
Calcium	75.3	-		Iron	4.61
Cobalt	0.021	υ		Magnesium	38.5
Iron	6.05	-		Manganese	0.767
Magnesium	30.3			Nickel	0.04 U
Manganese	1.04			Potassium	1.29 J
Nickel	0.04 [υ		Silicon	4.04
Potassium	1.35.	J		Sodium	15.1
Silicon	3.7			Strontium	1
Sodium	13.6			Uranium	0.001 U
Strontium	2.03	_		Zinc	0.02 U

	the second se		
	AS05-GW18	m	g/L
	Barium	0.197	
	Boron	0.0542	J
č	Calcium	76.7	
5	Cobalt	0.02	U
	Iron	8.49	
	Magnesium	11.7	
зe	Manganese	0.392	
88	Nickel	0.04	U
U	Potassium	0.815	J
Ц	Silicon	7.79	
	Sodium	16.8	
1	Strontium	0.142	
	Uranium	6.45E-04	J
	Zinc	0.02	U

71 102 20 10 10 10	State of the second sec	
AS05-GW33	m	g/L
Barium	0.0374	
Boron	0.1	U
Calcium	85.9	
Cobalt	0.0114	J
Iron	0.1	U
Magnesium	27.8	
Manganese	1.16	
Nickel	0.0212	J
Potassium	1.63	J
Silicon	2.8	
Sodium	10.2	
Strontium	0.268	
Uranium	0.001	U
Zinc	0.0157	J
	20 th	

AS05-GW17	mg/L	14 AS -	AS05-GW27	mg/L		AS05-GW26	mg	/L		AS05-GW13	m	g/L		AS05-GW29	
Barium	0.0335		Barium	0.1		Barium	0.0532			Barium	0.0106	J	52	Barium	0.0
Boron	0.1 U	10.2	Boron	0.1 U	- 20	Boron	0.1 l	J		Boron	0.205		13	Boron	
Calcium	81.1		Calcium	99.8	1997	Calcium	145		17	Calcium	195		88	Calcium	
Cobalt	0.02 U	Seles	Cobalt	0.02 U		Cobalt	0.02 l	J		Cobalt	0.02	U		Cobalt	
Iron	0.275	22.1	Iron	5.15		Iron	1.78			Iron	0.1	U		Iron	
Magnesium	23.4		Magnesium	27.4		Magnesium	32.4			Magnesium	46.4			Magnesium	
Manganese	0.192	NIV.	Manganese	0.978		Manganese	0.639			Manganese	0.167		18	Manganese	
Nickel	0.04 U		Nickel	0.04 U	and the	Nickel	0.04 l	J	X	Nickel	0.04	U	18	Nickel	
Potassium	0.548 J		Potassium	1.22 J	Cost.	Potassium	1.68	J		Potassium	4.27			Potassium	
Silicon	3.76	1. Ball	Silicon	4.62		Silicon	3.65		25	Silicon	2.49			Silicon	
Sodium	9.03		Sodium	13.8	1.1	Sodium	10.9			Sodium	41.5			Sodium	
Strontium	0.703		Strontium	2.67	61.2	Strontium	8.12	8		Strontium	4.04			Strontium	
Uranium	0.001 U	1000	Uranium	8.12E-04 J		Uranium	0.0028			Uranium	0.00737			Uranium	0.0
Zinc	0.0124 J		Zinc	0.02 U		Zinc	0.02 l	J		Zinc	0.02	U	6. C	Zinc	

Legend

Well Location

PRB

Estimated Groundwater Flow Direction
 Site Boundary

Notes:

J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outisde the quantitation range).

U - The material was analyzed for, but not detected mg/L - milligrams per Liter Shaded cell indicates detection

1 inch = 100 feet

			1000					
	AS05-GW31	m	g/L			and the second		
247.0	Barium	0.577			1. 1. 1. 1.	100 C		
6	Boron	0.0507	J		1000	Carries -	27	2
28	Calcium	107			2.	10 INTE		
602	Cobalt	0.02	υ		1000	1 Alan	5.	
	Iron	23.2		3	100.160	185	4	5
ेल्डा	Magnesium	18.2			11 11	1200-	8.	ģ
	Manganese	0.497		-		the state	13	1
	Nickel	0.04	U	Ο.				
Sec	Potassium	1.22	J	2	1000		2	•
	Silicon	5.76		1				1
	Sodium	14.3						
60	Strontium	0.492		4	and the	13.5		
Cax.	Uranium	0.001	U		1000		1	
2.3	Zinc	0.02	U		A Company	1.1		
	14400	1000		-	AS05-GW30	m	g/L	
100	12 A.A.	1.3	82	2	Barium	0.59		
195	000	Part of		1	Boron	0.1	U	
200	5 Ja	4.4.4		5/3	Calcium	131		
		1.3	16	2	Cobalt	0.02	U	
322		. 945			Iron	22.8		
1		The second		8	Magnesium	21.9		l
			-	35	Manganese	0.605		
	States and				Nickel	0.04	U	
		Contract of			Potassium	1.04	J	
				33	Silicon	6.16		
1					Sodium	12.2		
1.5			Ye.		Strontium	0.362		
		1.72		~	Uranium	0.001	U	
	S. F. M. (1)		94		Zinc	0.02	U	
	13 30		30		Seller	1000		
	ALC: NO	THE	>	-		1.11.2.2	a /!	l
mg/l	10000		3		ASU5-GVV32	m	g/L	
0.4	100 2 3	X Call			Barlum	0.0384	11	
0.10	all the	R. 233				0.1	U	
02111	28.5 7700	1000	-	8	Calcium	108	11	
02 0	50 80	and a literation			lrop	0.02		
5.2					Magnosium	10.0	0	
61	Sec. 24	6			Manganeso	0.0151	T	
0/111	210	C. AP			Nickol	0.0131	5	
32 1	12/2/18				Potassium	0.04		
71		188 9		28	Silicon	2.03	J	
1 4	19 A. A.	100-25			Sodium	5.95 1/ 1		
02		11 - P. P.			Strontium	0 305		
184	Sec. Ash				Uranium	9.26E-04		
0211	No. A State				Zinc	0.200-04	11	
UZIU					ZILIG	0.02	i U	C.

Figure 5-9 Dissolved Metals - January 2017 Allegany Ballistics Laboratory Site 5 Rocket Center, WV

Sample ID:	AS05-GW13- 012017	AS05-GW17- 012017	AS05-GW18- 012017	AS05-GW25- 012017	AS05-GW26- 012017	AS05-GW27- 012017
Sample Date:	1/26/17	1/26/17	1/25/17	1/26/17	1/24/17	1/24/17
		Water Quali	ty Parameters			
Dissolved Oxygen (mg/L)	3.59	1.12	0.18	0.16	1.23	0.1
Depth to Water (ft)	13.63	4.93	3.27	3.3	3.46	2.63
ORP (mV)	191.8	171.1	-46.6	-136.3	55.6	-36
pH (pH units)	6.75	6.07	6.71	7.26	6.65	6.78
Specific Conductivity (mS/cm)	2.683	1.336	1.072	1.392	0.981	0.854
Temperature (°C)	11.49	11.01	12.3	11.4	10.38	11.33
Turbidity (NTU)	0	1.8	6.9	0	0	1
Sample ID:	AS05-GW28- 012017	AS05-GW29- 012017	AS05-GW30- 012017	AS05-GW31- 012017	AS05-GW32- 012017	AS05-GW33- 012017
Sample Date:	1/24/17	1/25/17	1/25/17	1/25/17	1/24/17	1/23/17
		Water Quali	ty Parameters			
Dissolved Oxygen (mg/L)	0.09	0.1	0.13	0.1	6.13	1.57
Depth to Water (ft)	2.46	4.29	2.55	2.56	1.52	5.49
ORP (mV)	-68.1	-4.5	-88	-104.5	167.6	-17.2
pH (pH units)	7	6.51	6.74	6.84	6.51	5.77
Specific Conductivity (mS/cm)	0.701	1.991	1.758	1.438	0.802	0.715
Temperature (°C)	11.37	10.63	11.34	12.38	9.4	10.7
Turbidity (NTU)	2.9	6.6	0	0	0	1.4

 Table 5-3. Water Quality Parameters, ABL Site 5

Notes:

°C = degrees CelsiusmS/cm = milliSiemens per centimeter

NTU = nephelometric turbidity units

	Sa	ample ID:		GW13	3	GW13	Р	GW26	5	GW2	7	GW28	3	GW2	5	GW25	Р	GW29		GW3	30	GW3	1	GW18		GW17	7	GW32		GW3	33
	Sai	mple Date:		1/26/1	7	1/6/17	7	1/24/1	7	1/24/1	7	1/24/1	7	1/26/1	17	1/26/1	7	1/25/17	7	1/25/	17	1/25/1	7	1/25/17	'	1/26/1	7	1/24/17	7	1/23/	17
Chemical Name	Frequency	Max Value	Max Location																												
Volatile Organ	nic Compour	nds (µg/L)																													
Benzene	4 / 14	0.576 J	AS05-GW28-012017	0.25	U	0.25	U	0.25	U	0.293	J	0.576	J	0.532	J	0.541	J	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U	0.25	U
Carbon dioxide	12 / 12	217,000	AS05-GW17-012017	78,200		NS		98,000		72,000		39,200		21,700		NS		123,000		94,600		77,600		60,300		217,000		76,500		188,000	
cis-1,2- Dichloroethene	11 / 14	15.4	AS05-GW29-012017	0.889	J	0.697	J	0.5	U	2.87		5.28		4.1		4.07		15.4		0.5	U	0.5	U	2.38		5.43		0.422	J	2.75	
Ethane	5 / 12	6.90	AS05-GW28-012017	ND	U	NS		ND	U	3.85	J	6.9		5.75		NS		ND	U	3.21	J	3.37	J	ND	U	ND	U	ND	U	ND	U
Ethene	2 / 12	1.74 J	AS05-GW28-012017	ND	U	NS		ND	U	1.08	J	1.74	J	ND	U	NS		ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U
Methane	10 / 11	3,090	AS05-GW18-012017	ND	U	NS		36.7		1,500		2,110		NS		NS		219		1,420		2,170		3,090		1.27	J	8.07		12.5	
trans-1,2- Dichloroethene	2 / 14	1.74	AS05-GW18-012017	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.278	J	0.5	U	0.5	U	1.74		0.5	U	0.5	U	0.5	U
Trichloroethene	9 / 14	16.7	AS05-GW29-012017	6.54		8.53		0.338	J	0.5	U	0.5	U	0.5	U	0.5	U	16.7		0.5	U	0.331	J	9.95		6.23		7.77		4.03	
Vinyl chloride	2 / 14	0.592 J	AS05-GW18-012017	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	U	0.5	J	0.5	U	0.5	U	0.592	J	0.5	U	0.5	U	0.5	U
Total	Metals (mg/I	L)																													
Aluminum	3 / 14	0.218 J	AS05-GW33-012317	ND	U	ND	U	ND	U	0.19	J	0.101	J	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	0.218	J
Barium	14 / 14	0.591	AS05-GW30-012017	0.0224		0.0122	J	0.0532		0.109		0.188		0.186		0.182		0.0515		0.591		0.555		0.194		0.0341		0.0399		0.0406	
Boron	6 / 14	0.202	AS05-GW13-012017	0.202		0.2		ND	U	ND	U	ND	U	0.0613	J	0.0587	J	ND	U	ND	U	0.0536	J	0.0526	J	ND	U	ND	U	ND	U
Calcium	14 / 14	191.0	AS05-GW13P-010617	184		191		152		107		72.5		63.1		63.2		151		129		98.7		71.8		81.9		109		86.4	
Cobalt	1 / 14	0.0127 J	AS05-GW33-012317	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	0.0127	J
Iron	12 / 14	22.2	AS05-GW30-012017	0.22		ND	U	1.61		5.78		5.67		4.85		4.6		4.14		22.2		21.5		9.45		0.796		ND	U	0.268	
Magnesium	14 / 14	45.9	AS05-GW13P-010617	44		45.9		32.3		29		30.6		39		40.1		35		21.8		17.2		11.1		23		20		28.5	
Manganese	14 / 14	9.49	AS05-GW29-012017	0.332		0.199		0.63		1.03		1.1		0.782		0.773		9.49		0.6		0.484		0.395		0.196		0.0181	J	1.28	
Potassium	14 / 14	4.26	AS05-GW13-012017	4.26		3.23		1.7	J	1.31	J	1.21	J	1.37	J	1.22	J	1.21	J	1.12	J	1.19	J	0.679	J	0.551	J	0.689	J	1.24	J
Silicon	14 / 14	7.69	AS05-GW18-012017	2.46		2.23		3.6		5.09		3.71		4.12		4.02		3.67		6.3		5.48		7.69		3.7		3.93		3.16	
Sodium	14 / 14	40.8	AS05-GW13-012017	40.8		40.5		10.7		14.6		13.5		15.4		15.2		11.2		12.3		14.2		16.3		9.13		14.2		10.6	
Strontium	14 / 14	8.63	AS05-GW26-012017	3.65		3.93		8.63		2.86		1.93		1.03		1.01		2.98		0.365		0.45		0.137		0.715		0.307		0.279	
Uranium	7 / 14	0.00733	AS05-GW13P-010617	0.00717		0.00733		0.00289		0.000774	J	ND	U	ND	U	ND	U	0.00513		ND	U	ND	U	0.000643	J	ND	U	0.000991	J	ND	U
Zinc	4 / 14	0.0813	AS05-GW33-012317	ND	U	ND	U	ND	U	0.0243	J	0.0211	J	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	0.0113	J	ND	U	0.0813	
	Dissolve	d Metals (mg/	L)																												
Barium	14 / 14	0.590	AS05-GW30-012017	0.00883	J	0.0106	J	0.0532		0.1		0.195		0.182		0.176		0.0526		0.59		0.577		0.197		0.0335		0.0384		0.0374	
Boron	6 / 14	0.205	AS05-GW13-012017	0.205		0.199	J	ND	U	ND	U	ND	U	0.0556	J	0.061	J	ND	U	ND	U	0.0507	J	0.0542	J	ND	U	ND	U	ND	U
Calcium	14 / 14	195.0	AS05-GW13P-010617	181		195		145		99.8		75.3		62.7		63.1		154		131		107		76.7		81.1		108		85.9	
Cobalt	1 / 14	0.0114 J	AS05-GW33-012317	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	0.0114	J
Iron	10 / 14	23.2	AS05-GW31-012017	ND	U	ND	U	1.78		5.15		6.05		4.55		4.61		4.08		22.8		23.2		8.49		0.275		ND	U	ND	U
Magnesium	14 / 14	46.4	AS05-GW13P-010617	43.9		46.4		32.4		27.4		30.3		38.5		38.5		35.2		21.9		18.2		11.7		23.4		19.8		27.8	
Manganese	14 / 14	9.61	AS05-GW29-012017	0.0343		0.167		0.639		0.978		1.04		0.767		0.775		9.61		0.605		0.497		0.392		0.192		0.0151	J	1.16	
Nickel	1 / 14	0.0212 J	AS05-GW33-012317	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	ND	U	0.0212	J

Table 5-4. Laboratory Analytical Detections, ABL Site 5

	Sa	mple ID:		GW13		GW13P	GW2	6	GW27	G	W28	GV	/25	GW25P	GW29		GW30	GW31		GW18	G	V17	G	W32		GW33
	Sar	nple Date:		1/26/17	7	1/6/17	1/24/1	7	1/24/17	1/2	4/17	1/2	5/17	1/26/17	1/25/17		1/25/17	1/25/17		1/25/17	1/2	6/17	1/	24/17		1/23/17
Chemical Name	Frequency	Max Value	Max Location																							
Potassium	14 / 14	4.27	AS05-GW13-012017	4.27		2.97	1.68	J	1.22 J	1.3	5 J	1.29	J	1.15 J	1.32 J	ſ	1.04 J	1.22	J	0.815 J	0.54	8 J	0.6	53	J	1.63 J
Silicon	14 / 14	7.79	AS05-GW18-012017	2.49		2.19	3.65		4.62	3.7	,	3.98		4.04	3.71		6.16	5.76		7.79	3.70	,)	3.9	93		2.8
Sodium	14 / 14	41.5	AS05-GW13-012017	41.5		40	10.9		13.8	13.0	5	15.1		15	11.4		12.2	14.3		16.8	9.03		14	.1		10.2
Strontium	14 / 14	8.12	AS05-GW26-012017	3.59		4.04	8.12		2.67	2.03	3	1		0.989	3.02		0.362	0.492		0.142	0.70	3	0.3	05		0.268
Uranium	7 / 14	0.00737	AS05-GW13-012017	0.00737		0.00704	0.0028		8.12E-04 J	ND	U U	ND	U	ND U	0.00484		ND U	ND	U	6.45E-04 J	ND	U	9.261	E-04	J	ND U
Zinc	2 / 14	0.0157 J	AS05-GW33-012317	ND	U	ND U	ND	U	ND U	ND) U	ND	U	ND U	ND U	J	ND U	ND	U	ND U	0.012	.4 J	N	D	U	0.0157 J
Wet Ch	emistry (mg	/L)																								
Alkalinity	12 / 12	332.0	AS05-GW29-012017	320		NS	295		226	188	3	224		NS	332		259	212		186	166		14	.9		99.4
Ammonia	12 / 12	0.680	AS05-GW29-012017	0.167	J	NS	0.205		0.226	0.18	7 J	0.253	1	NS	0.68		0.677	0.675		0.587	0.075	3 J	0.1	35	J	0.176 J
Chloride	12 / 12	52.9	AS05-GW13-012017	52.9		NS	18.5		30.5	27		26.4		NS	18.4		21.2	22.3		22.1	22.7	1	19	.7		19.5
Fluoride	9 / 12	0.228 J	AS05-GW26-012017	ND	U	NS	0.228	J	0.161 J	0.15	1 J	0.133	J	NS	0.204 J	ſ	0.137 J	0.143	J	0.158 J	0.11	8 J	N	D	U	ND U
Hardness	12 / 12	680.0	AS05-GW13-012017	680		NS	570		392	304	ļ	320		NS	610		416	352		260	308		34	4		340
Nitrate	5 / 12	2.81	AS05-GW32-012017	0.362	J	NS	0.622	J	ND U	ND	U U	ND	U	NS	0.664 J	Г	ND U	ND	U	ND U	0.33	J	2.8	31		ND U
Sulfate	12 / 12	326.0	AS05-GW13-012017	326		NS	192		147	96.:	5	95.6		NS	212		159	118		58.5	127		19	6		233
Total organic carbon (TOC)	12 / 12	8.71	AS05-GW17-012017	7.69		NS	7.81		4.74	4.1.	3	5.1		NS	6.83		5.39	2.74		3.66	8.7		5.7	74		7.62

Table 5-4. Laboratory Analytical Detections, ABL Site 5

Notes:

J = The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outside the quantitation range).

Q = One or more quality control criteria failed (e.g., laboratory control sample recovery, surrogate spike recovery, or continuing calibration verification recovery).

U = The material was analyzed for, but not detected.

Shading indicates detection

ND = not detected

NS = not sampled

Far Upgradient

Close Upgradient (5 feet upgradient)

Immediately Downgradient (5 feet downgradient)

Close Downgradient (10 feet downgradient)

Far Downgradient (50-60 feet downgradient)

Cross-Gradient

While VOC concentrations were very low in close upgradient samples 5GW26 and 5GW29 (**Figure 5-7**), a clean front (non-detect results in closest downgradient location) was observed in the eastern transect and the only chlorinated VOC detected in the immediately downgradient western location was cis-1,2-DCE at a concentration of 2.87 μ g/L.

Metals data indicate that precipitation of a number of metals is likely occurring within the wall. Notable decreases in total and dissolved calcium, magnesium, and strontium were observed in both the western and eastern transects (**Figures 5-8 and 5-9 and Appendix H-2**), though for the western transect, magnesium concentrations increased between the immediately downgradient and close downgradient samples. A notable decrease in manganese was also observed in the eastern transect without a similar decrease in the western transect; however, the upgradient concentration of manganese in the eastern transect was an order of magnitude higher than in the western transect (**Appendix H-2**). Decreases in these metals were expected as the iron wall can serve as a long-term sink for these constituents. Iron, barium, sodium, and silicon concentrations increased across the PRB in both transects, although silicon and sodium decreased between the immediate downgradient samples and the close downgradient samples. There were no notable trends in other metals concentrations.

5.4.1.2 Former St. Louis Ordnance Plant OU1 Field Parameters, Geochemical Results, Metals, and VOC Results

Graphical illustrations of field and laboratory analytical results on ABL Site 5 maps are included as **Figures 5-10 through 5-14.** All laboratory analytical results are provided as **Appendix G.** Field analytical results are shown in **Table 5-5.** Graphs showing changes in select parameters across site are provided as **Appendix I.** A summary of detections is provided as **Table 5-6.**

Increases in pH were observed in all mixing area wells in comparison to wells outside of the mixing area, with the highest pH observed in existing well, MW-119 (**Figure 5-10**). Decreases in ORP were also observed, with the lowest ORP (-430.5 mV) observed in the most upgradient of the mixing area samples (TW02). DO concentrations within the mixing area were also significantly lower than the background concentrations. The lowest mixing area concentration was 0.18 mg/L at MW-119 compared to the upgradient (TW03) concentration of 7.58 mg/L. These data are indicative of highly reducing conditions typically associated with reactive ZVI.

TOC concentrations were highest within the mixing area (Figure 5-11 and Appendix I-1A). Alkalinity and hardness were similar within and outside of the treatment area. Sulfate concentrations were considerably lower within the treatment area in comparison to outside. Sulfide was not detected. Chloride concentrations were highest in TW02, in the upgradient portion of the mixing area. Fluoride concentrations increased in the mixing area and subsequently decreased on the downgradient side of the mixing area. Nitrate was only detected in the sample from TW02 and no nitrite was detected at the site, indicating nitrate reduction may not be a significant biodegradation process at this site. Ammonia concentrations were not notably different inside vs. outside of the treatment area. Methane, ethane, and ethene concentrations were all higher in the mixing area than outside, as expected. In fact, these constituents were generally not detected outside of the mixing area, but were consistently detected within the mixing area (Appendix I-1B).

	REGION/71/I/MonEiloo/Regults/SLOI	D) Eiguro E 22 CTL Coloct Eigle	Parameter Pagulta myd0/25/2017hmoilha
IN INAVY OLEAN IVIULI	REGION/ZVI/Wapriles/Results/SLO	F \FIQUIE 3-32 - 3 IL SEIECL FIEIC	Falameter Results. Intug/23/2017 Dinaline

224

040		×	· · · · · · · · · · · · · · · · · · ·	
SLOP-TW05			and the second	1
Dissolved Oxygen (mg/L)	9.06	- North	and the second se	
Redox Potential (mV)	136.9	The get and the		
pH (pH units)	6.31	No. And No.	-	

SLOP-MW119		7
Dissolved Oxygen (mg/L)	0.18	
Redox Potential (mV)	-272.7	
pH (pH units)	8.69	

SLOP-TW03	
Dissolved Oxygen (mg/L)	7.58
Redox Potential (mV)	97.2
pH (pH units)	6.29

A MARKED AND A DESCRIPTION OF A DAMAGE AND A D	
SLOP-TW02	
Dissolved Oxygen (mg/L)	0.4
Redox Potential (mV)	-430.
pH (pH units)	7.1

Legend ZVI Monitoring Well

223 B

- Treatment Area
- Temporary Well Location
- Soil Mixing Treatment Areas
- Installation Boundary

Notes: mV - millivolts mg/L - milligrams per Liter

1 inch = 40 feet Imagery Source: ©2017, Esri

SLOP-TW06 Dissolved Oxygen (mg/L) Redox Potential (mV) pH (pH units)

Figure 5-10 Select Field Parameter Results - January 2017 Former St. Louis Ordnance Plant OU1 St. Louis, Missouri

		and the second	
	SLOP-TW05	Concentration	(mg/L)
	Alkalinity	233	
	Ammonia	0.0951	J
	Chloride	25.8	
	Fluoride	0.257	J
	Hardness	260	
	Nitrate	0.2	U
	Nitrite	0.2	U
	Phosphate	0.05	U
	Sulfate	84.8	
-	Sulfide	1	U
	TOC	6.84	
-	Methane	0.002	U
	Ethane	0.002	U
	Ethene	0.002	U

224

Notes:

-	SLOP-MW119	Concentration	(mg/L)	15 M
	Alkalinity	221		1 mar
	Ammonia	0.18	J	1500
	Chloride	31.4		Sec.
	Fluoride	1.8		a ch
	Hardness	130		1
	Nitrate	0.2	U	Sec. 1
	Nitrite	0.2	U	1
	Phosphate	0.142		1000
	Sulfate	1.7	J	100
	Sulfide	1	U	
	TOC	11.4		11 and
	Methane	14.0		100-5
	Ethane	0.14		100 C
	Ethene	0.0041	J	1-1

1000				
	SLOP-TW03	Concentration	(mg/L)	No.
	Alkalinity	175		
2M	Ammonia	0.163	J	
150	Chloride	60.4		
1	Fluoride	0.281	J	
	Hardness	110		
1	Nitrate	0.2	U	
1	Nitrite	0.2	U	
	Phosphate	0.05	U	
	Sulfate	84.7		
	Sulfide	1	U	
	TOC	5.24		
	Methane	0.002	U	13
	Ethane	0.002	U	2
	Ethene	0.002	U	

1	SLOP-TW02	Concentration	(mg/L)
1	Alkalinity	96.4	
	Ammonia	0.0867	J
	Chloride	228	
	Fluoride	0.422	J
	Hardness	328	
81	Nitrate	0.922	J
	Nitrite	0.4	U
	Phosphate	0.05	U
	Sulfate	44	
	Sulfide	1	U
	TOC	27.6	
	Methane	3.2	
	Ethane	0.27	
	Ethene	0.0045	J

	SLOP-TW06	Concentration	(mg/L)
	Alkalinity	128	
	Ammonia	0.0708	J
	Chloride	38.9	
	Fluoride	0.211	J
	Hardness	188	
	Nitrate	0.2	U
1	Nitrite	0.2	U
	Phosphate	0.05	U
	Sulfate	84.4	
¥.	Sulfide	1	U
	TOC	4.25	
-	Methane	0.002	U
	Ethane	0.002	U
	Ethene	0.002	U

Legend ZVI Monitoring Well

223 B

- Treatment Area
- Temporary Well Location
- Soil Mixing Treatment Areas
- Installation Boundary

TOC - Total organic carbon
J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outside the quantitation range).
U - The material was analyzed for, but not detected mg/L - milligrams per Liter

Acetylene was not detected in any samples; therefore, results are not included on this figure.

1 inch = 40 feet Imagery Source: ©2017, Esri

oncentration	(mg/L)
154	
0.0913	J
43	
0.204	J
224	
0.2	U
0.2	U
0.05	U
107	
1	U
7.35	
0.013	
0.0084	
0.002	U

SLOP-TW04 Alkalinity Ammonia Chloride Fluoride Hardness Nitrate Nitrate Nitrite Phosphate Sulfate Sulfate Sulfide TOC Methane Ethane Ethene

Contraction of the local division of the loc		-
SLOP-TW01	Concentration	(mg/L)
Alkalinity	232	
Ammonia	0.164	J
Chloride	22.6	
Fluoride	0.477	
Hardness	252	
Nitrate	0.2	U
Nitrite	0.2	U
Phosphate	0.05	U
Sulfate	25.4	
Sulfide	1	U
TOC	17.8	
Methane	0.120	
Ethane	0.022	
Ethene	0.011	
and the state of the		

Figure 5-11 Geochemical Parameters - January 2017 Former St. Louis Ordnance Plant OU1 St. Louis, Missouri

GOODFELLOW BLUD

R:/N/Navy/CLEAN/MULTI REGION/ZVI/MapFiles/Results/SLOP/Figure 5-34 - STL Chlorinated VOC Detections.mxd9/25/2017bmailhes

	the second se	
SLOP-TW05	Concentration ((µg/L)
1,1,2-Trichloroethane	0.5	U
1,1-Dichloroethene	1	U
Carbon tetrachloride	0.5	U
Chloroform	0.194	J
cis-1,2-Dichloroethene	0.5	U
Dibromochloromethane	0.5	U
Methylene chloride	0.5	U
Tetrachloroethene	1.14	
trans-1,2-Dichloroethene	0.5	U
Trichloroethene	1.03	
Vinyl chloride	0.5	U

224

			and the second second
SLOP-MW119	Concentration (μg/L)	25-
1,1,2-Trichloroethane	4.43		20
1,1-Dichloroethene	1	U	1
Carbon tetrachloride	0.5	U	aldl
Chloroform	0.25	U	
cis-1,2-Dichloroethene	7.17		
Dibromochloromethane	0.5	U	
Methylene chloride	0.5	U	
Tetrachloroethene	0.5	U	1
trans-1,2-Dichloroethene	0.5	U	
Trichloroethene	0.454	J	1-
Vinyl chloride	0.5	U	No.

223 B

SLOP-TW03	Concentration (μg/L)
1,1,2-Trichloroethane	0.5	U
1,1-Dichloroethene	1	U
Carbon tetrachloride	0.5	U
Chloroform	0.177	J
cis-1,2-Dichloroethene	0.5	U
Dibromochloromethane	0.5	U
Methylene chloride	0.5	U
Tetrachloroethene	1.21	
trans-1,2-Dichloroethene	0.5	U
Trichloroethene	0.311	J
Vinyl chloride	0.5	U

	the second second	
SLOP-TW02	Concentration (μg/L)
1,1,2-Trichloroethane	0.5	U
1,1-Dichloroethene	1.09	J
Carbon tetrachloride	0.5	U
Chloroform	0.417	J
cis-1,2-Dichloroethene	1,970	
Dibromochloromethane	0.342	J
Methylene chloride	0.5	U
Tetrachloroethene	269	
trans-1,2-Dichloroethene	3.93	
Trichloroethene	143	
Vinyl chloride	2.3	
	and the second se	and the second se

		The second second	1 100		
SLOP-TW04	Concer	tration (μ g/L)	In the second	1000	and the
1,1,2-Trichloroethar	ie 👘	4.69	1	A state	Same
1,1-Dichloroethene		2.49			-
Carbon tetrachloride	e	0.5 U	111		-
Chloroform		9.27			
cis-1,2-Dichloroethe	ene	754	ALC: Y		
Dibromochlorometh	ane	0.636 J			
Methylene chloride		0.5 U			<
Tetrachloroethene		12,000	and some of	and	
trans-1,2-Dichloroet	hene	10.6	C. Station	and the second	
Trichloroethene		611		-	
Vinyl chloride		0.312 J	1000		
	a state of the	A 12			
	112190	SLOP-TW01		Concentration (μg/L)
/ ,		1,1,2-Trichlor	pethane	3.32	-
		1,1-Dichloroet	thene	2.73	1
100		Carbon tetrac	hloride	1.45	
		Chloroform		5.5	
and the second s		cis-1,2-Dichlo	roethene	197	
and the second second	S. The Carlow	Dibromochlor	omethane	0.5	U
-Company	and the second	Methylene ch	loride	0.406	J
		Tetrachloroeth	nene	9,570	
AND A CONTRACTOR		trans-1,2-Dich	nloroethene	3.82	
		Trichloroether	ne	400	
and the second	No Marine V	Vinyl chloride		0.528	J
				1	
		1000			1
SLOP-TW06	Concentration (μg/L)		X 4/4	1
1,1,2-Trichloroethane	0.5	U		100	-
1,1-Dichloroethene	1	U			-
Carbon tetrachloride	0.5	U		5	2
Chloroform	0.178	J	all Love	B/	
cis-1,2-Dichloroethene	144		NON NO	2	100
Dibromochloromethane	0.5	U	A Carlo	9	1000
Wiethylene chloride	0.5	U Provincial de la companya de la co	15 1000	I.	and and
Ietrachloroethene	677		1000	E E	
trans-1,2-Dichloroethene	1.94	1000	1 190	0	
Irichloroethene	79.7			0	1 10
Vinyl chloride	0.5	U	A STATE	0	

Legend ZVI Monitoring Well

- Treatment Area
- Temporary Well Location
- Soil Mixing Treatment Areas
- Installation Boundary

Notes:

J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outside the quantitation range).

- Ú The material was analyzed for, but not detected
- μg/L milligrams per Liter

1 inch = 40 feet Imagery Source: ©2017, Esri

All aerial maps contained in this document are provided by Esri; road and terrain maps are sourced from installation-specific geodatabases and are cross referenced with local GIS data.

Figure 5-12 Chlorinated VOC Detections - January 2017 Former St. Louis Ordnance Plant OU1 St. Louis, Missouri

a the second sec	
Concentration (mg/L)
0.503	
0.0918	
0.0934	J
62.5	
0.56	
26.9	
0.0734	
0.595	J
14.3	
45.2	
0.358	
0.000703	J
0.02	U
	Concentration (0.503 0.0918 0.0934 62.5 0.56 26.9 0.0734 0.595 14.3 45.2 0.358 0.000703 0.02

	SLOP-MW119	Concentration (mg/L)	3
	Aluminum	0.173	J	11
	Barium	0.0495		10
	Boron	0.1	U	0.8
	Calcium	32.3		Y
	Iron	0.281		29
	Magnesium	5.16		
	Manganese	0.258		1
	Potassium	1	U	
	Silicon	3.76		
-	Sodium	80.8		
	Strontium	0.166		
	Uranium	0.001	U	
	Zinc	0.0472		

224

Calcium	54	
Iron	0.148	J
Magnesium	23	
Manganese	0.077	
Potassium	0.822	J
Silicon	13	
Sodium	56.4	
Strontium	0.28	
Uranium	0.001	U
Zinc	0.023	J
	and the second se	

	SLOP-TW02	Concentration (mg/L)		SLOP-TWOR
	Aluminum	0.2	U		Aluminum
	Barium	0.177			Barium
	Boron	0.1	U		Boron
	Calcium	80.7			Calcium
	lron	0.262			Iron
٦	Magnesium	33.7			Magnesium
	Manganese	2.43		Contraction of the second	Manganese
	Potassium	0.755	J		Potassium
	Silicon	4.98			Silicon
	Sodium	62.1			Sodium
	Strontium	0.394		1.17	Strontium
	Uranium	0.000559	J		Uranium
	Zinc	0.02	U		Zinc
				and the second se	

Legend ZVI Monitoring Well

- Treatment Area
- Temporary Well Location
- Soil Mixing Treatment Areas
- Installation Boundary

Notes: J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outside the quantitation range).

U - The material was analyzed for, but not detected

Concentration (mg/L)

0.228 J

0.1 U

0.135

mg/L - milligrams per Liter

1 inch = 40 feet Imagery Source: ©2017, Esri

۶	1	
	A	

Concentration (mg/L)
0.2	U
0.0965	
0.1	U
51.1	
0.1	U
21.8	
0.0375	
0.795	J
12.1	
46.1	
0.207	
0.001	U
0.0352	J

SLOP-TW04 Aluminum Barium Boron Calcium Iron

Magnesium Manganese Potassium Silicon Sodium Strontium Uranium Zinc

			_
	SLOP-TW01	Concentration (mg/L)
	Aluminum	0.149	J
	Barium	0.117	
States and the	Boron	0.1	U
Contraction of the	Calcium	55.4	
	Iron	0.473	
	Magnesium	21.5	
	Manganese	2.15	
Mar XI	Potassium	2.5	
X	Silicon	10.2	
1800 4	Sodium	31.5	
and the second	Strontium	0.206	
ALL CALLER ST	Uranium	0.000853	J
	Zinc	0.02	U

Concentration (mg/L)
0.2	U
0.0956	
0.1	U
44.6	
0.0692	J
19.9	
0.0493	
1	U
14.3	
33.3	
0.186	
0.001	U
0.0227	J

Figure 5-13 Total Metals Detections - January 2017 Former St. Louis Ordnance Plant OU1 St. Louis, Missouri

GOODFELLOW BLVD

		The second s		
	SLOP-TW05	Concentration (mg/L)	
	Barium	0.0851		
	Boron	0.0913	J	2
	Calcium	60.7		
	Iron	0.1	U	
	Magnesium	26.1		
	Manganese	0.0655		
	Potassium	1	U	
-	Silicon	13.5		
2	Sodium	44.1		
-	Strontium	0.35		
	Uranium	0.000621	J	
5	Zinc	0.02	U	

and the second s		100 March 100 Ma							1000
SLOP-T	W04	Concent	ration (mg/L)		1 2 800			3
Barium			0.0968		AG I	3		1000	22
Boron			0.1	U	6 1	CT KI		1	
Calcium	1		51.9		18	profile and			
Iron			0.1	U	18	1 and the second			
Magnes	ium		22.1		X	1000			
Mangan	iese		0.0425			Cal Car			
Potassi	um		0.697	J			the second		
Silicon			12.3						0
Sodium			47	,		J.S.A.S.	- 10	and the second	
Strontiu	m		0.211		61/				
Uranium	า		0.001	U	5	A Street B			
Zinc			0.02	U	- / 3				
			1000	1	120	0.1			-
1					Con M	No. Contractor			Co-
~						1000	Carlos .	-26	10
1 m	2					SLOP-TW01	Concentra	ation (ma/l	7
Print 1						Barium		0.117	4
- Cart	100	11-11-1	1000			Boron		0111	
and the	1	200		1		Calcium		55	-8
	-	Sec.				Iron		0.239	
	No.	A	-			Magnesium		21 5	-
	~	100				Manganese		2.06	-8
		1		X	En.	Potassium		1.41.1	-0
			-		X	Silicon		8.08	-11
					3	Sodium		33.8	-11
					-	Strontium		0.216	-11
					and the second	Uranium	0.0	0.210	-11
1					1	Zino	0.0		-11
1						ZINC	100	0.020	
							2 march		
P-TW06	Conce	entration (ma/L)				122		
m		0.0941				-	and the second	1200	2
<u>ו</u>		0.1	U				100	2	
um		42.5	-					1	
		0.1	U				1 and the second		
esium		20		1			1201	9	
lanese		0.0495		2.101				371	
sium		1	U	6 T)		12.000	St 1	2	
n		13.7				CIT CATAN	S III	0	
ım		32.5			A CONTRACTOR		Ma I	7	
tium		0 184				1 - 2:500	4		
um		0.001	U	100		1	0 N		
		0.001				100	6		
	1	0.02	<u> </u>		Sugar.	110000	A Carlo Maria		

SLOP-MW119	Concentration (mg/L			
Barium	0.0502			
Boron	0.1	U		
Calcium	32.9			
Iron	0.0904	J		
Magnesium	5.41			
Manganese	0.277			
Potassium	1	U		
Silicon	3.66			
Sodium	83.6			
Strontium	0.174			
Uranium	0.001	U		
Zinc	0.02	U		

224

	and the second second second			
1	SLOP-TW03	Concentration (I	mg/L)	
	Barium	0.136		1
1	Boron	0.1	U	54
70	Calcium	55.3		
	Iron	0.0727	J	
1	Magnesium	23.7		
1	Manganese	0.0755		
	Potassium	0.681	J	
	Silicon	12.6		S
	Sodium	57.7		
	Strontium	0.287		
	Uranium	0.001	U	
	Zinc	0.02	U	

SLOP-TW02	Concentration (mg/L)	
Barium	0.177		
Boron	0.1	U	
Calcium	82.8		
Iron	0.128	J	
Magnesium	34.6		
Manganese	2.45		
Potassium	0.786	J	
Silicon	4.68		
Sodium	59.7		
Strontium	0.388		
Uranium	0.000512	J	
Zinc	0.0133	J	-

SLOP-						
and the second se	IW04 Concent	tration (r	mg/L)	hel	1 min	1000
Barium		0.0968		181	1	and the second
Boron		0.1	U		The second	-
Calcium	n	51.9			PROFIL	
Iron		0.1	U	1.000	12 miles	47
Magnes	sium	22.1		X	1 marsh	
Mangar	nese	0.0425		1	C. C. Tank	
Potass	ium	0.697	J	1	-	
Silicon		12.3			-	
Sodium	1	47		1	() Same	
Strontiu	um	0.211		11	100000	
Uraniun	n	0.001	U	4	And in the owner of the	
Zinc		0.02	U	123		The second second
/ .	the second	1000	-	100	10.04	
Con				- 3	and a	here !
0					SLOP-TW01	Concentration
1 Parts	and the second			The second	Barium	0.11
	A	-			Boron	0.
	CH.			100	Calcium	5
	Not			200	Iron	0.23
	A. A.	1			Magnesium	21.
			N		Manganese	2.0
		State of the second	1	and the	Potassium	1.4
					0.11	
		-		10	Silicon	8.9
1			00	1	Silicon Sodium	8.9 33.
2 m			-	1	Sodium Strontium	8.9 33. 0.21
5				11	Sodium Strontium Uranium	8.9 33. 0.21 0.0010
C			-	11	Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.00
Z				11	Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06	Concentration (mg/L)		11	Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium	Concentration (0.0941	mg/L)		11	Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron	Concentration (0.0941 0.1	mg/L) U			Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron Calcium	Concentration (0.0941 0.1 42.5	mg/L) U			Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron Calcium Iron	Concentration (0.0941 0.1 42.5 0.1	mg/L) U U			Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron Calcium Iron Magnesium	Concentration (0.0941 0.1 42.5 0.1 20	mg/L) U U			Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron Calcium Iron Magnesium Manganese	Concentration (0.0941 0.1 42.5 0.1 20 0.0495	mg/L) U U U			Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron Calcium Iron Magnesium Manganese Potassium	Concentration (0.0941 0.1 42.5 0.1 20 0.0495 1	mg/L) U U U			Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron Calcium Iron Magnesium Manganese Potassium Silicon	Concentration (0.0941 0.1 42.5 0.1 20 0.0495 1 13.7	mg/L) U U U			Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron Calcium Iron Magnesium Manganese Potassium Silicon Sodium	Concentration (0.0941 0.1 42.5 0.1 20 0.0495 1 1 13.7 32.5	mg/L) U U U U U			Silicon Sodium Strontium Uranium Zinc	8.9 33. 0.21 0.0010 0.0
SLOP-TW06 Barium Boron Calcium Iron Magnesium Manganese Potassium Silicon Sodium Strontium	Concentration (0.0941 0.1 42.5 0.1 20 0.0495 1 1 32.5 0.184	mg/L) U U U U			Silicon Sodium Strontium Uranium Zinc	
SLOP-TW06 Barium Boron Calcium Iron Magnesium Manganese Potassium Silicon Silicon Sodium Strontium Uranium	Concentration (0.0941 0.1 42.5 0.1 20 0.0495 1 1 32.5 0.184 0.001	mg/L) U U U U			Silicon Sodium Strontium Uranium Zinc	

Legend ZVI Monitoring Well

223 B

- Treatment Area
- Temporary Well Location
- Soil Mixing Treatment Areas
- Installation Boundary

J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outside the quantitation range).

- Ú The material was analyzed for, but not detected
- mg/L milligrams per Liter

Notes:

1 inch = 40 feet Imagery Source: ©2017, Esri Figure 5-14 Dissolved Metals Detections - January 2017 Former St. Louis Ordnance Plant OU1 St. Louis, Missouri

Sample ID:	SLOP-MW119- 012017	SLOP-TW01- 012017	SLOP-TW02- 012017	SLOP-TW03- 012017	SLOP-TW04- 012017	SLOP-TW05- 012017	SLOP-TW06- 012017	
Sample Date:	1/23/17	1/25/17	1/24/17	1/23/17	1/25/17	1/24/17	1/24/17	
Water Quality Parameters								
Dissolved Oxygen (mg/L)	0.18	0.4	0.42	7.58	7.16	9.06	10	
ORP (mV)	-272.7	-285.7	-430.5	97.2	213.9	136.9	348.7	
pH (pH units)	8.69	6.6	7.11	6.29	6.24	6.31	6.14	
Specific Conductivity (mS/cm)	0.526	0.823	1.031	0.687	0.935	0.667	0.535	
Temperature (°C)	12.94	12.2	15.23	11.25	12.81	12.03	13.29	
Turbidity (NTU)	6.9	29.7	7.76	7.75	4.22	21.3	5.27	

Table 5-5. Water Quality Parameters, Former St. Louis Ordnance Plant OU1

			Sample ID:	TW03	TW03P	MW119	TW01	TW02	TW04	TW05	TW06
			Sample Date:	1/23/17	1/23/17	1/23/17	1/25/17	1/24/17	1/25/17	1/24/17	1/24/17
Chemical Name	Frequency	Max Value	Max Location								
Volatile Organic Compounds (µg/L)											
1,1,2-Trichloroethane	3 / 8	4.69	SLOP-TW04-012017	0.5 U	0.5 U	4.43	3.32	0.5 U	4.69	0.5 U	0.5 U
1,1-Dichloroethene	3 / 8	2.73	SLOP-TW01-012017	1 U	1 U	1 U	2.73	1.09 J	2.49	1 U	1 U
2-Butanone	3 / 8	21.6	SLOP-TW02-012017	5 U	5 U	4.02 J	3.72 J	21.6	5 U	5 U	5 U
Acetone	4 / 8	36.1 Q	SLOP-TW02-012017	5 U	5 U	6.89 J	9.87 Q	36.1 Q	3.26 Q	5 UQ	5 UQ
Benzene	4 / 8	7.92	SLOP-TW02-012017	0.25 U	0.25 U	3.13	0.794 J	7.92	0.441 J	0.25 U	0.25 U
Carbon tetrachloride	1 / 8	1.45	SLOP-TW01-012017	0.5 U	0.5 U	0.5 U	1.45	0.5 U	0.5 U	0.5 U	0.5 U
Chloroform	7 / 8	9.27	SLOP-TW04-012017	0.161 J	0.177 J	0.25 U	5.5	0.417 J	9.27	0.194 J	0.178 J
cis-1,2-Dichloroethene	5 / 8	1,970	SLOP-TW02-012017	0.5 U	0.5 U	7.17	197	1,970	754	0.5 U	144
Dibromochloromethane	2 / 8	0.636 J	SLOP-TW04-012017	0.5 U	0.5 U	0.5 U	0.5 U	0.342 J	0.636 J	0.5 U	0.5 U
Ethane	4 / 7	270.0	SLOP-TW02-012017	2 U	NS	140	22	270	8.4	2 U	2 U
Ethene	3 / 7	11.0	SLOP-TW01-012017	2 U	NS	4.1 J	11	4.5 J	2 U	2 U	2 U
Ethylbenzene	3 / 8	9.57	SLOP-TW02-012017	0.5 U	0.5 U	1.52	0.291 J	9.57	0.5 U	0.5 U	0.5 U
Isopropylbenzene	1 / 8	0.256 J	SLOP-TW02-012017	0.5 U	0.5 U	0.5 U	0.5 U	0.256 J	0.5 U	0.5 U	0.5 U
m- and p-Xylene	2 / 8	18.1	SLOP-TW02-012017	1 U	1 U	1.2 J	1 U	18.1	1 U	1 U	1 U
Methane	4 / 7	14,000	SLOP-MW119-012017	2 U	NS	14,000	120	3,200	13	2 U	2 U
Methylene chloride	1 / 8	0.406 J	SLOP-TW01-012017	0.5 U	0.5 U	0.5 U	0.406 J	0.5 U	0.5 U	0.5 U	0.5 U
o-Xylene	3 / 8	2.86	SLOP-TW02-012017	0.5 U	0.5 U	0.763 J	0.277 J	2.86	0.5 U	0.5 U	0.5 U
Tetrachloroethene	7 / 8	12,000	SLOP-TW04-012017	1.21	1.13	0.5 U	9,570	269	12,000	1.14	677
Toluene	6 / 8	6.73	SLOP-TW02-012017	0.258 J	0.278 J	4.14	1.3	6.73	0.504 J	0.5 U	0.5 U
trans-1,2- Dichloroethene	4 / 8	10.6	SLOP-TW04-012017	0.5 U	0.5 U	0.5 U	3.82	3.93	10.6	0.5 U	1.94
Trichloroethene	8 / 8	611.0	SLOP-TW04-012017	0.298 J	0.311 J	0.454 J	400	143	611	1.03	79.7
Vinyl chloride	3 / 8	2.30	SLOP-TW02-012017	0.5 U	0.5 U	0.5 U	0.528 J	2.3	0.312 J	0.5 U	0.5 U
Total Metals (mg/L)											
Aluminum	5 / 8	0.503	SLOP-TW05-012017	0.162 J	0.228 J	0.173 J	0.149 J	ND U	ND U	0.503	ND U
Barium	8 / 8	0.177	SLOP-TW02-012017	0.133	0.135	0.0495	0.117	0.177	0.0965	0.0918	0.0956
Boron	1 / 8	0.0934 J	SLOP-TW05-012017	ND U	0.0934 J	ND U					
Calcium	8 / 8	80.7	SLOP-TW02-012017	53.7	54	32.3	55.4	80.7	51.1	62.5	44.6
Iron	7 / 8	0.560	SLOP-TW05-012017	0.136 J	0.148 J	0.281	0.473	0.262	ND U	0.56	0.0692 J
Magnesium	8 / 8	33.7	SLOP-TW02-012017	22.8	23	5.16	21.5	33.7	21.8	26.9	19.9
Manganese	8 / 8	2.43	SLOP-TW02-012017	0.0773	0.077	0.258	2.15	2.43	0.0375	0.0734	0.0493
Potassium	6 / 8	2.50	SLOP-TW01-012017	0.822 J	0.661 J	ND U	2.5	0.755 J	0.795 J	0.595 J	ND U
Silicon	8 / 8	14.3	SLOP-TW05-012017	12.4	13	3.76	10.2	4.98	12.1	14.3	14.3
Sodium	8 / 8	80.8	SLOP-MW119-012017	56.2	56.4	80.8	31.5	62.1	46.1	45.2	33.3
Strontium	8 / 8	0.394	SLOP-TW02-012017	0.278	0.28	0.166	0.206	0.394	0.207	0.358	0.186

 Table 5-6. Laboratory Analytical Detections, Former St. Louis Ordnance Plant OU1

			Samula ID:		TW02D	MW110	TW01		TW04	TW05	TW06
			Sample ID.	1/22/17	1/22/17	1/22/17	1/25/17	1/24/17	1/25/17	1/24/17	1/24/17
			Sample Date.	1/23/17	1/23/17				1/23/17	1/24/1/	1/24/17
Chemical Name	Frequency	Max Value	Max Location								
Uranium	3 / 8	0.000853 J	SLOP-TW01-012017	ND U	ND U	ND U	0.000853 J	0.000559 J	ND U	0.000703 J	0.001 U
Zinc	4 / 8	0.0472	SLOP-MW119-012017	0.023 J	ND U	0.0472	ND U	ND U	0.0352 J	ND U	0.0227 J
Dissolved Metals (mg/L)											
Barium	8 / 8	0.177	SLOP-TW02-012017	0.136	0.133	0.0502	0.117	0.177	0.0968	0.0851	0.0941
Boron	1 / 8	0.0913 J	SLOP-TW05-012017	ND U	ND U	ND U	ND U	ND U	ND U	0.0913 J	ND U
Calcium	8 / 8	82.8	SLOP-TW02-012017	55.3	55.2	32.9	55	82.8	51.9	60.7	42.5
Iron	4 / 8	0.239	SLOP-TW01-012017	0.0727 J	ND U	0.0904 J	0.239	0.128 J	ND U	ND U	ND U
Magnesium	8 / 8	34.6	SLOP-TW02-012017	23.7	23	5.41	21.5	34.6	22.1	26.1	20
Manganese	8 / 8	2.45	SLOP-TW02-012017	0.0755	0.0742	0.277	2.06	2.45	0.0425	0.0655	0.0495
Potassium	5 / 8	1.41 J	SLOP-TW01-012017	0.681 J	0.821 J	ND U	1.41 J	0.786 J	0.697 J	ND U	ND U
Silicon	8 / 8	13.7	SLOP-TW06-012017	12.6	12.4	3.66	8.98	4.68	12.3	13.5	13.7
Sodium	8 / 8	83.6	SLOP-MW119-012017	57.7	56.5	83.6	33.8	59.7	47	44.1	32.5
Strontium	8 / 8	0.388	SLOP-TW02-012017	0.287	0.281	0.174	0.216	0.388	0.211	0.35	0.184
Uranium	3 / 8	0.00101 J	SLOP-TW01-012017	ND U	ND U	ND U	0.00101 J	0.000512 J	ND U	0.000621 J	ND U
Zinc	1 / 8	0.0133 J	SLOP-TW02-012017	ND U	ND U	ND U	ND U	0.0133 J	ND U	ND U	ND U
					W	et Chemistry (mg/L)					
Alkalinity	7 / 7	233.0	SLOP-TW05-012017	175	NS	221	232	96.4	154	233	128
Ammonia	7 / 7	0.180 J	SLOP-MW119-012017	0.163 J	NS	0.18 J	0.164 J	0.0867 J	0.0913 J	0.0951 J	0.0708 J
Chloride	7 / 7	228.0	SLOP-TW02-012017	60.4	NS	31.4	22.6	228	43	25.8	38.9
Fluoride	7 / 7	1.80	SLOP-MW119-012017	0.281 J	NS	1.8	0.477	0.422 J	0.204 J	0.257 J	0.211 J
Hardness	7 / 7	328.0	SLOP-TW02-012017	110	NS	130	252	328	224	260	188
Nitrate	1 / 7	0.922 J	SLOP-TW02-012017	ND U	NS	ND U	ND U	0.922 J	ND U	ND U	ND U
Phosphate	1 / 7	0.142	SLOP-MW119-012017	ND U	NS	0.142	ND U	ND U	ND U	ND U	ND U
Sulfate	7 / 7	107.0	SLOP-TW04-012017	84.7	NS	1.7 J	25.4	44	107	84.8	84.4
Total organic carbon (TOC)	7 / 7	27.6	SLOP-TW02-012017	5.24	NS	11.4	17.8	27.6	7.35	6.84	4.25

Table 5-6. Laboratory Analytical Detections, Former St. Louis Ordnance Plant OU1

Notes:

J = The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outside the quantitation range).

Q = One or more quality control criteria failed (e.g., laboratory control sample recovery, surrogate spike recovery, or continuing calibration verification recovery).

U = The material was analyzed for, but not detected

UQ = The material was analyzed for, but not detected. One or more quality control criteria failed.

Shading indicates detection

VOC concentrations in existing well MW-119 were consistent with historical data (**Appendix A**). No constituents in samples from this well exceeded corresponding MCLs (**Figure 5-12**). However, MCL exceedances were observed in temporary mixing area wells TW01 and TW02, with a maximum PCE concentration of 9,570 μ g/L observed in downgradient mixing area well TW01. The concentration of PCE in TW04, which is outside of and downgradient of the mixing area, was 12,000 μ g/L. Concentrations of PCE, TCE, and cis-1,2-DCE were 677 μ g/L, 79.7 μ g/L, and 144 μ g/L, respectively, in the sample from cross-gradient well TW06. While these concentrations are less than the clean-up goal established for this site (21,000 μ g/L), they are above MCLs and represent significant remaining contaminant mass. Concentrations in the sample from cross-gradient well TW05 were less than MCLs.

Metals data indicate a number of differences between the mixing zone and untreated area at the former St. Louis Ordnance Plant OU1. Concentrations of total and dissolved calcium, magnesium, manganese, barium, and strontium were highest in the sample from TW02, the most upgradient location in the mixing area (Figures 5-13 and 5-14 and Appendix I-2). While dissolved iron concentrations were higher in the mixing area and total iron concentrations were generally higher, iron concentrations overall were very low at this site, with the maximum concentration of both total and dissolved iron at less than 1 mg/L. Silicon concentrations were lowest within the treatment area and sodium concentrations less than those observed in the middle of the treatment area, with downgradient concentrations less than those observed in the upgradient reference well. There were no notable trends in other metals concentrations.

5.4.2 Mineralogical Testing Results

5.4.2.1 ABL Site 5 Mineralogical Testing Results

Average concentration values for inorganic carbon and solid phase AVS results are provided in **Table 5-7**.

Core	Segment ^a	Distance Along Core (ft)	Inorganic Carbon (µg/g)	Acid-Volatile Sulfur (µg/g)
WV DP001	L, top	0-0.335	41	12
WV DP001	K	0.335 - 0.669	19	15
WV DP001	J, interface	0.669 - 1.003	2124	28
WV DP001	I, interface	1.003 - 1.339	5251	240
WV DP001	Н	1.339 - 1.673	615	372
WV DP001	G	1.673 - 2.008	288	183
WV DP001	F	2.008 - 2.343	175	121
WV DP001	Е	2.343 - 2.677	250	224
WV DP001	D	2.677 - 3.012	306	65
WV DP001	С	3.012 - 3.346	284	117
WV DP001	В	3.346 - 3.681	203	105
WV DP001	A, bottom	3.681 - 4.016	209	173

 Table 5-7. Concentrations of Inorganic Carbon and Acid-Volatile

 Sulfur in Cores from the ABL Site 5 PRB

Core	Segment ^a	Distance Along Core (ft)	Inorganic Carbon (µg/g)	Acid-Volatile Sulfur (µg/g)
WV DP003	G, top	0-0.335	27	39
WV DP003	F	0.335 - 0.669	64	41
WV DP003	Е	0.669 - 1.003	11	44
WV DP003	D, interface	1.003 - 1.339	77	45
WV DP003	C, interface	1.339 - 1.673	622	202
WV DP003	В	1.673 - 2.008	473	229
WV DP003	A, bottom	2.008 - 2.343	378	789

Table 5-7. Concentrations of Inorganic Carbon and Acid-VolatileSulfur in Cores from the ABL Site 5 PRB

Note:

^a The letters in this column are the designations assigned to the various segments in the laboratory. The distances along the core these represent are defined in the Distance Along Core column.

The interface region between the upgradient aquifer and the ZVI medium is marked by an abrupt increase in inorganic carbon concentrations (**Figures 5-15 and 5-16**; **Table 5-7**). In core DP001, the concentration of inorganic carbon increased from levels of <50 micrograms per gram ($\mu g/g$) to >2,000 $\mu g/g$ over an interval of ~0.3 feet. This upward shift in solid-phase inorganic carbon is due to precipitation of aragonite (a form of calcium carbonate), driven by alkaline pH in the ZVI porewater. Similarly, concentrations of AVS also increased within the reactive medium. AVS concentrations as high as 789 $\mu g/g$ were determined in the core samples. AVS is derived from the dissolution of iron sulfide that forms within the reactive medium as a consequence of sulfate reduction/sulfide production. The iron sulfide is thought to provide secondary reactivity to the PRB zone and capacity to degrade chlorinated ethenes; whereas the aragonite does not provide secondary reactivity. These results indicate passivation may be more substantial at the upgradient interface, but continued reactivity is likely further into the wall.

Figure 5-15. Inorganic Carbon Concentrations in ABL Site 5 Core DP001 *The interface region shows an abrupt increase in the concentration of solid-phase carbonate; the blue-shaded region represents core material dominated by granular iron.*

Figure 5-16. Inorganic Carbon Concentrations in ABL Site 5 Core DP003 *The blue-shaded region represents core material dominated by granular iron.*

XRD patterns for samples from ABL samples DP001 and DP003 are plotted in **Figures 5-17** and **5-18**. The identified minerals were quartz, clays (illite and kaolinite), iron oxides (magnetite, hematite), and aragonite. Some minerals that are common in other ZVI PRBs, such as iron sulfide, green rust, siderite, and ferrous hydroxy carbonate, were not identified. The data generally indicate the iron remaining is significantly weathered. As noted above, the presence of AVS is consistent with the presence of iron sulfide; however, the maximum concentration of AVS, and its likely poor crystallinity, did not allow for identification using powder x-ray techniques.

Figure 5-17. X-ray Diffraction Results for ABL Site 5 Core DP001

The analyzed sections of the core were section J (interface region), section I (mid-core), and section G (interior). The primary minerals identified were quartz, clays (illite and kaolinite), and iron oxides (magnetite and hematite). Calcium carbonate (aragonite; marked as A) was identified in sample sections I and J, collected near the PRB/aquifer upgradient interface.

Figure 5-18. X-ray Diffraction Results for ABL Site 5 Core DP003

The analyzed sections of the core were section D (interface region), section C (interface), and section B (interior). The primary minerals identified were quartz, clays (illite and kaolinite), and iron oxides (magnetite and hematite). No major differences were noted between this core and core DP001, except a lower abundance of clay minerals was apparent in DP003.

SEM micrographs and EDS element mapping images for samples from ABL core DP001 are shown in **Figures 5-19 and 5-20**. Key findings from the microscopy study are: 1) near the ZVI/aquifer interface, iron particles show a mottled texture indicative of corrosion; 2) native quartz grains are often cemented together by iron oxide and calcium carbonate; 3) calcium carbonate and iron oxides occur as coatings on the ZVI grains; and 4) at deeper levels in the core, inward from the ZVI/aquifer interface, the thickness of coatings diminishes and the iron grains show fewer corrosion features. The maximum thickness of coatings on the iron grains occurred in samples from section DP001-H, near the ZVI/aquifer interface. The cementation of quartz and iron grains observed at the micro-level was also witnessed at the macro-level as welded concretions that were observed during the anaerobic drying. Overall results of the SEM and EDS element maps indicate significant weathering of the iron and some cementation of wall particles, but likely not enough to cause diminished hydraulic conductivity throught the wall.

Figure 5-19. Scanning Electron Microscopy Images from ABL Site 5 Core DP001

Image A is from the lowest level within the core and Image F is from the highest level.

- A) A typical iron (Fe) grain in the lower part of the core, from DP001-G, note the thin oxide layer.
- *B)* A corroded Fe grain in the top right, and a zoned grain with an Fe center and a ferrous oxide (FeO) outer layer, from DP001-G.
- C) Fe grain with FeO coating, from DP001-H.
- D) Fe grains within a calcium-rich coating from the ZVI/aquifer interface, from DP001-I.
- *E)* Silicon dioxide (SiO₂) grains cemented together by an Fe-rich coating from the ZVI interface, from DP001-I.
- F) Amalgamations of SiO₂ grains with Fe-rich coating just above the ZVI/aquifer interface, from DP001-J.

ESTCP FINAL REPORT: ANALYSIS OF LONG-TERM PERFORMANCE OF ZERO-VALENT IRON APPLICATIONS

Figure 5-20. Energy-Dispersive X-ray Spectroscopy Element Maps from ABL Site 5 Core DP001

Image A is from the lowest level within the core and Image F is from the highest level.

- A) Fe grain with FeO zoning and a corroded FeO grain in the top right, from the lower core, DP001-I
- B) Fe grain with calcium (Ca)-rich FeO coating, from ZVI core interface, DP001-I
- C) Quartz (SiO₂) grains cemented together by FeO coating, from DP001-I
- D) Closeup of FeO cementing SiO₂ grains together, from DP001-I
- *E)* Fe grain with Ca-rich FeO coating and aluminum (Al)-rich background, just above the ZVI/aquifer interface from DP001-J
- F) SiO₂ grains caught up in FeO cementation with Al-rich background, from DP001-J.

As part of the SEM analysis, coating thicknesses of mineralized iron grains were measured on a population of grains within each sample. The average thickness of the coatings was determined by measuring rim thickness at 3 to 5 points depending on the size of the grain; the mean coating thickness is plotted on **Figure 5-21**. As described above, the thickness was greatest at the upgradient interface.

Analysis of samples from ABL core DP003 was also conducted and SEM micrographs and EDS x-ray element maps are shown in **Figures 5-22 and 5-23**. This core showed similar features to those documented in core DP001.

Figure 5-21. Diagram of ABL Site 5 Core DP001 Showing the Locations of the Individual Core Segments Relative to the ZVI/Aquifer Interface

The interface was noted in sample DP001-I. Samples DP001-C, 1-E, 1-G, 1-H, 1-I, and 1-J were analyzed by scanning electron microscopy. Box charts at top right of figure show measured coating thicknesses on iron grains contained in the samples. The diamond symbols represent the actual data points; the stars are the minimum and maximum data points; the top of the box is the 75th percentile, the midline is the median; the bottom of the box is the 25th percentile; the inside box is the mean thickness; the line below the box is the 5th percentile; and the line above the box is the 95th percentile.

The six histograms at the bottom of the figure indicate the thicknesses of coatings on iron grains measured from each sample.

Figure 5-22. SEM Photographs and EDS Maps from ABL Site 5 Core DP003

Top: A) SEM photo and energy-dispersive x-ray spectroscopy (EDS) map of an iron grain with a FeO rim that is surrounded by SiO₂ and calcium carbonate from DP003-B.

Bottom: A) SEM photo and B) EDS map of an iron grain with a FeO rim that is surrounded by SiO₂ and calcium carbonate from DP003-B.

Figure 5-23. Additional SEM Photographs and EDS Maps from ABL Site 5 Core DP003

Top: A)SEM photo and B) EDS map of a corroded iron grain (right) with a (FeO rim, and an FeO grain with
SiO2 fragments within, from DP003-D, which contains the ZVI/aquifer interface.

Bottom: A) SEM photo and B) EDS map of SiO₂ grains (bottom right) cemented by FeO and coated with aluminum silicate and FeO.

Former St. Louis Ordnance Plant OU1 Mineralogical Testing Results

Solid-phase inorganic carbon concentrations were determined using acid digestion and CO₂ detection with a carbon coulometer (UIC Model CM5014; Paul et al., 2003). Each sample was analyzed in duplicate or triplicate. Average concentration values for solid-phase inorganic carbon are provided in **Table 5-8** for the former St. Louis Ordnance Plant OU1. One core was enriched in inorganic carbon (DP002-A; 16-18 feet bgs) and showed a decreasing concentration trend with depth from 16 to 18 feet bgs (**Figure 5-24**). Solid-phase concentrations of AVS were determined using acid digestion (Wilkin and Bischoff, 2006). AVS was not detected in the samples from this site. This indicates the St. Louis iron cores sent for analysis indicated dominance of non-reactive iron carbonate minerals.

Core	Segment	Depth (ft)	Inorganic Carbon (µg/g)	Acid-volatile Sulfur (µg/g)
DP001/TW01	C4	16.75	22	<10
DP001/TW01	C3	17.25	30	<10
DP001/TW01	C2	17.75	19	<10
DP001/TW01	D4	18.40	24	<10
DP001/TW01	D3	18.75	26	<10
DP001/TW01	D2	19.25	20	<10
DP001/TW01	D1	19.75	18	<10
DP002/TW02	A4	16.25	1,470	<10
DP002/TW02	A3	16.75	1,162	<10
DP002/TW02	A2	17.25	800	<10
DP002/TW02	A1	17.75	498	<10
DP002/TW02	B4	16.25	19	<10
DP002/TW02	B3	16.75	15	<10
DP002/TW02	B2	17.25	15	<10
DP002/TW02	B1	17.75	17	<10

Table 5-8. Concentrations of Inorganic Carbon and Acid-Volatile Sulfur inCores from Former St. Louis Ordnance Plant OU1

Figure 5-24. Inorganic Carbon vs. Depth in Former St. Louis Ordnance Plant OU1 in ZVI Core Samples

XRD patterns for samples from core DP002/TW02 are plotted in **Figure 5-25** and an XRD pattern for the original ZVI material obtained from GMA Industries, known as ZVI-M, is shown in **Figure 5-26**. The dominant mineral components in each of the samples were quartz, potassium feldspar, sodium feldspar, and kaolinite. Magnetite (PDF 079-0419) was also detected in each of the core segments; iron metal was not indicated in the XRD scans as a minor component. Possible detection of ZVI in sample DP002 B3 is indicated. Results indicate significant weathering of the original ZVI to magnetite.

Figure 5-25. Stacked X-Ray Diffraction Patterns for Former St. Louis Ordnance Plant OU1 Core DP002.

The dominant mineral components in each of the samples were quartz, K-feldspar, Na-feldspar, and kaolinite. Magnetite (PDF 079-0419) was also detected in each of the core segments; iron metal was not indicated in the XRD scans as a minor component. Possible detection of ZVI in sample DP002 B3 is indicated.

Figure 5-26. X-Ray Diffraction Pattern of the Original ZVI-M Granular Iron used at Former St. Louis Ordnance Plant OU1

ZVI-M is the original ZVI material obtained from GMA Industries. Pattern analysis indicates the presence of iron metal (PDF 087-0721), magnetite (PDF 079-0419), and wüstite (PDF 086-2316).

SEM micrographs for samples from St. Louis core DP002/TW02 and the original ZVI are shown in **Figure 5-27**. There was no apparent accumulation of precipitates observed on the surfaces of the iron particles. A histogram and cumulative frequency diagram of particle diameters from the original ZVI and iron oxide grains from six samples are provided as **Figure 5-28**, indicating considerable reduction in average grain size compared to the original ZVI product.

Figure 5-27. SEM Micrographs for Samples from St. Louis Core DP002/TW02 and the Original ZVI-M Material

- A) SEM photomicrograph of the original ZVI-M material.
- *B) Grain size distribution of iron oxide particles from six samples.*
- C & D) Paired SEM and reflected-light images of representative iron oxide grains from sample DP002 B1.
- *E* & *F*) *Paired SEM and reflected-light images of representative iron oxide grains from sample DP002 B2. Note there is no apparent accumulation of precipitates at the surfaces of the iron particles.*

Figure 5-28. Histograms and Cumulative Frequency Diagram of Particle Diameters from the Original ZVI-M Zero-valent Iron and Iron Oxide Grains from Six St. Louis Samples *ZVI-M is the original ZVI material obtained from GMA Industries. Note reduced grain size of the site samples in comparison to the original ZVI material.*

X-ray absorption near edge structure (XANES) spectrographic analyses were completed for five aquifer samples (**Figure 5-29**). The aquifer solids demonstrated no spectral components consistent with ZVI. Linear combination fitting analysis indicates a mixture of magnetite and goethite-type spectra. These findings are consistent with weathering of the original ZVI material to magnetite and goethite.

Figure 5-29. XANES Analysis of Five St. Louis Aquifer Samples

Normalized (edge jump = 1) X-ray absorption near edge structure (XANES) analysis of five aquifer samples and reference patterns for iron metal, magnetite, and goethite. The aquifer solids show no spectral component of ZVI. Linear combination fitting analysis indicates a mixture of magnetite and goethite-type spectra.

Energy dispersive line scans were completed for the original ZVI and for three grains from the mixing area cores (**Figure 5-30 and 5-31**, respectively). The original ZVI showed no detected oxygen, consistent with the ZVI product. Two of the site grains demonstrated consistent iron/oxygen ratios that were independent of the depths from the grain surface. The third grain showed more pronounced zonation and compositional shifts (decreasing iron/oxygen) from the core to the rim.

Figure 5-30. Energy Dispersive Line Scans across Two ZVI-M Grains

ZVI-M is the original ZVI material obtained from GMA Industries. These figures depict Energy dispersive line scans across two ZVI-M grains. Both of the grains analyzed showed no detected O, consistent with Fe metal.

Figure 5-31. Energy Dispersive Line Scans Across Three Grains Observed in the St. Louis Cores

These figures depict energy dispersive line scans across three grains observed in the St. Louis cores. The top two grains show consistent Fe/O ratios that are independent of depth in the grains. The bottom grain shows more pronounced zonation and compositional shifts (decreasing Fe/O) from core to rim.

5.4.3 Reactivity Testing Results

5.4.3.1 ABL Site 5 Reactivity Testing Results

Due to laboratory availability and time and materials constraints, reactivity testing for the PRB at Site 5 was not performed.

5.4.3.2 Former St. Louis Ordnance Plant OU1 Reactivity Testing Results

Results of ZVI content of each sample for the St. Louis site based on acidification and hydrogen generation analysis are shown on **Figure 5-32**. ZVI content was higher in mixing area samples (DP001 and DP002) than was observed in the background reference samples (DP003 and DP004). The maximum percentage of ZVI observed was less than 0.04 percent, which is considerably less than the ZVI dose used (1 percent). Magnetic and gravimetric analysis (**Figure 5-33**) indicated approximately an order of magnitude higher quantity of magnetic material in the mixing area core (DP001) than in background reference core (DP003), and the total magnetic fraction of the mixing area cores (**Figure 5-34**) was between 0.2 percent and 0.7 percent. This range is within the range observed in the confirmation samples collected during ZVI mixing activities (CH2M, 2012). These data in combination indicate, at least for these two samples, that while some ZVI remains in the mixing area, much of the remaining iron may be in the form of magnetite (CH2M, 2012). Reactivity using resazurin indicated higher potential for reduction in ZVI mixing area core DP001 in comparison to the background sample (DP003) (**Figure 5-35**), supporting the continued reactivity of any remaining ZVI and magnetite.

Figure 5-32. ZVI Content of St. Louis Samples (Percent of Sample Dry Mass) Based on Acidification and Hydrogen Generation Testing

Mixing area samples (SLOP-SB001 and SLOP-SB002) samples showed higher ZVI content than up- and downgradient samples, with maximum percentage of ZVI observed at approximately 0.04%.

Mass-specific magnetic susceptibility (M.S.M.S.) (m³/kg)

Figure 5-33. Magnetic Fraction in St. Louis Samples DP001 and DP003

Magnetic and gravimetric analysis indicated approximately an order of magnitude higher quantity of magnetic material in the mixing area core (DP001/SB001) than in background reference core (DP003/SB003)

Figure 5-34. Magnetic Fraction in St. Louis Samples DP001 and DP002

Magnetic Fraction in mixing area samples indicate between 0.2 and 0.7 percent magnetic material

Figure 5-35. 1-hour Mixing Area (DP001) Reaction with Resazurin (in Pink) in Comparison with Upgradient Reference Sample (DP003), St. Louis Site

Following one hour of addition of resazurin to mixing area (DP001) and an upgradient reference sample (DP003), conversion to resorufin is evident in the mixing area sample, but not in the upgradient reference sample.

5.4.4 Microbial Results

5.4.4.1 ABL Site 5 Microbial Results

Select ABL samples were analyzed using a combination of Quantarray-Chlor analysis to assess populations of common dechlorinating microbes/functional genes and NGS, which provides Phylum and genus data for microbes present in the water at the site. Results for the Quantarray-Chlor analysis are presented as **Table 5-9**. Complete NGS data reports along with all other site analytical data are provided in **Appendix G**.

Quantarray-Chlor analyzes numbers of multiple microbes/functional genes involved in biodegradation of chlorinated solvents, including anaerobic reductive dechlorinators and associated functional genes, genes involved in direct metabolism of vinyl chloride (present in some ethenotrophic bacteria), and genes involved in cometabolism of VOCs (present in ethenotrophic and methanotrophic bacteria).Populations of methanogens and sulfate reducers are also provided to assist in assessment of the ecological microbial habitat.

At ABL Site 5, a number of anaerobic reductive dechlorinators were detected including *Dehalobacter, Dehalococcoides, Dehalogenimonas, Desulfitobacterium, Desulfuromonas,* and *Dehalobium.* In most cases, if concentrations of these organisms were present upgradient of the wall in the close upgradient samples (GW26 and GW29), there were decreases in concentrations in the samples from the immediate downgradient side of the wall (5GW27 and 5GW30). For example, *Dehalogenimonas* was not detected in the samples immediately downgradient of the wall, despite being detected upgradient.

	In Landfill		We	st Transect			Ea	st Transect	
	Upgradient	5' Upgradient	5' Downgradient	10' Downgradient	50' Downgradient	5' Upgradient	5' Downgradient	10' Downgradient	60' Downgradient
Sample ID	GW13	GW26	GW27	GW28	GW25	GW29	GW30	GW31	GW18
Sample Date	1/6/17	1/20/17	1/20/17	1/20/17	1/20/17	1/20/17	1/20/17	1/20/17	1/20/17
Analyte (cells/mL)									
Total Bacteria	7.99E+04	3.07E+05	9.04E+04	6.53E+05	1.34E+06	3.12E+05	1.91E+05	4.84E+04	3.09E+05
BAV1 R-Dase	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00	1.00E+00
CFR	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01
DCA	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01
DCAR	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01
DCM	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01
DCMA	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01
Dehalobium chlorocercia (DECO)	4.28E+01	4.41E+01	6.00E-01	4.40E+01	1.08E+02	1.70E+02	6.36E+01	0.00E+00	4.45E+01
Dehalobacter (DHB)	1.68E+01	8.19E+01	9.40E+00	5.44E+02	2.63E+02	0.00E+00	1.70E+02	9.60E+00	2.36E+02
Dehalococcoides (DHC)	0.00E+00	1.01E+01	0.00E+00	7.80E+00	4.68E+01	2.94E+02	3.34E+01	9.00E+00	3.40E+02
Dehalogenimonas (DHG)	7.53E+01	3.25E+02	0.00E+00	0.00E+00	3.88E+02	8.33E+02	0.00E+00	0.00E+00	0.00E+00
Desulfitobacterium (DSB)	0.00E+00	0.00E+00	0.00E+00	3.34E+02	4.20E+01	1.61E+02	1.07E+02	0.00E+00	0.00E+00
Desulfuromonas (DSM)	0.00E+00	0.00E+00	0.00E+00	1.64E+04	9.75E+03	1.34E+04	2.59E+03	1.46E+03	1.38E+03
TCE R-Dase	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	7.00E-01	0.00E+00	0.00E+00	7.00E-01
VC R-Dase	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	3.20E+00	0.00E+00	0.00E+00	2.00E-01
Phenol Hydrozylase (PHE)	6.70E+00	6.65E+02	8.83E+01	2.58E+02	7.30E+01	1.82E+02	2.88E+02	9.80E+00	7.30E+00
Particulate Methane Monooxygenase (PMMO)	3.15E+01	2.07E+02	8.46E+02	4.64E+01	1.20E+02	6.86E+01	2.63E+01	9.10E+00	2.60E+02
Toluene Dioxygenase (TOD)	7.00E+00	2.83E+01	7.40E+00	1.76E+01	2.14E+01	1.93E+01	1.51E+01	2.00E+00	1.05E+01
Toluene Monooyzgenase 2 (RDEG)	0.00E+00	7.12E+02	0.00E+00	3.80E+02	0.00E+00	3.20E+00	9.74E+01	0.00E+00	2.96E+01
Toluene Monooyzgenase (RMO)	0.00E+00	0.00E+00	2.72E+01	0.00E+00	0.00E+00	0.00E+00	5.07E+01	0.00E+00	0.00E+00
Soluable Methane Monoozygenase (SMMO)	4.87E+02	5.93E+02	5.51E+01	2.14E+02	1.12E+03	2.89E+02	1.66E+02	4.56E+01	2.21E+03
ТСВО	1.00E+01	1.00E+01	1.00E+01	1.40E+00	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01
EtnC	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01	1.00E+01
Expozyalkane transferase (EtnE)	0.00E+00	1.00E+01	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	1.10E+02
Sulfate Reducing Bacteria (APS)	1.29E+04	7.29E+04	2.46E+04	1.10E+05	7.64E+05	1.06E+05	7.22E+04	1.58E+04	2.13E+05
Methanogens (MGN)	3.30E+00	1.81E+01	8.30E+00	1.41E+03	4.62E+02	1.01E+02	9.08E+01	1.72E+01	2.08E+02

 Table 5-9. Quantarray-Chlor Microbial Analysis Results, ABL Site 5

Notes:

Shading indicates detection

cells/mL – cells per milliliter

A similar pattern was noted for *Dehalococcoides*, which was detected in the close upgradient sample for the west transect, but was not detected immediately downgradient and for which there was a one order of magnitude decrease in concentration between upgradient and immediately downgradient in the eastern transect. One exception is *Dehalobacter*, for which concentrations increased slightly between the upgradient and immediately downgradient samples in both transects. Generally, the populations of anaerobic dechlorinators at Site 5 were relatively sparse, and functional genes involved in complete dechlorination of TCE to ethene were detected at very low levels in the upgradient and far downgradient samples in the eastern transect only (VC reductase was detected in the sample from GW29 at 3.2 cells per milliliter (mL) and in GW18 at 0.2 cells/mL; TCE reductase was detected in the sample from GW18 at 0.7 cells/mL; BAV1 was not detected). There is no indication, based on the data, that the PRB is facilitating reductive dechlorination downgradient of the wall.

Expoxyalkane transferase (EtnE) and alkene monooxygenase (EtnC) are measures of functional genes associated with ethenotrophic organisms capable of direct metabolism of vinyl chloride and cometabolism of cis-1,2-DCE. At ABL Site 5, EtnE and EtnC were not detected with the exception of the far downgradient sample, GW18, which had an EtnE concentration of 1.1×10^2 cells/mL. These data support that there is no impact from the PRB on these ethenotrophs.

Several other genes associated with aerobic cometabolism of chlorinated VOCs were detected at ABL Site 5, comprising phenol hydrozylase (PHE), particulate methane monooxygenase (PMMO), toluene dioxygenase (TOD), toluene monooxygenase 2 (RDEG), toluene monooxygenase (RMO), and soluble methane monooxygenase (SMMO). Concentrations of these genes, which are associated with primarily aerobic microorganisms, were similar or increased across the wall transects from upgradient to downgradient, indicating little to no impact on populations of organisms carrying these genes from reducing conditions generated by the wall.

Sulfate reducers and methanogens were detected consistently across the site, with no notable change in concentrations due to the presence of the PRB.

NGS data provide information on phylum and genus of microbes found in a sample. Because microbes from the same phylum can often live under widely different conditions, the genus data are more useful in assessing environmental conditions present at a site. At ABL Site 5, Proteobacteria was the primary phylum for all samples analyzed at the site, followed by Firmicutes. Proteobacteria are gram-negative bacteria with an outer membrane consisting largely of lipopolysaccharides. Members of this phylum are anaerobic, facultative anaerobes, or obligate aerobes. Firmicutes are typically gram-positive bacteria with round cells, called cocci (singular, coccus) or with rod-like forms (bacillus). Firmicutes are anaerobic or are obligate or facultative aerobes and are known acetylenotrophs, which may help explain why acetylene was not detected at the site. Genus data for Site 5 indicate that areas 5-10 ft downgradient of the PRB area dominated by Sulfurimonas (Table 5-10). The genus Sulfurimonas combines a group of sulfur-oxidizing bacteria (Inagaki et al., 2003). Many kinds of reduced sulfur compounds, such as sulfide, elemental sulfur, thiosulfate and sulfite, can serve as an electron donor for the growth of Sulfurimonas. The higher population of these bacteria downgradient of the PRB could potentially be due to the release of reduced sulfur species to groundwater from the PRB. Genera upgradient and far downgradient of the PRB are more diverse, without a single Genera dominant in these samples. The most common genera for each sample are presented in Table 5-10.

Location		Well ID	Top Four Genera Detected In Sample			
			33.7% Unclassified at Genus Level			
	10:11	0.140	6.5% Crenothrix, a a filamentous methane oxidizer			
Upgradient in Land	ITIII	GW13	3.3% Thermodesulfovibrio, thermophilic anaerobic sulfate reducers			
			2.8% Legionella, a gram-negative, non-spore-forming, aerobic bacterium			
			35% Sulfuricurvum a motile anaerobic sulfur-oxidizing bacterium			
			13.6% Bhodoferay, which can be aerobic or anaerobic and is found in			
			ctagnant aquatic systems			
	Close		10.2% Janthinghacterium a diverse group of bacteria canable of			
	Upgradient	GW26	tolerating a variety of environmental stressors			
			9.6% Pseudomonas, a gram-negative chemoorganotrophic and aerobic			
			bacterium Biofilms produced by Pseudomonas are involved in the ranid			
			corrosion of metals			
			38.2% Sulfurimonas, sulfur- and thiosulfate-oxidizing bacteria			
			12.9% Sulfuricuryum a motile anaerobic sulfur-oxidizing bacterium			
ansect			6.3% Pseudomonas a gram-negative chemoorganotrophic and			
	Immediately		aerobic bacterium. Biofilms produced by Pseudomonas are involved in			
t Tr	Downgradient	GW27	the rapid corrosion of metals.			
Wes	0.000		6% Desulfurispora, thermophilic sulfate reducers			
			6% Janthinobacterium, a diverse group of bacteria capable of tolerating			
			a variety of environmental stressors			
		GW28	40.5% Sulfurimonas, sulfur- and thiosulfate-oxidizing bacteria			
	Close		9.8% Sulfuricurvum, a motile, anaerobic, sulfur-oxidizing bacterium			
	Downgradient		9.5% Thermodesulfovibrio, thermophilic anaerobic sulfate reducers			
	Ŭ		7.1% Unclassified at genus level			
			19.6% Thermodesulfovibrio, thermophilic anaerobic sulfate reducers			
	Far	CLUDE	17.1% Unclassified at genus level			
	Downgradient	GW25	10.4% Sulfurimonas, sulfur- and thiosulfate-oxidizing bacteria			
			9.3% Desulfococcus, a strictly anaerobic, sulfate-reducing bacteria			
			17.9% Unclassified at genus level			
			11.1% Janthinobacterium, a diverse group of bacteria capable of			
			tolerating a variety of environmental stressors			
	Close	GW29	7.2% Pseudomonas, , a gram-negative, chemoorganotrophic, and			
	Upgradient	01125	aerobic bacterium. Biofilms produced by Pseudomonas are involved in			
			the rapid corrosion of metals.			
			7.0% Rhodoferax, which can be aerobic or anaerobic and is found in			
			stagnant aquatic systems			
			41% Sulfurimonas, sulfur- and thiosulfate-oxidizing bacteria			
ect	Immediately	0 11/20				
ans	Downgradient	GW30	9.3% Unclassified at genus level			
L L			7% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic			
Eas			bacterium. Biofilms produced by Pseudomonas are involved in the rapid			
			5.8% Sulfurimonas, sulfur, and thissulfate, avidizing bacterium			
	Close		40.4% Sumurinionas, sumur- and thiosunate-oxidizing bacteria			
	Downgradient	GW31	10.9% Unclassified at genus level			
	Downgradient		4.5% Internouesunoviono, thermophilic anaerobic sunate reducers			
			4.2% Sui di cui vuiti, a filomentous methane ovidizer			
			16.4% Gallionella, iron-oxidizing chemolithotrophic			
	Far		hacteria that have been found in a variety of different			
	Downgradient	GW18	aguatic habitats			
	Downgradient		13.5% Thermodesulfovibrio, thermophilic anaerobic sulfate reducers			
			11.1% Unclassified at genus level			

Table 5-10. Summar	y of Next Generatio	n Sequencing	g Results, ABL Site 5
--------------------	---------------------	--------------	-----------------------

5.4.4.2 Former St. Louis Ordnance Plant OU1 Microbial Results

Samples from new temporary wells (TW01 through TW06) and MW119 were analyzed using a combination of Quantarray-Chlor analysis and NGS. Results for the Quantarray-Chlor analysis are presented as **Table 5-11**. A summary of the NGS requests is presented as **Table 5-12**. Complete NGS data reports along with all other site analytical data are provided in **Appendix G**.

Sample ID	SLOP-MW119- 012017		SLOP-TW 012017	01-	SLOP-TW 012017	02-	SLOP-TW 012017	03-	SLOP-TW 012017	04-	SLOP-TW 012017	05-	SLOP-TW 012017	06-
Sample Date	1/23/17		1/25/17		1/24/17		1/23/17		1/25/17		1/24/17		1/24/17	
APS	6.95E+05		2.28E+02		2.31E+01	_	2.70E+00	J	2.70E+00	J	2.00E+01	U	3.14E+01	
DECO	1.15E+03		2.00E+01	U	4.40E+00	J	1.00E+01	U	2.00E+01	U	2.00E+01	U	1.67E+01	U
Dehalobacter	7.07E+02		2.51E+03		1.95E+03		1.00E+01	U	4.18E+01		2.00E+01	U	4.70E+00	J
Dehalococcoides	2.42E+01		5.11E+01		2.00E+00	U	1.00E+00	U	2.03E+01		2.00E+00	U	1.70E+00	U
DHG	9.69E+03		2.00E+01	U	4.19E+02		1.00E+01	U	1.78E+02		2.00E+01	U	1.67E+01	U
Desulfitobacterium	3.93E+02		1.22E+02		1.27E+02		1.00E+01	U	2.00E+01	U	2.00E+01	U	1.67E+01	U
Desulfuromonas	1.22E+04		5.17E+03		5.65E+03		1.00E+01	U	2.00E+01	U	2.00E+01	U	1.67E+01	U
Total Bacteria	7.25E+06		6.56E+05		7.76E+05		1.19E+04		1.60E+05		3.56E+03		1.46E+04	
EtnE	3.89E+02		2.00E+01	U	2.00E+01	U	1.00E+01	U	2.44E+02		2.00E+01	U	1.67E+01	U
Methanogens	4.27E+03		3.70E+01		1.55E+02		1.90E+00	J	4.14E+01		2.00E+01	U	2.90E+00	J
PHE	1.03E+04		3.81E+03		3.71E+03		1.93E+02		1.27E+03		1.00E+00	J	5.30E+02	
РММО	1.32E+04		3.99E+01		3.37E+01		3.60E+00	J	3.26E+02		2.00E+01	U	2.90E+00	J
RDEG	2.79E+03		1.25E+03		1.36E+03		1.01E+03		5.39E+03		2.00E+01	U	7.81E+01	
RMO	5.17E+03		9.34E+01		2.00E+01	U	1.00E+01	U	2.00E+01	U	2.00E+01	U	1.67E+01	U
SMMO	1.01E+04		4.03E+02		2.28E+02		4.84E+01		2.37E+02		2.00E+01	U	3.15E+02	
ТСВО	8.33E+01		2.00E+01	U	2.00E+01	U	1.00E+01	U	2.00E+01	U	2.00E+01	U	1.67E+01	U
TCE R-Dase	1.30E+00	U	9.00E-01	J	2.00E+00	U	1.00E+00	U	2.00E+00	U	2.00E+00	U	1.70E+00	U
Toluene Dioxygenase	8.66E+01		3.88E+01		3.37E+01		6.80E+00	J	9.74E+02		7.00E-01	J	6.60E+00	J
VC R-Dase	1.30E+00	U	5.00E-01	J	2.00E+00	U	1	U	2.00E+00	U	2.00E+00	U	1.70E+00	U

Table 5-11. Quantarray-Chlor Microbial Analysis Results, Former St. Louis Ordnance Plant, OU1

Notes:

J - The reported result is an estimated value

U - TAnalyzed for, but not detected

UQ - The material was analyzed for, but not detected. One or more quality control criteria failed.

Shading indicates detection

Cells/mL - cells per milliliter

Table 5-12. Summary of Next Generation Sequencing Results,Former St. Louis Ordnance Plant OU1

UpgradientTW0355.7% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms produced by Pseudomonas are involved in the rapid corrosion of metals. 8% Flavobacterium, a gram-negative, aerobic or facultatively anaerobic bacteria which degrades biopolymers such as chitin and cellulose 6.8% Rhodoferax, which can be aerobic or anaerobic and is found in stagnant aquatic systems 6% Unclassified at genus levelTreatment Area Upgradient PortionTW0240.2% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms produced by Pseudomonas are involved in the rapid corrosion of metals. 27.7% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 4.7% Unclassified at genus level 4.5% Oxalobacter, a strictly anaerobic chemoorganotroph capable of degrading oxalic acid 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfideTreatment Area CenterMW-119S1.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide	Location	Well ID	Top Four Genera Detected In Sample
UpgradientTW03produced by Pseudomonas are involved in the rapid corrosion of metals. 8% Flavobacterium, a gram-negative, aerobic or facultatively anaerobic bacteria which degrades biopolymers such as chitin and cellulose 6.8% Rhodoferax, which can be aerobic or anaerobic and is found in stagnant aquatic systems 6% Unclassified at genus levelTreatment Area Upgradient PortionTW0240.2% Pseudomonas are involved in the rapid corrosion of metals. 27.7% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 4.7% Unclassified at genus level 4.5% Oxalobacter, a strictly anaerobic chemoorganotroph capable of degrading oxalic acid 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfideTreatment Area CenterMW-11951.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide			55.7% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms
UpgradientTW038% Flavobacterium, a gram-negative, aerobic or facultatively anaerobic bacteria which degrades biopolymers such as chitin and cellulose 6.8% Rhodoferax, which can be aerobic or anaerobic and is found in stagnant aquatic systems 6% Unclassified at genus levelTreatment Area Upgradient Portion40.2% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms produced by Pseudomonas are involved in the rapid corrosion of metals. 27.7% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 4.7% Unclassified at genus level 4.5% Oxalobacter, a strictly anaerobic chemoorganotroph capable of degrading oxalic acid 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfideTreatment Area Center51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus levelMW-1196.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide			produced by Pseudomonas are involved in the rapid corrosion of metals.
Upgradient TW03 biopolymers such as chitin and cellulose 6.8% Rhodoferax, which can be aerobic or anaerobic and is found in stagnant aquatic systems 6% Unclassified at genus level 40.2% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms produced by Pseudomonas are involved in the rapid corrosion of metals. 27.7% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 4.7% Unclassified at genus level 4.5% Oxalobacter, a strictly anaerobic chemoorganotroph capable of degrading oxalic acid 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfide 51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfide 51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide		T 11/00	8% Flavobacterium, a gram-negative, aerobic or facultatively anaerobic bacteria which degrades
Image: Constraint of the second se	Upgradient	1W03	biopolymers such as chitin and cellulose
6% Unclassified at genus level 6% Unclassified at genus level 40.2% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms produced by Pseudomonas are involved in the rapid corrosion of metals. 27.7% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 4.7% Unclassified at genus level 4.5% Oxalobacter, a strictly anaerobic chemoorganotroph capable of degrading oxalic acid 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfide 51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide			6.8% Rhodoferax, which can be aerobic or anaerobic and is found in stagnant aquatic systems
Treatment Area MW-119 Treatment Area MW-119 MW-119 MW-119			6% Unclassified at genus level
Treatment Area Tw02			40.2% Pseudomonas a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms
Treatment Area TW02 27.7% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 4.7% Unclassified at genus level 4.5% Oxalobacter, a strictly anaerobic chemoorganotroph capable of degrading oxalic acid 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfide 51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide			produced by Pseudomonas are involved in the rapid corrosion of metals.
Treatment Area TW02 4.7% Unclassified at genus level 4.5% Oxalobacter, a strictly anaerobic chemoorganotroph capable of degrading oxalic acid 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfide Treatment Area 51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide			27.7% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III)
Upgradient Portion Anto Gradion of eigeneore of geneore of geneo	Treatment Area	TW02	4.7% Unclassified at genus level
1.5% Okaboaccer, a strictly anderosic enemoting interopiction of degrading online detail 4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics and can and oxidize iron and hydrogen sulfide 51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide	Upgradient Portion		4.5% Oxalobacter, a strictly anaerobic chemoorganotroph canable of degrading oxalic acid
4.5% Dechloromonas, rod shaped bacteria which can anderobically degrade certain aromatics and can and oxidize iron and hydrogen sulfide Treatment Area Center 51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide			4.5% Deable remembers and shared besterie which can ensure highly degreed electric promotion
Treatment Area MW-119 Center MW-119			4.5% Dechloromonas, rod shaped bacteria which can anaerobically degrade certain aromatics
Treatment Area 51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III) 8.1% Unclassified at genus level 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide			
Treatment Area 8.1% Unclassified at genus level August Area 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide			51.8% Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III)
Treatment Area MW-119 4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and oxidize carbon monoxide Center oxidize carbon monoxide			8.1% Unclassified at genus level
Oxidize carbon monoxide	Treatment Area Center	MW-119	4.9% Hydrogenophaga, aerobic bacteria, some of which can degrade methyl-tert-butyl ether and
		1110 115	oxidize carbon monoxide
4.2% Methylomonas, a methanotroph: methane, methanol and formaldehyde are the only			4.2% Methylomonas, a methanotroph; methane, methanol and formaldehyde are the only
known sources of energy and carbon for this organism.			known sources of energy and carbon for this organism.
30.4% Sulfuricurvum, a motile, anaerobic, sulfur-oxidizing bacterium			30.4% Sulfuricurvum, a motile, anaerobic, sulfur-oxidizing bacterium
9 2% Inclassified at genus level			9.2% Linclassified at genus level
Treatment Area	Treatment Area		9% Pseudomonas a gram-negative chemoorganotronhic and aerohic bacterium Biofilms
Downgradient TW01 TW01 produced by Pseudomonas are involved in the ranid corrosion of metals	Downgradient	TW01	produced by Pseudomonas are involved in the ranid corrosion of metals
Portion 6 5% Pedobacter, an aerobic facultative psychrophile (prefers temperature less than 20 degrees	Portion		6.5% Pedobacter, an aerobic facultative psychrophile (prefers temperature less than 20 degrees
C)			C)
73.8% Methylotenera, can utilize methylamine as a single source of energy, carbon, and			73.8% Methylotenera, can utilize methylamine as a single source of energy, carbon, and
nitrogen.			nitrogen.
13.9% Pseudomonas., a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms			13.9% Pseudomonas, a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms
Downgradient TW04 TW04 produced by Pseudomonas are involved in the rapid corrosion of metals.	Downgradient	TW04	produced by Pseudomonas are involved in the rapid corrosion of metals.
2.3% Methylobacillus, a methylotrophic genus of obligate methanol- and methylamine-utilizers.			2.3% Methylobacillus, a methylotrophic genus of obligate methanol- and methylamine-utilizers.
2% Unclassified at genus level			2% Unclassified at gonus level
47% Unclassified at genus level			47% Unclassified at genus level
14.2% Desulfovibrio, a halophilic sulfate-reducer commonly found in sediment of			14.2% Desulfovibrio, a halophilic sulfate-reducer commonly found in sediment of
lakes, brackish water and marine environments. Desulfovibrio has been implicated in the			lakes, brackish water and marine environments. Desulfovibrio has been implicated in the
Crossgradient TW05 corrosion of various metals, including carbon steel, stainless steel, galvanized steel, and copper	Crossgradient	TW05	corrosion of various metals, including carbon steel, stainless steel, galvanized steel, and copper
alloys.			alloys.
2% Candidatus Tammella			2% Candidatus Tammella
1.9% Sphingomonas, an aerobic chemoorganotrophs shown to degrade toluene, naphthalene,			1.9% Sphingomonas, an aerobic chemoorganotrophs shown to degrade toluene, naphthalene,
and other aromatic compounds			and other aromatic compounds
25.2% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms			25.2% Pseudomonas, , a gram-negative, chemoorganotrophic, and aerobic bacterium. Biofilms
produced by Pseudomonas are involved in the rapid corrosion of metals.			produced by Pseudomonas are involved in the rapid corrosion of metals.
20.8% Janthinobacterium, a diverse group of bacteria capable of tolerating a variety of			20.8% Janthinobacterium, a diverse group of bacteria capable of tolerating a variety of
Crossgradient TW06 environmental stressors	Crossgradient	TW06	environmental stressors
15.6% Acinetobacter, a strictly aerobic microbe which contibutes to mineralization of multiple			15.6% Acinetobacter, a strictly aerobic microbe which contibutes to mineralization of multiple
compounds, including aromatics			compounds, including aromatics
13% Methyloteneral can utilize methylamine as a single source of energy carbon, and nitrogen			13% Methylotenera, can utilize methylamine as a single source of energy carbon, and nitrogen

At the former St. Louis Ordnance Plant OU1, a number of anaerobic reductive dechlorinators were detected. Dehalobacter concentrations were elevated in the treatment area in comparison to background, with the highest concentration $(2.51 \times 10^3 \text{ cells/mL})$ in the sample from TW01, the most downgradient of the mixing area sample locations. Dehalobacter was not detected in the upgradient reference sample (TW03). Similarly, Dehalococcoides was detected in two treatment area samples (MW-119 and TW01) and in TW04, which is downgradient and outside of the mixing zone, but not in the upgradient or cross-gradient samples. Similar patterns were observed for Dehalogenimonas, Desulfitobacterium, Desulfuromonas, and Dehalobium, where detections are limited to the treatment area and/or downgradient area. Functional genes involved in complete dechlorination of TCE to ethene by *Dehalococcoides* were detected at very low levels, and only in the sample from TW01 (TCE reductase at 9x10⁻¹ cells/mL and VC reductase at 5×10^{-1} cells/mL; BAV1 was not detected). It appears that the treatment may be facilitating reductive dechlorination, but complete dechlorination may be limited by the lack of VC reductase and BAV1 presence, or other factors, such as low TOC. Fieldwork was performed before the identification of the chloroethene reductase (cerA) gene was published (Yang, et. al. 2017). This gene is sometimes present in Dehalogenimonas and can also facilitate complete reductive dechlorination of TCE to ethene. However, this gene was not included in the analysis and its presence and potential for complete degradation through this mechanism at the site is unknown

At the former St. Louis Ordnance Plant OU1, EtnC was not detected, but EtnE was detected in one treatment area sample (MW-119 at 3.89×10^2 cells/mL) and the downgradient sample (TW04 at 2.44 x 10^2 cells/mL), indicating direct metabolism of vinyl chloride by ethenotrophs may be possible at the site.

Several genes associated with aerobic cometabolism of chlorinated VOCs were also detected at OU1, comprising PHE, PMMO, TOD, RDEG, RMO, and SMMO. Concentrations of these constituents were generally similar within and outside of the treatment area, with the exception of RMO, which was detected only in the mixing area and not outside. Additionally, with the exception of TOD, these genes were not detected in samples from TW05, a cross-gradient well, which seems very different from the other site samples with respect to the microbial population.

Methanogens were detected consistently across the site except in TW05, with concentrations slightly higher in the treatment area than outside.

At the former St. Louis Ordnance Plant OU1, *Proteobacteria* and *Firmicutes* were the primary phyla for all samples analyzed at the site with the exception of TW05, with numbers of *Firmicutes* higher in the treatment area than outside. *Firmicutes* are acetylenotrophic, possibly explaining the non-detect results for acetylene at the site. For TW05, 39.9% of detected bacteria were unclassified at the phylum level, suggesting this sample location is different than the others, consistent with the findings of the Quantarray analysis. Genus data demonstrated highly variable microbial populations at the site. *Pseudomonas* dominated in the samples from the upgradient background location (TW03) and one cross-gradient location (TW06) (**Table 5-12 and Appendix G**). The dominant genus was different for each of the treatment area samples. *Pseudomonas* was still the most abundant genus in the most upgradient sample within the treatment area (TW02) despite the low ORP in this location and the aerobic nature of this genus. The percentage of the population in this location, was, however, lower than that observed in TW03. In the center portion of the treatment area (MW-119), the most dominant genus was

Alkaliphilus, a strictly anaerobic metalliredigen capable of reducing Fe (III). In the downgradient portion of the treatment area (TW01), the most common genus observed was *Sulfuricurvum*, a motile, anaerobic, sulfur-oxidizing bacterium. *Methylotenera* were abundant just downgradient of the treatment area (TW04) and represented 73.8% of the population in that sample. The bacteria most commonly observed in the sample from TW05 were unclassified at the genus level.

5.4.5 Water Level and Slug Testing Results

Results of the water level surveys at ABL Site 5 and the former St. Louis Ordnance Plant OU1 are shown on **Tables 5-13 and 5-14**, respectively. Maps showing groundwater contours for each of the gauging events at ABL are presented as **Figures 5--36 through 5-38**. Because new wells within the treatment area appeared to have not fully recharged at the former St. Louis Ordnance Plant at the time of the first gauging event, maps are only provided for the last two events. Additionally, because the water levels were significantly different in the two new temporary wells in the treatment area (DP001 and DP002) in comparison to the existing well (MW-119), contours were drawn for three combinations of wells: with all site wells included, with all wells except MW-119 included, and with all wells except DP001 and DP002 included. These figures are presented as **Figures 5-39 through 5-44**.

The groundwater potentiometric surface observed during this study was slightly inconsistent with the historic groundwater potentiometric surface gradient direction (Figure 4-2). This variation in flow direction is not believed to impact current remedy effectiveness, as concentrations are very low cross-gradient on the west side of the wall where migration potential around the wall is most likely (see Section 5.4.3). There was no mounding observed behind the wall that would indicate plugging due to excessive mineralization of the iron.

Groundwater flow direction interpretation at the St. Louis site was complicated by the screen interval of MW-119, which is slightly deeper than the temporary wells and interacts with the shale unit below the ZVI mixing zone. If these two data points are plotted with the surrounding new temporary wells as well as existing well MW-119, an apparent mound is evident in the vicinity of MW-119 with depressions at DP001/TW01 and DP002/TW02 (Figures 5-39 and 5-40), which seems unlikely. The potential for the data point at MW-119 to be anomalous was also considered. Without this data point, the gradient appears relatively consistent across the site, with flow to the north and northeast (Figures 5-41 and 5-42). Contours were also drawn eliminating only DP001/TW01 and DP002/TW02. In this configuration, a mound is present across the upgradient portion of the treatment area (Figures 5-43 and 5-44).

The graphical AQTESOLV analysis sheets from the slug testing at the St. Louis site are presented in **Appendix J.** Calculated hydraulic conductivity (K) values are included in **Table 5-15**. The results indicate the hydraulic conductivity of the aquifer material is consistent with clay. There are no notable differences in conductivity between the treatment area (DP001/TW01 and DP002/TW02) and the surrounding aquifer materials based on slug test results.

Well ID	Total Depth (ft btoc)	Ground Surface Elevation (ft amsl)	Riser Elevation (ft amsl)	1/23/17 Groundwater Level (ft btoc)	1/23/17 Groundwater Elevation (ft amsl)	2/15/17 Groundwater Level (ft btoc)	2/15/17 Groundwater Elevation (ft amsl)	3/9/17 Groundwater Level (ft btoc)	3/9/17 Groundwater Elevation (ft amsl)
AS05-GW13	36.06	686.6	688.82	15.16	673.66	14.34	674.48	15.15	673.67
AS05-GW17	25.92	674.44	676.39	5.61	670.78	5.34	671.05	6.14	670.25
AS05-GW18	27.08	672.12	674.75	3.40	671.35	3.01	671.74	3.48	671.27
AS05-GW25	26.98	672.61	674.86	4.09	670.77	3.80	671.06	4.80	670.06
AS05-GW26	24.22	673.29	675.74	4.61	671.13	3.80	671.94	4.51	671.23
AS05-GW27	24.73	671.97	674.82	3.82	671.00	3.55	671.27	4.50	670.32
AS05-GW28	21.15	671.95	674.63	3.64	670.99	3.40	671.23	4.34	670.29
AS05-GW29	24.63	674.82	677.32	4.75	672.57	4.49	672.83	4.97	672.35
AS05-GW30	22.16	672.40	674.98	2.11	672.87	2.35	672.63	3.34	671.64
AS05-GW31	21.97	672.29	674.82	3.82	671.00	2.70	672.12	3.19	671.63
AS05-GW32	13.22	673.86	676.49	3.09	673.40	2.36	674.13	3.34	673.15
AS05-GW33	25.23	673.22	676.07	5.34	670.73	4.50	671.57	5.35	670.72

Table 5-13. Groundwater Elevations, ABL Site 5

Well ID	Total Depth (ft bgs)	Ground Surface Elevation (ft amsl)	Riser Elevation (ft amsl)	1/17/17 Groundwater Level (ft btoc)	1/17/17 Groundwater Elevation (ft amsl)	1/23/17 Groundwater Level (ft btoc)	1/23/17 Groundwater Elevation (ft amsl)	1/30/17 Groundwater Level (ft btoc)	1/30/17 Groundwater Elevation (ft amsl)
DP001/TW01	27	540.59	543.81	14.05	529.76	21.80	522.01	16.66	527.15
DP002/TW02	25	543.81	546.70	18.62	528.08	19.20	527.50	13.41	533.29
DP003/TW03	22	543.13	546.09	2.82	543.27	5.96	540.13	6.88	539.21
DP004/TW04	25	537.69	540.63	1.85	538.78	4.91	535.72	5.25	535.38
DP005/TW05	20	542.52	545.87	2.78	543.09	10.10	535.77	7.82	538.05
DP006/TW06	27	540.99	543.81	2.50	541.31	7.01	536.80	6.46	537.35
MW-119	30	542.15	541.63	NR	NR	1.49	540.14	2.46	539.17
		-			•	-	-	-	
Well ID	Total Depth (ft bgs)	Ground Surface Elevation (ft amsl)	Riser Elevation (ft amsl)	2/8/17 Groundwater Level (ft btoc)	2/8/17 Groundwater Elevation (ft amsl)	2/28/17 Groundwater Level (ft btoc)	2/28/17 Groundwater Elevation (ft amsl)	3/8/17 Groundwater Level (ft btoc)	3/8/17 Groundwater Elevation (ft amsl)
Well ID DP001/TW01	Total Depth (ft bgs) 27	Ground Surface Elevation (ft amsl) 540.59	Riser Elevation (ft amsl) 543.81	2/8/17 Groundwater Level (ft btoc) 12.18	2/8/17 Groundwater Elevation (ft amsl) 531.63	2/28/17 Groundwater Level (ft btoc) 9.68	2/28/17 Groundwater Elevation (ft amsl) 534.13	3/8/17 Groundwater Level (ft btoc) 10.01	3/8/17 Groundwater Elevation (ft amsl) 533.80
Well ID DP001/TW01 DP002/TW02	Total Depth (ft bgs) 27 25	Ground Surface Elevation (ft amsl) 540.59 543.81	Riser Elevation (ft amsl) 543.81 546.70	2/8/17 Groundwater Level (ft btoc) 12.18 10.25	2/8/17 Groundwater Elevation (ft amsl) 531.63 536.45	2/28/17 Groundwater Level (ft btoc) 9.68 9.87	2/28/17 Groundwater Elevation (ft amsl) 534.13 536.83	3/8/17 Groundwater Level (ft btoc) 10.01 11.59	3/8/17 Groundwater Elevation (ft amsl) 533.80 535.11
Well ID DP001/TW01 DP002/TW02 DP003/TW03	Total Depth (ft bgs) 27 25 22	Ground Surface Elevation (ft amsl) 540.59 543.81 543.13	Riser Elevation (ft amsl) 543.81 546.70 546.09	2/8/17 Groundwater Level (ft btoc) 12.18 10.25 7.69	2/8/17 Groundwater Elevation (ft amsl) 531.63 536.45 538.40	2/28/17 Groundwater Level (ft btoc) 9.68 9.87 8.52	2/28/17 Groundwater Elevation (ft amsl) 534.13 536.83 537.57	3/8/17 Groundwater Level (ft btoc) 10.01 11.59 8.51	3/8/17 Groundwater Elevation (ft amsl) 533.80 535.11 537.58
Well ID DP001/TW01 DP002/TW02 DP003/TW03 DP004/TW04	Total Depth (ft bgs) 27 25 22 25	Ground Surface Elevation (ft amsl) 540.59 543.81 543.13 537.69	Riser Elevation (ft amsl) 543.81 546.70 546.09 540.63	2/8/17 Groundwater Level (ft btoc) 12.18 10.25 7.69 5.68	2/8/17 Groundwater Elevation (ft amsl) 531.63 536.45 538.40 534.95	2/28/17 Groundwater Level (ft btoc) 9.68 9.87 8.52 6.65	2/28/17 Groundwater Elevation (ft amsl) 534.13 536.83 537.57 533.98	3/8/17 Groundwater Level (ft btoc) 10.01 11.59 8.51 5.47	3/8/17 Groundwater Elevation (ft amsl) 533.80 535.11 537.58 535.16
Well ID DP001/TW01 DP002/TW02 DP003/TW03 DP004/TW04 DP005/TW05	Total Depth (ft bgs) 27 25 22 25 20	Ground Surface Elevation (ft amsl) 540.59 543.81 543.13 537.69 542.52	Riser Elevation (ft amsl) 543.81 546.70 546.09 540.63 545.87	2/8/17 Groundwater Level (ft btoc) 12.18 10.25 7.69 5.68 8.46	2/8/17 Groundwater Elevation (ft amsl) 531.63 536.45 538.40 534.95 537.41	2/28/17 Groundwater Level (ft btoc) 9.68 9.87 8.52 6.65 9.01	2/28/17 Groundwater Elevation (ft amsl) 534.13 536.83 537.57 533.98 536.86	3/8/17 Groundwater Level (ft btoc) 10.01 11.59 8.51 5.47 8.78	3/8/17 Groundwater Elevation (ft amsl) 533.80 535.11 537.58 535.16 537.09
Well ID DP001/TW01 DP002/TW02 DP003/TW03 DP004/TW04 DP005/TW05 DP006/TW06	Total Depth (ft bgs) 27 25 22 25 20 27	Ground Surface Elevation (ft amsl) 540.59 543.81 543.13 537.69 542.52 540.99	Riser Elevation (ft amsl) 543.81 546.70 546.09 540.63 545.87 543.81	2/8/17 Groundwater Level (ft btoc) 12.18 10.25 7.69 5.68 8.46 7.20	2/8/17 Groundwater Elevation (ft amsl) 531.63 536.45 538.40 534.95 537.41 536.61	2/28/17 Groundwater Level (ft btoc) 9.68 9.87 8.52 6.65 9.01 7.92	2/28/17 Groundwater Elevation (ft amsl) 534.13 536.83 537.57 533.98 536.86 535.89	3/8/17 Groundwater Level (ft btoc) 10.01 11.59 8.51 5.47 8.78 7.39	3/8/17 Groundwater Elevation (ft amsl) 533.80 535.11 537.58 535.16 537.09 536.42

 Table 5-14. Groundwater Elevations, Former St. Louis Ordnance Plant OU1

- **Legend** Well Location
- PRB
- Groundwater Elevation Contour
- Estimated Groundwater Flow Direction
 Site Boundary

1 inch = 75 feet

Figure 5-36 Groundwater Contours - January 23, 2017 Allegany Ballistics Laboratory Site 5 Rocket Center, WV

Legend		Δ	
Well Location		Δ	
PRB		N	
 Groundwater Elevation Contour Estimated Groundwater Flow Direction Site Boundary 	0	37.5	75 Feet
	1 inch	า = 75	feet

Figure 5-37 Groundwater Contours - February 15, 2017 Allegany Ballistics Laboratory Site 5 Rocket Center, WV

Legend ♥ Well Location PRB	$\Delta_{\mathbf{N}}$
 Groundwater Elevation Contour Estimated Groundwater Flow Direction Site Boundary 	0 37.5 75
	1 inch = 75 feet

\brookside\GIS_SHARE\ENBG\00_Proj\N\Navy\CLEAN\MULTI_REGION\ZVI\MapFiles\Results\ABL\Figure 5-16 AB-X - GW Contours - Mar2017_Update.mxd8/16/2017AR055181

Figure 5-38 Groundwater Contours - March 9, 2017 Allegany Ballistics Laboratory Site 5 Rocket Center, WV

Legend **ZVI Monitoring Well**

- Treatment Area
- Temporary Well Location
- Groundwater Elevation Contour (ft amsl)
 Soil Mixing Treatment Areas
- Installation Boundary

1 inch = 10 feet Imagery Source: ©2016, Esri

ch2m:

Legend ZVI Monitoring Well

- Treatment Area
- Temporary Well Location
 Groundwater Elevation Contour (ft amsl)
 Soil Mixing Treatment Areas
- Installation Boundary

1 inch = 10 feet Imagery Source: ©2016, Esri

Legend

 Temporary Well Location
 Groundwater Elevation Contour (ft amsl) Soil Mixing Treatment Areas

1 inch = 10 feet Imagery Source: ©2016, Esri

02/28/2017 Former St. Louis Ordnance Plant OU1 St. Louis, Missouri

Legend

Temporary Well Location
 Groundwater Elevation Contour (ft amsl)
 Soil Mixing Treatment Areas
 Installation Boundary

1 inch = 10 feet Imagery Source: ©2016, Esri Figure 5-42 Groundwater Contours MW-119 Omitted 03/08/2017 Former St. Louis Ordnance Plant OU1 St. Louis, Missouri

Legend **ZVI Monitoring Well**

- Treatment Area
- Temporary Well Location
- Groundwater Elevation Contour (ft amsl) Soil Mixing Treatment Areas
- Installation Boundary

1 inch = 10 feet Imagery Source: ©2016, Esri

Legend ZVI Monitoring Well

- Treatment Area
- Temporary Well Location
- Groundwater Elevation Contour (ft amsl)
 Soil Mixing Treatment Areas
- Installation Boundary

1 inch = 10 feet Imagery Source: ©2016, Esri

		Test 1 (Falling Head)			Tes	t 2 (Rising Hea	Hydraulic Conductivity		
Well	Test Date	Analysis	Hydraulic Conductivity		Analysis	Hydraulic C	Conductivity	Summary	
		Method ¹	(cm/s)	(ft/d)	Method ¹	(cm/s)	(ft/d)	(cm/s)	(ft/d)
DP001 Run #1	1/30/2017	Bouwer-Rice	5E-06	0.01				5E-06	0.01
DP001 Run #2	1/30/2017	Bouwer-Rice	5E-06	0.01					
DP002 Run #1	1/30/2017	Bouwer-Rice	9E-07	0.003				2E-06	0.005
DP002 Run #2	1/30/2017	Bouwer-Rice	3E-06	0.01					
DP003	2/1/2017	Bouwer-Rice	1E-06	0.003				1E-06	0.003
DP004	2/1/2017	Bouwer-Rice	1E-06	0.003				1E-06	0.003
DP005 Run #1	1/30/2017	Bouwer-Rice	4E-06	0.012				3E-06	0.01
DP005 Run #2	1/30/2017	Bouwer-Rice	3E-06	0.008					
DP006	1/31/2017				Bouwer-Rice	6E-06	0.02	6E-06	0.02

Table 5-15. Slug Testing Results, Former St. Louis Ordnance Plant OU1

Notes:

¹ Bouwer-Rice using normalized head ranges to address ambiguity in the recovery curves. This method is recommended to improve the reliability of data analysis where possible.

-- test was not completed

cm/s = centimeters per second; ft/d = feet per day

AQTESOLV Professional version 4.50.002 was used for this evaluation.
6.0 PERFORMANCE ASSESSMENT

This section presents the assessment of the long-term performance of the ZVI remedies evaluated as part of this project, as determined by the results of data collection and assessment against performance criteria established in the Demonstration Plan (NAVFAC EXWC and CH2M, 2016) and outlined in Section 3 of this report. These observations represent conditions observed 11 years following treatment at the ABL site and 5 years following treatment at the former St. Louis Ordnance Plant site.

6.1 GEOCHEMICAL AND CHEMICAL IMPACTS OF ZVI TREATMENT

At ABL Site 5, notable changes in site groundwater chemistry were observed associated with the presence of the ZVI PRB. Increases in pH and decreases in ORP and DO were observed downgradient of the PRB, relative to upgradient groundwater. TOC, alkalinity, hardness, and sulfate decreased across the two monitoring transects. Methane, ethane, and ethene concentrations increased across the transects. Additionally, a "clean front" of non-detected VOC results was observed in one of the two transects sampled. Decreases of calcium, magnesium, and strontium were observed downgradient. Iron, barium, sodium, and silicon concentrations increased from upgradient to downgradient across the transects. Overall, data indicate continued geochemical reactions resulting from the PRB.

At the former St. Louis Ordnance Plant, changes in site groundwater chemistry were also observed associated with the ZVI treatment. DO and ORP were considerably lower within the treatment area than outside of it and pH was considerably higher. ORP levels were still within the optimal range for ZVI treatment (<400 mV) in one treatment area sample. Sulfate concentrations were lower within the treatment area while chloride, methane, ethane, and ethene concentrations were higher. Concentrations of calcium, magnesium, manganese, barium, and strontium were highest in the upgradient portion of the mixing area. Overall, data indicate ongoing geochemical reactions resulting from the treatment and likely, conditions favorable for abiotic reduction of site contaminants.

6.2 MINERALIZATION OF ZVI

At the ABL Site 5 upgradient ZVI/aquifer interface, iron particles were shown through electron micrographs and x-ray mapping to have a mottled appearance indicative of corrosion. Additionally, coatings of calcium carbonate and iron oxides were observed on the iron particles, with the thickness of the coating decreasing inward from the upgradient ZVI/aquifer interface. Native quartz grains also were cemented together by iron oxide and calcium carbonate. None of the coatings of the quartz particles were significant enough to greatly influence hydraulic characteristics of the wall. XRD indicated the presence of iron oxides (magnetite and hematite). AVS data were also consistent with presence of iron sulfide, which is thought to provide secondary reactivity to the PRB. Overall, mineralogical results indicate weathered ZVI with some passivation due to precipitation of coatings (e.g., calcium carbonate) and transformation of ZVI into less reactive minerals, such as iron carbonate, to at least 0.5 foot into the PRB (deepest core sample analyzed). Decreases in calcium and alkalinity as groundwater passes through the PRB. However, despite the passivation observed, secondary reactivity is likely occurring based on the presence of iron sulfide. Additionally, because cores collected on the downgradient side of

the wall were not analyzed, it is also possible that iron closer to the downgradient side was less corroded and had less significant precipitate coating.

At the former St. Louis Ordnance Plant site, XRD, energy dispersive line scans, and XANES of a limited number of samples indicated no identifiable ZVI remaining in cores from the mixing area. Iron identified was primarily magnetite and goethite. SEM micrographs did not indicate the presence of precipitates on the transformed (to magnetite and goethite) iron particles. Particle size indicated remaining particles showed considerable reduction in size relative to the original ZVI product. Overall, results indicate weathering of the ZVI.

6.3 REACTIVITY OF ZVI

Due to limited OHSU resources, reactivity was not assessed for the ABL Site 5 cores.

Magnetic and gravimetric analysis as well as acidification and hydrogen generation results for St. Louis Ordnance Plant OU1 indicated a small amount of remaining ZVI (less than 0.04 percent) in the three cores from two sample locations analyzed from the mixing area at the site. Total magnetic material observed in these samples was between 0.2- and 0.7-percent, consistent with the range of ZVI percentages measured in confirmation samples during the 2012 mixing. Remaining iron observed in the mixing area cores was believed to primarily be in the form of magnetite. Resazurin testing indicated higher reduction potential for the treated source area core material relative to background, supporting that the magnetite is facilitating secondary reactivity in the treatment area. Because of the limited number of analyzed samples, it is unknown if more ZVI might be present in other areas of the mixing zone not sampled. It is possible that the cores somehow did not collect enough ZVI in a heterogeneously distributed application, particularly because these findings do not correspond well with other field findings which are indicative of continued reactivity of the ZVI.

6.4 MICROBIAL COMMUNITY CHANGES

At ABL Site 5, concentrations of anaerobic dechlorinators were generally lower just downgradient of the PRB than they were immediately upgradient, indicating that groundwater downgradient of the PRB has conditions less favorable for proliferation of dechlorinating microbes (such as lower VOC concentrations). Genes involved in aerobic direct metabolism and cometabolism of VC were either not identified or were present in spatial patterns that did not support a significant impact of the PRB on microbes carrying these genes. Sulfate reducers and methanogens were detected consistently across the site, with no notable changes due to the presence of the PRB. NGS data indicate the presence of sulfur-oxidizing bacteria (*Sulfurimonas*) just downgradient of the wall, but not in other portions of the site, which may be a result of the release of reduced sulfur species in groundwater from the PRB. While this, in conjunction with the geochemical data summarized above, supports continued reactivity in the wall and impacts to the surrounding microbial community, overall, data do not support facilitation of significant microbiological dechlorination processes due to reducing conditions created by the PRB.

At former St. Louis Ordnance Plant OU1, concentrations of reductive dechlorinators were one to three orders of magnitude higher within the mixing area and downgradient of the mixing area than they were cross-gradient or upgradient, indicating that the reducing conditions created by the ZVI may be facilitating reductive dechlorination. However, genes involved in complete dechlorination of VC by *Dehalococcoides* were either not detected, or present at very low levels (<1 cell/mL). Genes associated with direct metabolism and/or cometabolism of VC were present

throughout the site, indicating a complete dechlorination pathway may be present despite the absence of functional genes involved in reductive dechlorination of VC. NGS data also indicated changes in the microbial population due to the ZVI, particularly in the downgradient portion of the treatment area, with decreasing cell counts of the phylum *Proteobacteria* and genus *Pseudomonas* from the upgradient location moving downgradient into the treatment area in addition to increases in the phylum *Firmicutes* and the genera *Alkaliphilus, Sulfuricurvum*, and *Methylotenera*. In conjunction with the geochemical data, which indicate a highly aerobic environment surrounding the mixing area, microbial data from the former St. Louis Ordnance Plant support that the ZVI treatment has created reducing conditions conducive to partial reductive dechlorination in an environment where these processes would otherwise be unlikely. In tandem with the existing/ongoing potential for VC metabolism and cometabolism, this may allow for complete biological destruction of site contaminants of concern. Potential for reductive dechlorination through the recently discovered cerA gene was not evaluated due to the timing of that discovery relative to the schedule for this project.

6.5 GROUNDWATER FLOW CHANGES

At ABL Site 5, there was no mounding observed behind the wall or apparent migration around the wall that would indicate plugging due to excessive mineralization of the iron. The groundwater potentiometric surface was observed to be toward the northwest, which is offset from the contaminant plume direction, to the north. This is likely due to the anisotropy of the alluvial sediments in the area. The landfill and resultant groundwater contaminant plume are located in a former meander bend of the North Branch Potomac River. The depositional environment (i.e., paleochannel) likely has more influence on the contaminant migration then the groundwater potentiometric gradient. Evaluating the depositional geomorphology was beyond the scope of this study.

At the former St. Louis Ordnance Plant OU1, the groundwater flow evaluation was complicated by the slightly different screen interval of existing well MW-119 relative to the new wells. The slug test data from within the mixing area and surrounding area indicate similar hydraulic conductivity values, ranging from 0.003 to 0.01 foot per day indicating minimal impacts to hydraulic conductivity from mixing activities.

The two ZVI application sites studied did not indicate any discernible reduction in groundwater flow through the ZVI application area/barrier.

6.6 **BEST PRACTICES**

Best practices based on these data are presented in Table 2-3.

7.0 COST ASSESSMENT

Because the scope of this project involved evaluation of remedies that have already been implemented, no new information on cost of implementing ZVI remedies was collected as part of this project. However, a thorough review of costs of ZVI remedies is available in the following documents:

- ESTCP. 2010. Cost and Performance Report Emulsified Zero-valent Iron Nano-scale Iron Treatment of Chlorinated Solvent DNAPL Source Areas (ER-200431). September.
- NAVFAC. 2012. Permeable Reactive Barrier Cost and Performance Report. March.
- NAVFAC. 2008. Cost and Performance Report for a Zero Valent Iron Treatability Study at Naval Air Station, North Island. July.

8.0 IMPLEMENTATION ISSUES

Because the scope of this project involved evaluation of remedies that have already been implemented, no new information on implementability was collected. However, a thorough review of implementation of ZVI remedies is available in the following documents:

- Interstate Technology and Regulatory Council (ITRC). 2005. *Permeable Reactive Barriers: Lessons Learned/New Directions*. February.
- ITRC. 2011. Permeable Reactive Barrier: Technology Update. June.
- Powell, R. M., P. D. Powell, and R. W. Puls. 2002. *Economic Analysis of the Implementation of Permeable Reactive Barriers for Remediation of Contaminated Groundwater*. EPA/600/R-02/034. U.S. Environmental Protection Agency.

9.0 **RECOMMENDATIONS**

9.1 **BEST PRACTICE RECOMMENDATIONS**

The results of this study were used to develop best practices to be used for ZVI treatment design and performance monitoring. These best practices are provided in **Table 9-1**.

Category	Observation	Recommended Best Practice
Pre-Remedy Selection	At sites with high dissolved oxygen (DO) and oxidation/reduction potential (ORP), natural reductant demand may more-rapidly deplete zero-valent iron (ZVI), impacting remedy effectiveness	ORP and DO should be carefully considered prior to selection of ZVI remedies. In cases where DO and ORP are very high, other remedies more compatible with oxidizing conditions may be more effective. Currently, natural oxidant demand testing is common when assessing in situ chemical oxidation remedies, but the natural reductant demand of aquifers is not often assessed prior to implementing chemical reduction remedies.
	At permeable reactive barrier (PRB) sites, contamination is often observed downgradient of the wall following installation. Additionally, flow direction may be seasonably variable resulting in the PRB not remaining perpendicular to groundwater flow at times.	When feasible, PRB design should be completed after installation and sampling of monitoring wells downgradient, upgradient, and cross-gradient of the proposed PRB. This will allow for optimization of wall position.
	At sites where contaminant concentrations were delineated using DPT, groundwater geochemistry and field parameter data were often not available for the period prior to remedy implementation in the treated area.	Collect some baseline geochemistry and field data in the highest concentration areas to assist in the evaluation of treatment effectiveness once iron treatment is employed.
Remedy Implementation, Performance Monitoring, and Optimization	Lack of pre-implementation geochemical data in the immediate downgradient vicinity of an PRB installed within the groundwater contaminant plume limits the assessing the PRB's performance due to effect of desorption/diffusion of contaminants.	Collect two rounds of geochemical data prior (within a year) to installation of ZVI application in the area 5-15 feet downgradient of the planned application. Plan on a site visit by the Remedial Design team 90-95 percent submission to layout ZVI application align/area as closely as possible so that permanent or temporary groundwater monitoring wells can be installed.
	Effectiveness is highly dose-related (ZVI to soil ratio) with mixing areas at which doses were >1% generally achieving the best results	While doses of 0.5% may be sufficient at some sites, designs of $>1\%$ are generally effective.

Table 9-1.	Recommended	Best Practices
14010 / 11	necommentaca	Dest I l'actices

Category	Observation	Recommended Best Practice
	While aquifer ORP was often consistent with conditions favorable for dechlorinating microbes, such as Dehalococcoides sp., these microbes were not present in abundant concentrations and/or with ideal functional genes downgradient of or within treatment areas at either field study site, possibly as a result of generally low organic carbon concentrations or sub-optimal native microbial populations.	If a treatment train is desired in which anaerobic conditions created by ZVI are intended to facilitate reductive dechlorination downgradient of the ZVI treatment area, addition of organic carbon or bioaugmentation amendments may be necessary.
	At the St. Louis site, ZVI was found to have converted to magnetite over time in the small number of samples evaluated. At the ABL PRB site, iron was present primarily in the form of magnetite and hematite. Iron particles at the upgradient interface exhibited some mineral precipitates on their surfaces, primarily calcium carbonate and iron oxide. Minimal ZVI was observed in the few samples collected from St. Louis 5 years after treatment, though sample cores were not likely representative of the entire mixing area and the remaining magnetite still facilitated reductive activity based on reactivity analysis. Geochemical and microbial parameters at both sites were supportive of continued activity of the iron over time. While some signs of ZVI depletion were evident based on reactivity testing and mineralology testing of the limited sample set, geochemistry indicated highly reducing conditions, indicating the potential for more ZVI to be present in areas not sampled.	Because magnetite may still facilitate abiotic degradation of chlorinated volatile organic compounds, conversion of ZVI to magnetite is not entirely inconsistent with continued treatment. Additionally, build-up of precipitates which would inhibit reactivity at the ABL site was more common in portions of the wall at the upgradient interface, likely allowing for continued reactivity within the wall. However, monitoring of reactivity using redox indicators, such as resazurin, or batch reactors may be useful in determining the need for enhancements to mature iron remedies. Additionally, if microscopic analysis is completed, a larger sample set may be necessary to adequately assess the presence/absence of remaining ZVI.

Table 9-1. Recommended Best Practices

9.2 **RECOMMENDATIONS FOR FURTHER STUDY**

Because of the level of heterogeneity observed between data points, additional collection of iron and analysis for reactivity and mineralogy is recommended to further assess the longevity of ZVI at the Former St, Louis Ordnance Plant and possibly one of the other sites evaluated in the desktop study. The desktop review data indicated only one site, White Oak, Site 13, still had ORP values consistent with abiotic reactions. However, an ORP of less than -400 mV was observed at the St. Louis Site in a new monitoring point added as part of this investigation. This highlights the potential for heterogeneous conditions at ZVI treatment sites and the need for a robust data set to evaluate such conditions.

Because no acetylene was observed at the field test sites, additional collection using passive samplers is recommended. Trend monitoring of acetylenotrophic microbes (such as *Firmicutes*) might also be evaluated as a potential indicator of passivation of ZVI. It was unclear from the data collected as part of this study whether the ethenotrophs and methanotrophs identified in the ZVI mixing zone at the St. Louis Ordnance Plant are active in aerobic microenvironments within the mixing area, dormant, or present and tolerant of the anaerobic conditions. Performance of mRNA transcriptional analysis on site samples would be useful to evaluate this unknown. The presence of biologically-active aerobic microzones in a highly reducing area such as a ZVI mixing zone would support the likely widespread presence of these microzones at other, less reducing sites.

10.0 REFERENCES

AGVIQ and CH2M HILL, Inc. (CH2M). 2006. Final Pre-construction Work Package – Site 5 Groundwater, Allegany Ballistics Laboratory, Rocket Center, West Virginia. March.

CH2M HILL, Inc. (CH2M). 2003. Final Focused Remedial Investigation for Site 5, Groundwater, Surface Water, and Sediment, Allegany Ballistics Laboratory, Rocket Center, West Virginia. August.

CH2M. 2012. Interim Remedial Action Completion Report, Operable Unit 1, St. Louis Ordnance Plant Former Hanley Area, St. Louis, Missouri. September.

CH2M. 2013. Final Comprehensive Fourth Five-Year Review, Allegany Ballistics Laboratory, Rocket Center, West Virginia. August.

CH2M HILL, Inc. [CH2M] and Naval Facilities Engineering and Expeditionary Warfare Center [NAVFAC EXWC]. 2016. *Analysis of Long-term Performance of Zero-valent Iron Treatment at Nine Sites*. June 30. Presented in Appendix A.

Environmental Security Technology Certification Program (ESTCP). 2002. Final Report, Evaluating the Longevity and Hydraulic Performance of Permeable Reactive Barriers at Department of Defense Sites. April.

Inagaki, F.; Takai, K.; Kobayashi, H.; Nealson, K. H.; and Horikoshi, K. 2003. "Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ɛ-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough." Int. J. Syst. Evol. Microbiol. 53 1801–1805. 10.1099/ijs.0.02682-0.

Interstate Technology and Regulatory Council (ITRC). 2005. *Permeable Reactive Barriers: Lessons Learned/New Directions*. February.

ITRC. 2011. Permeable Reactive Barrier: Technology Update. June.

Liang, Y.; Liu, X.; Singletary, M.; Wang, K.; and Mattes, T. 2017. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. *Environmental Science and Technology*. 5(21) 12164-12174

Naval Facilities Engineering Command (NAVFAC) Engineering Service Center. 2005. Contract Report CR-05-007-ENV. Cost and Performance Report Nanoscale Zero-valent Iron Technologies for Source Remediation. September.

Naval Facilities Engineering and Expeditionary Warfare Center (NAVFAC EXWC) and CH2M HILL, Inc. (CH2M). 2016. *Demonstration Plan, Analysis of Long-Term Performance of Zero-valent Iron Applications, Project #ER-201589-PR*. December.

Paul, C., McNeil, M., Beck, F., Clark, P., Wilkin, R. and Puls, R. (2003). *Capstone Report on the Application, Monitoring, and Performance of Permeable Reactive Barriers for Ground-water Remediation, Volume 2: Soil and Ground-water Sampling*, EPA Report, EPA/600/R-03/045b, 145 pp.

Ravel, B. and Newville, M. 2005. Athena, Artemis, Hephaestus: Data Analysis for X-ray Absorption Spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, v. 12, p. 537-541.

Sweeny, Keith H. 1980. *Treatment of Reducible Halohydrocarbon Containing Aqueous Stream*. U.S. Patent 4382865 A.

United States Army Corps of Engineers (USACE). 2010. Proposed Plan, St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri. November.

United States Environmental Protection Agency (USEPA). 1994. Record of Decision Summary, Somersworth Sanitary Landfill Superfund Site. June.

USEPA. 1998. Permeable Reactive Barrier Technologies for Contaminant Remediation. September.

USEPA. 2001. Comprehensive Five-year Review Guidance. June.

Wilkin, Richard T.; Puls, Robert W.; and Sewell, Guy W. 2003. "Long-Term Performance of Permeable Reactive Barriers Using Zero-Valent Iron: Geochemical and Microbiological Effects." *Groundwater* Volume 41, Issue 4, Pages 493–503. July.

Wilkin, R.T. and Bischoff, K.J. 2006. Coulometric *Determination of Total Sulfur and Reduced Inorganic Sulfur Fractions in Environmental Samples*. Talanta, v. 70, p. 766-773

Yang, Y; Higgins, S; Yan, J; Simsir, B; Chourey, K; Ramsunder, I; Hettich, R; Baldwin, B; Ogles, D; and Loffler, F. 2017. "Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes." *ISME Journal*, Volume 11, Pages 2767-2780. August.

Zhang, Yousheng and Gillham, Robert W. 2005. "Effects of Gas Generation and Precipitates on Performance of Fe^o PRBs." *Groundwater* Volume 43, Issue 1, Pages 113–121. January.

Appendix A Analysis of Long-term Performance of Zero-valent Iron Treatment at Nine Sites

Analysis of Long-Term Performance of Zero Valent Iron Treatment at Nine Sites

PREPARED FOR:	Environmental Security Technology Certification Program
PREPARED BY:	Laura Cook/CH2M HILL, Dean Williamson/CH2M HILL, Kyle Kirchner/NAVFAC EXWC
DATE:	June 30, 2016
REVISION NO.:	1

This technical memorandum describes the results of a desk-top evaluation of nine sites at which in-situ groundwater remedies or treatments have been performed with zero valent iron (ZVI) to address chlorinated volatile organic compounds (VOCs). This work has been completed in support Environmental Security Technology Certification Program (ESTCP) Project #ER-201589-PR, Analysis of Long-Term Performance of Zero-valent Iron Applications. Specific objectives of the desktop evaluation are to:

- Evaluate trends in redox potential, dissolved oxygen (DO), and geochemical indicators of oxidation/reductive state from the baseline round of treatment to the most recent data available
- Evaluate changes in inorganic concentrations following treatment where data were available
- Evaluate contaminant concentration trends (parent chemical and daughter products) in consideration of geochemical and redox state to determine longevity of ZVI efficacy and to evaluate the degree to which contaminant degradation/destruction is occurring through reductive β-elimination or through sequential hydrogenolysis
- Compare designs and treatment outcomes of each implemented action and identify any best practices for future treatment
- Review groundwater flow data to determine the potential for preferential flow around treated areas due to
 reduced hydraulic conductivity and "plugging" from mineral precipitation in the pore spaces of the treatment
 zones
- Evaluate the presence or absence of a "clean front" on the downgradient side of Permeable Reactive Barrier (PRB) Sites
- Identify two sites (one PRB site and one injection site) to be carried forward into the field portion of the project

Sites included in this analysis are as follows:

- PRB Sites
 - Allegany Ballistics Laboratory (ABL) Site 5, Rocket Center, West Virginia
 - Boeing Michigan Aeronautical Research Center (BOMARC) OT-16, Joint Base McGuire-Dix-Lakehurst, New Hanover Township, New Jersey
- Injection Sites
 - St. Julien's Creek Annex (SJCA) Site 21, Chesapeake, Virginia
 - Naval Surface Warfare Center (NSWC) White Oak Site 13, White Oak, Maryland

- Savannah Air National Guard (SANG) Base, Site 8, Garden City, Georgia
- Soil Mixing Sites
 - Arnold Air Force Base (AFB), Solid Waste Management Unit (SWMU) 16, Manchester, Tennessee
 - United States Army Corps of Engineers (USACE) St. Louis Ordnance Plant Operable Unit I, St. Louis, Missouri
 - Marine Corps Base (MCB) Camp Lejeune Site 89, Jacksonville, North Carolina
 - Naval Support Facility (NSF) Indian Head Site 17, Indian Head, Maryland

Evaluation criteria for this analysis are included in **Table 1**. All data or parameters listed in **Table 1** were not collected at all sites. However, data available for review were evaluated in accordance with performance criteria identified in the table.

Table 1. Performance Objectives and Criteria.

Performance Objective	Data Requirements	Performance Criteria
Determine long-term effectiveness of ZVI treatment for achieving site specific remedial objectives	VOCs	Site-specific VOC data indicate the degree of contaminant destruction/degradation across the ZVI treatment areas. Trends in daughter products also allow for a determination of the degree to which parent compound concentration reduction is due to β -elimination vs. reductive dechlorination
	рН	The production of the hydroxyl radical during the corrosion reaction between iron and water results in higher pH across the ZVI treatment area. Higher pH conditions can result in the precipitation of certain carbonate and other compounds within the iron system.
Secondary indicators of ZVI performance.	Oxidation Reduction Potential (ORP) and dissolved oxygen (DO)	Addition of ZVI to an aquifer system results in rapid consumption of oxygen and a resultant decrease in ORP and DO, due to the following reaction: $2Fe^{\circ} + O_2 + 2H_2O \rightarrow 2Fe^{2*} + 4OH^2$ Therefore, decreasing ORP and DO are expected within and downgradient of iron treatment zones
Determine if ZVI application changed groundwater flow and/or permeability	Groundwater potentiometric data Hydraulic conductivity data	Available static water levels over time and comparison of groundwater potentiometric maps. Hydraulic conductivity data from aquifer tests can be used to evaluate changes in permeability due to mineralization within the ZVI treatment zones.

|--|

Performance Objective	Data Requirements	Performance Criteria
	Total Organic Carbon (TOC)	Organic carbon compounds may have a wide range of effects on groundwater geochemistry, such as providing electron donors for biological reactions or may act as electron shuttles facilitating redox reactions. Higher TOC levels indicate greater potential for these effects to occur. Depending on PRB construction/ZVI injection methods, TOC concentrations may also provide an indicator of guar residuals used during PRB construction.
Evaluate the extent of the biogeochemically altered zone and potential influence on VOC degradation	Total and Dissolved Metals	Due to changes in pH, redox potential, iron corrosion, and resultant mineral precipitation, ZVI is a long-term sink for metals such as calcium, manganese, and magnesium. Increases in dissolved iron may be observed downgradient of iron treatment areas, as a result of release of iron from native soils due to decreased redox potential in the regions downgradient of the reactive media. Decreases in arsenic within a PRB can also occur because As(III) and As(V) that are adsorbed onto ZVI surfaces are occluded by layers of corrosion products. Subsequent increases in arsenic in native soils downgradient of the ZVI treatment are also possible due to decreasing ORP and mobilization of As from native soils. Decreases in other metals concentrations may also occur within a ZVI treatment area. These decreases may occur due to hydroxide precipitation (e.g., magnesium), reductive precipitation (e.g. copper, mercury, and silver), sorption processes (e.g. zinc, cadmium, and barium), or through a combination of these processes (e.g. nickel and lead).
	Ferrous iron	Ferrous iron may be an indicator of reduction of zero valent iron, enhanced dissimilatory iron reduction, and of the redox state of the aquifer within, upgradient, and downgradient of the ZVI treatment area.
	Sulfate, Sulfide	Sulfate and sulfide are indicators of sulfate reduction and precipitation of sulfide minerals. Reduction of sulfate to sulfide, and subsequent formation of metal sulfides occurs through the reaction sequence: $2CH_2O_{(s)} + SO_4^{2^-} + 2H^+ \rightarrow H_2S_{(aq)} + 2CO_{2(aq)} + 2H_2O$ $Me^{2^+} + H_2S_{(aq)} \rightarrow MeS_{(s)} + 2H^+$ where CH ₂ O represents organic carbon and Me ²⁺ represents a divalent metal cation in solution.
	Nitrate, nitrite, and ammonia	Nitrate, nitrite, and ammonia are indicators of reduction of nitrate across the ZVI treatment zone. Reduction of NO ₃ by Fe(0) results in production of NO ₂ and subsequently ammonium through the following reaction: $4Fe(0) + NO^{3-} + 10H^+ \rightarrow 4Fe^{2+} + NH^{4+} + 3H_2O$

Table 1. Performance Objectives and Criteria.

Performance Objective	Data Requirements	Performance Criteria
	Chloride	May be used to evaluate mass balance during degradation in settings where initial chlorinated VOC concentrations were high.

1 ABL Site 5, Rocket Center, West Virginia Background

1.1 ABL Site 5 Site History

ABL is a government-owned (Navy), contractor-operated (ATK Tactical Systems Company LLC1 [ATK]), research, development, testing, and production facility for solid propellants and motors used for ammunition, rockets, and armaments. The facility is located in Mineral County, in the northeastern part of West Virginia, along the West Virginia and Maryland border (**Figure AB-1**). The facility lies between the North Branch Potomac River, to the north and west, and Knobly Mountain, to the south and east. The land surrounding the ABL facility is primarily rural agricultural and forest. ABL consists of about 1,634 acres of land with about 350 buildings. The facility is divided into two distinct operating plants, Plant 1 and Plant 2. Plant 1 is the government-owned, contractor-operated (GOCO) facility owned by the Navy and leased to ATK, by the Naval Sea Systems Command through a Facilities Use Contract. It occupies about 1,577 acres in area (including a large undeveloped area). Plant 2, owned and operated by ATK, occupies the remaining 57 acres.

Figure AB-1. ABL Site 5 Location Map

Site 5 is a former landfill on the GOCO portion of the facility. The landfill operated from the early 1960s to 1985, accepting wastes generated by ABL that were deemed to be inert. Inert wastes were defined as wastes not contaminated with explosives nor generated at an area on the facility where explosives were managed. Wastes reported to have been disposed of at Site 5 include drums that previously contained tetrachloroethene (PCE), methylene chloride, and acetone; fluorescent tubes (potential mercury source); unknown laboratory and photographic chemicals; fiberglass and other resin-coated fibers; metal and plastic machining wastes; and construction and demolition debris (CH2M HILL, 2003). The landfill covers 1.3-acres and was capped in 1997.

1.2 ABL Site 5 Physical and Hydrogeologic Setting

Site 5 is located on a terrace above the North Branch Potomac River. The Site 5 topography gently slopes toward the North Branch Potomac River then becomes steeper immediately adjacent to the river. Site 5 is underlain by unconsolidated alluvial deposits of fill, silty clay, and clayey gravel (alluvium) and predominantly shale bedrock. The depth to bedrock at Site 5 is approximately 15 to 20 feet below ground surface (bgs). Cross sections and a conceptual site model are provided in **Appendix A**. Shallow (alluvial) groundwater flows northwestward, sub-parallel to the river, eventually discharging to the river at the northern end of Site 5 (**Figure AB-2**). Alluvial groundwater velocity downgradient of the landfill was estimated to be 0.81 feet per day, or 293 feet per year.

Figure AB-2. ABL Site 5 Groundwater Contour Map (2012)

1.3 ABL Site 5 Contaminant Distribution Prior to Treatment

The highest trichloroethene (TCE) concentrations at ABL Site 5 have been in the 100 to 150 micrograms per liter (μ g/L) range, on the downgradient edge of the landfill boundary within the alluvium. The dissolved phase TCE plume in the alluvial aquifer originated within the landfill, and prior to the installation of the PRB, extended over 700 feet downgradient toward the North Branch of the Potomac River (**Figure AB-3**). While TCE has been detected in wells installed in the fractured shale bedrock, detections in these wells have been sporadic and have typically not exceeded the maximum contaminant level (MCL) of 5 μ g/L. TCE daughter products (cis-1,2-dichloroethene [cis-1,2-DCE] and vinyl chloride [VC]) have also been detected in groundwater, but have not exceeded their respective MCLs of 70 and 2 μ g/L (CH2M HILL, 2013a).

ANALYSIS OF LONG-TERM PERFORMANCE OF ZERO VALENT IRON TREATMENT AT NINE SITES

Figure AB-3. ABL Site 5 TCE Plume, Pre-Treatment

1.4 ABL Site 5 Treatment Area and Wells Included in Desktop Evaluation

In June 2006, in order to address the migration of TCE from the landfill towards the Potomac River, a 200-foot long, 2-foot wide, and 17 to 21.5-foot deep PRB was installed through the alluvial aquifer and keyed into the

bedrock (**Figure AB-4**) at the downgradient edge of the landfill. A trench was excavated nominally 24 inches wide and up to 21.5 feet deep, depending on the elevation of the bedrock. As the trench was excavated, a biopolymer slurry was added to the trench for side wall support. A total of 357,000 pounds (lb) of ZVI [EnviroMetal Technologies Inc. CC-1004 (-8+50 mesh) manufactured by Connelly GPM, Inc.] were mixed with 536,000 lb of sand that was then added to the excavation for completion. The trench was then covered with a 6-ounce geotextile, and a 3-foot deep clay cap was placed over top of the barrier. While the required residence time for treatment of the ZVI only required a 7-inch thick PRB based on initial calculations (AGVIQ/CH2M HILL, 2006), the wall was constructed to be 2-feet thick due to limitation in trenching. The remedy for TCE in the portion of the plume already downgradient of the PRB at the time of installation was identified as monitored natural attenuation (CH2M HILL, 2013a).

For this study, pre- and post-treatment data from monitoring wells located upgradient, crossgradient, and downgradient of the PRB barrier were evaluated. Wells included in the review are shown on **Figure AB-4** and listed in **Table AB-1**.

Figure AB-4. ABL Site 5 Treatment Area and Wells Included in Desktop Review

Table AB-1. ABL Site 5	Wells Included in Desktop F	Review.

Upgradient	5GW13	
Crossgradient	5GW17	
Downgradient	5GW18, 5GW25, and 5GW22	

1.5 ABL Site 5 Desktop Evaluation Results

This section presents an evaluation of the results of ZVI injections with regard to treatment performance (reduction in VOC concentrations) and groundwater geochemistry changes.

1.5.1 ABL Site 5 Baseline Groundwater Conditions

Two wells immediately downgradient of the ABL PRB are currently monitored (5GW18 and 5GW25). However, baseline conditions are only available for one of these wells, as 5GW25 was installed at the time the PRB was installed. A baseline sample was collected from 5GW18 in October 2005.

The results of that sample (**Table AB-1**) indicate the following baseline groundwater geochemical conditions immediately downgradient of the PRB:

- DO was not detected; however, these results are considered inconclusive, as more than half of the results were reported as "0 milligrams per liter (mg/L)" for this monitoring round
- pH was 6.13
- ORP was 128 millivolts (mV)
- Methane was detected at a concentration of 38 J μg/L.
- Sulfate was detected at a concentration of 43 mg/L.
- TOC was not detected (less than the detection limit of 1.6 B mg/L)
- Alkalinity (as CaCO₃) was detected at a concentration of 180 mg/L
- Dissolved iron and manganese concentrations were 1,715 μg/L and 394 μg/L, respectively (these data are from 2001 because dissolved metals were not analyzed in 2005)
- Ammonia was not detected (0.1 U mg/L)
- Bicarbonate was detected at a concentration of 180 mg/L
- Chloride was detected at a concentration of 16 mg/L
- Nitrate was detected at a concentration of 0.28 mg/L
- Nitrite was not detected (0.02 U μg/L)
- TCE was detected at a concentration of 80 μg/L
- Cis-1,2-DCE was detected at a concentration of 12 J μ g/L
- VC was not detected

Based on these values, baseline groundwater at the site appears oxic to slightly reducing, with some evidence of iron and manganese reduction occurring. Significant reductive dechlorination was not occurring as evidenced by the low concentrations of daughter projects. Strongly reducing conditions do not appear to have been present to a significant degree for baseline conditions in wells downgradient of the PRB location.

One well immediately upgradient of the PRB (5GW13) was sampled during the October 2005 baseline monitoring event. One crossgradient well near-by the PRB (5GW17) was also evaluated. Results of those samples indicate the following baseline conditions.

- Dissolved oxygen was not detected, however, these result appear suspect, as all results were the same for this monitoring round (0 mg/L)
- pH ranged from 5.69 to 6.08
- ORP ranged from -199.6 mV to -182.6 mV

- Methane ranged from 34 mg/L to 180 J μg/L.
- Sulfate ranged from 200 mg/L to 280 mg/L.
- Total organic carbon ranged from not detected (1.4 B mg/L) to 2.1 mg/L
- Alkalinity (as CaCO₃) ranged from 71 mg/L to 77 mg/L
- Ranges of dissolved iron and manganese were 46.2 J-1,130 μg/L and 502-8,030 μg/L, respectively
- Ammonia ranged from not detected (0.1 U mg/L) to 0.24 mg/L
- Bicarbonate ranged from 71 mg/L to 77 mg/L
- Chloride ranged from 20 to 30 mg/L
- Nitrate and nitrite were not detected
- While TCE concentrations were as high as 110 μg/L in 5GW17 in 1994, maximum 2005 concentrations of TCE and cis-1,2-DCE in 5GW13 and 5GW17 were 15 μg/L and 6.4 μg/L, respectively
- VC was not detected

Based on these indicators, upgradient and crossgradient conditions are slightly anaerobic, with some degree of iron and manganese reduction likely occurring. Strongly reducing conditions do not appear to have been present to a significant degree in upgradient/crossgradient wells for baseline conditions.

1.5.2 ABL Site 5 Evaluation of Effectiveness of PRB

With low concentrations upgradient of the PRB at installation, evaluating performance of the PRB is challenging. However, decreasing trends for TCE downgradient of the PRB have been observed at Site 5 (**Chart AB-1**). An increase in cis-1,2-DCE was also observed in well 5GW25 (**Chart AB-2**), most likely due to contaminant migration, since TCE concentrations have typically been less than reporting limits in this well. Daughter products, such as cis-1,2-DCE and VC were not detected in other wells. Data from wells downgradient of 5GW22 (5GW20 and 5GW21) were also reviewed and concentrations in these wells remained less than the MCL during through 2012, at which time they were removed from the long-term monitoring (LTM) network. VC concentrations were not graphed because concentrations were at or near the detection level.

Decreases in TCE concentrations were also observed in the upgradient and crossgradient wells, adding uncertainty to the mechanism of the decreases in contaminant trends downgradient of the PRB. Cis-1,2-DCE concentrations in upgradient and crossgradient wells have remaining stable or increased slightly. **Charts AB-3** and **AB-4** show upgradient/crossgradient TCE and cis-1,2-DCE trends.

Limited geochemistry data were collected at ABL Site 5 post-installation of the PRB. Field parameters (ORP, DO, pH) and total and dissolved iron and manganese were collected during most rounds. One post-treatment round of monitoring (2014) included methane, sulfate, and alkalinity. While nitrate/nitrite data were also collected in 2014, concentrations of nitrate/nitrite were mostly non-detect, both before and after treatment. Sulfide data was also collected during the 2014 post-treatment round and results were mostly not detected. Additionally baseline sulfide data were not collected. Due to the limited usefulness of the data, further evaluation of nitrate/nitrite, and sulfide was not completed. Time series plots for downgradient and upgradient/crossgradient wells for pH, ORP, dissolved iron, dissolved manganese, alkalinity, methane, and sulfate are shown in **Charts AB-5** through **AB-16**, respectively. DO charts are not included because most values were either 0 or were high (>3 mg/L), creating uncertainty regarding the data. The following conclusions are noted from the field and geochemical data results:

- pH generally increased in downgradient wells, as expected, based on generation of the hydroxyl radical during iron corrosion. Slight increases were also observed in upgradient/crossgradient wells.
- In wells most closely downgradient of the PRB (5GW18 and 5GW25), ORP decreased significantly in the three years immediately following PRB installation, but then returned towards baseline levels. A similar trend was not observed in upgradient/crossgradient wells.
- The dissolved iron concentration increased considerably in 5GW18 in the round immediately following PRB installation, but then subsequently decreased. No other notable trends in iron concentrations were observed.
- Dissolved manganese concentrations have decreased considerably in some of the wells both up- and downgradient of the PRB following installation.
- Alkalinity as CaCO₃ increased from baseline in the wells immediately downgradient of the PRB, consistent with generation of OH⁻ during iron corrosion.
- No meaningful trends in sulfate concentrations were observed.

• Methane concentrations have decreased in upgradient, crossgradient, and downgradient wells since installation of the PRB. However, concentrations were quite variable for this parameter during monitoring completed prior to installation, and it is likely that the shift was not related to the ZVI.

1.6 ABL Site 5 Changes in Groundwater Flow

Groundwater flow maps from June 2006 (just after PRB installation) and August 2012 are included in **Appendix B**. Based on these maps, no notable change in groundwater flow is noted due to installation of the PRB. However, because the well network is very limited, confidence in this conclusion is limited. Additionally, both sets of maps show the flow as not perpendicular to the PRB, which may impact effectiveness.

2 BOMARC OT-16 Joint Base McGuire-Dix-Lakehurst, New Hanover Township, New Jersey Background

2.1 BOMARC OT-16 Site History

BOMARC OT-16 TCE Groundwater Plume (referred to as OT-16) is located in South-Central New Jersey on 218 acres of rural land. The site is located in the Pinelands National Reserve, approximately 11 miles east of the McGuire portion of Joint Base McGuire-Dix-Lakehurst in Plumstead Township, Ocean County (**Figure OT-1**). The BOMARC missile facility was established in 1958 and housed 84 surface-to-air missiles (56 liquid-fueled and 28 solid-fueled), each equipped with a nuclear warhead. The facility was closed in 1972. During investigation of contamination associated with a fire at the site, TCE was identified in groundwater. There is no known documentation of either the usage nor the disposal of TCE at the BOMARC facility. However, TCE was widely used as a degreasing agent during the period of facility operation (USAF, 2012).

2.2 BOMARC OT-16 Physical and Hydrogeologic Setting

The BOMARC facility is located within the Pine Barrens of New Jersey. The topography at the site is approximately 170 feet above mean sea level (amsl) within the fence line and slopes downward to a relatively flat area to approximately 125 feet amsl within the Colliers Mills Wildlife Management Area. Success Branch, an annual stream, originates approximately 2,400 feet east of the BOMARC facility and generally parallels the eastern boundary of the facility, flowing north (**Figure OT-2**). The Elisha Branch and an unnamed tributary of Success Branch originate near the southeast and northeast corners of the BOMARC facility, respectively, and flow east, ultimately discharging into Success Branch; these streams are intermittent. Wetlands surround the streams (Shaw, 2013).

Figure OT-1. McGuire OT-16 Location Map

The surficial geology of the BOMARC facility is comprised of fine to coarse sands, referred to as the Cohansey Sand formation. The thickness of the Cohansey Sand at the site ranges from approximately 90 feet near the fence line to 60 feet near Success Branch (**Appendix A**). Discontinuous peat layers with thicknesses ranging from 2 feet to 4 feet have been identified in borings at the BOMARC site within the Cohansey Sand. The Cohansey Sand is underlain by the Kirkwood formation. Hydraulically, the Cohansey and Kirkwood formations are interconnected and form the Kirkwood-Cohansey aquifer (USGS, 1996). Cohansey-Kirkwood groundwater flows to the northeast and discharges to the wetlands and surface water of Success Branch and its tributaries (**Figure OT-2**). Aquifer tests conducted by the USGS indicate an average hydraulic conductivity of 75 feet per day for the Cohansey Formation at the site (USGS and AFRL, 2003). Groundwater elevation contour maps indicate a hydraulic gradient of 0.002 feet per foot (URS, 2003). On the basis of the gradient and hydraulic conductivity, groundwater velocity at the site is estimated to be 376 feet per year or about one foot per day (USGS, 2003).

Figure OT-2. McGuire OT-16 Groundwater Contour Map

2.3 BOMARC OT-16 Contaminant Distribution Prior to Treatment

The BOMARC TCE plume originates near a storm drain by the eastern fence line of the BOMARC facility (Figure OT-3). While the storm drain is thought to be the original source of the contamination (USAF, 2012), migration of TCE into the organic peat downgradient of the storm drain has resulted in numerous secondary sources of TCE due to back-diffusion from the peat material. TCE concentrations as high as 3.5 milligrams per kilogram (mg/kg) have been detected in the peat layers. Additionally, a plume originating near two other BOMARC sites (Site WP-05 and Site ST-15) merge with the OT-16 plume. The width of the TCE plume ranges from approximately 1,000 feet to 1,250 feet with a saturated thickness of approximately 45 feet (USAF, 2012). Approximately one-third of the plume is within the wetland area adjacent to Success Branch. TCE was shown in previous investigations to discharge to an approximately 375-foot stretch of Success Branch (USAF, 2012). Groundwater concentrations of TCE in the storm drain source area as well as the source area near site WP-03 have historically exceeded 1,000 µg/L. The groundwater TCE plume prior to implementation of the Remedial Action (RA) is shown on Figure OT-3. Concentrations of TCE discharging to surface water (CM-13) were greater than 1 µg/L, the New Jersey Department of Environmental Protection Surface Water Quality Standard (N.J.A.C. 7:9B; 2011a), which is the rationale for the RA at the site.

ANALYSIS OF LONG-TERM PERFORMANCE OF ZERO VALENT IRON TREATMENT AT NINE SITES

Figure OT-3. McGuire OT-16 TCE Plume

2.4 BOMARC OT-16 Treatment Area and Wells Included in Desktop Evaluation

In order to address the discharge of contamination to the wetland area, a 500-foot long, 35-foot wide PRB was installed, oriented north-south, with a minimum vertical thickness of 40 feet and a maximum thickness of 55 feet. The PRB was installed using high-pressure injection of micro-scale ZVI through 101 direct-push technology (DPT) injection points in April through October 2013. The DPT injection points had a designed radius of influence of 7.5 feet. Based on a ZVI dosage of 0.5 percent (lbs of ZVI per lb of soil), 409,209 lb of ZVI were injected into the subsurface. Injections were completed top down in 3-foot injection intervals with 264 lbs injected in each 3-ft interval. Injection pressures were continually observed throughout injections. If the injection pressure was less than 200 pounds per square inch (psi), the Ferox process involving the addition of nitrogen gas into the slurry at the injection point to atomize the slurry was utilized. Not all intervals were able to be atomized. If pressures exceeded 300 psi, adding more pressure to the formation could cause fracturing of the formation or damage to the tooling. For the shallow intervals typically less than 20 feet bgs, atomization was not used because of the close proximity to ground surface. In total, 1,112 of 1,581 intervals, or approximately 70%, were atomized. The completed PRB occupies 802,800 cubic feet (CB&I, 2015). The wall location is shown on **Figure OT-4**.

Data from 11 well couples and one deep well were evaluated in the desktop review (**Figure OT-4. Table OT-1**). Each of the well couples consists of a shallow and intermediate well (**Appendix C**). Well couples were installed upgradient of the PRB, within the PRB, downgradient of the PRB, and north and south of the PRB.

Figure OT-4. McGuire OT-16 Treatment Area and Wells to be Included in Evaluation

Upgradient	Upgradient MW20, MW21, MW26, MW27, MW32, and MW33		
PRB	MW22, MW23, MW28, MW29, MW34, and MW35		
Downgradient	MW24, MW25, MW30, MW31, MW36, and MW37		
Cross-gradient	MW39 and MW40 (north of PRB) and MW41, and MW42 (south of PRB)		
Beneath	MW38		

2.5 BOMARC OT-16 Desktop Evaluation Results

This section presents an evaluation of the performance of the ZVI PRB with regard to treatment performance (reduction in VOC concentrations) and groundwater geochemistry changes.

2.5.1 BOMARC OT-16 Baseline Groundwater Conditions

Pre-injection groundwater geochemistry data were collected in March and April 2012. An additional round of monitoring referred to as "baseline" in in *Final Pilot Test Remedial Action Construction Report, BOMARC OT-16, Trichloroethene Groundwater Plume, Joint Base McGuire For-Dix, Lakehurst, New Hanover Township, New Jersey* (CB&I, 2015) was completed in December 2013 just after completion of the PRB in October 2013. Periodic monitoring continued through February 2015. While data for a number of geochemical parameters and anions were collected after PRB installation, no data are available for these parameters before PRB installation began for wells in the vicinity of the PRB. Additionally, the baseline data for most wells was limited to field parameters. As such, this discussion focuses on available chlorinated VOC data as well as DO, pH, and ORP, which were collected during the April 2012 round of monitoring and some of the data collected during or immediately following installation of the PRB (December 2013). A summary of key field and laboratory analytical parameters is presented in **Table OT-2**.

The results indicate the following pre-treatment groundwater conditions [or conditions referred to as "prebaseline in *Final Pilot Test Remedial Action Construction Report, BOMARC OT-16, Trichloroethene Groundwater Plume, Joint Base McGuire For-Dix, Lakehurst, New Hanover Township, New Jersey* (CB&I, 2015)]:

- Average DO concentration in the area of the PRB was 4.64 mg/L.
- Average pH within the PRB was 5.31.
- Average ORP within the PRB was 19.92 mV.

Based on these results, pre-treatment geochemical conditions in the ZVI treatment area appear to be oxic. Baseline pH at the site was acidic.

Concentrations of TCE prior to installation of the PRB ranged from 1.6 μ g/L in the deep well intended to monitor potential migration under the PRB (OT16-MW38) to 120 μ g/L in the well just downgradient of the PRB (OT16-MW30). However, in the May 2013 event, which occurred after the PRB installation was initiated, the highest concentration of TCE was 190 μ g/L in a well crossgradient and to the south of the PRB (OT16-MW41). Just after completing installation of the PRB, the highest concentration was 400 μ g/L, in OT16-MW36, which is located downgradient of the PRB. OT16-MW36 and OT16-MW41 were not sampled prior to installation of the PRB. Concentrations of cis-1,2-DCE in April 2012 ranged from not detected to 5.9 μ g/L (OT16-MW30, downgradient of the planned PRB location). The highest concentration of cis-1,2-DCE in December 2013, just after the PRB was installed was 7.8 μ g/L in the sample from OT16-MW34, which is located within the PRB. VC was not detected in any baseline samples. Based on the relatively low concentrations of daughter products, significant reductive dechlorination was not occurring at the site at the time the PRB was installed or in the first couple of months following PRB installation (between October 2013 when the PRB was completed and December 2013 when the "baseline" round of sampling was complete).

2.5.2 BOMARC OT-16 Evaluation of Effectiveness of PRB

The most recent post-treatment VOC data and key field parameter results are presented in **Table OT-2**. Time series plots of TCE and cis-1,2-DCE following treatment within and downgradient of the PRB are shown in **Charts OT-1 through OT-4**. Pre-treatment data is plotted where available. While one well showed a notable decrease in concentrations within the PRB (OT16-MW34) and a smaller decrease was observed in the corresponding downgradient well, OT16-MW36, no significant change in VOC concentrations was observed in other wells. There were no decreases in concentrations in crossgradient wells or the well that was intended to monitor migration beneath the PRB. No significant generation of daughter products was noted in any wells (VC remained non-detect following treatment).

Data presented in **Table OT-2** indicates that the ZVI treatment caused minimal changes in monitored field parameters in groundwater within the PRB and downgradient, cross-gradient, and beneath it. Time series plots for pH, ORP, DO, and chloride are shown in **Charts OT-5 through OT-10.** The following conclusions are noted from the field data results.

- pH increased over the monitoring period in only two of the PRB monitoring wells (OT16-MW23 and OT16-MW35), but increased slightly in most downgradient wells. However, pH in all of the PRB wells and downgradient wells with the exception of OT16-MW35 was still acidic based on results of the most recent round of monitoring. This is inconsistent with expectations, as corrosion of ZVI generates the OH⁻ anion.
- In most PRB wells, ORP decreased to levels of less than -100 mV between the December 2013 (baseline) and March 2014 round of monitoring, but increased back to baseline levels by May 2014.

• DO concentrations were less than 1 mg/L in half of the wells within the PRB and decreased in many wells downgradient following installation, but conditions continued to remain aerobic in most wells following installation.

Overall, the Remedial Action Construction Report (CB&I, 2015) concluded that the PRB was unable to overcome the highly aerobic conditions at the site, resulting in limited efficacy.

2.6 BOMARC OT-16 Changes in Groundwater flow

Aquifer testing was completed pre- and post-installation of the PRB and minimal changes in hydraulic conductivity were observed, with average values dropping slightly from 7.7 feet per day to 5.0 feet per day. Additionally, the gradient across the PRB was similar pre- and post-treatment. The difference in groundwater elevation across the PRB (upgradient to downgradient) remained consistently less than 0.5 feet both prior to injection and after injection with no changes indicating localized mounding (CB&I, 2015). Evaluation of water levels and gradients in cross-gradient wells indicated low potential for contaminants from the upgradient side of the wall to be migrating around the wall, with the gradient perpendicular to the wall two orders of magnitude greater than the groundwater gradient parallel to the wall. However, contamination was already present crossgradient of the wall under baseline conditions (OT16-MW41 concentration of 190 μ g/L for TCE). Groundwater contour maps before and after treatment do not show changes in flow patterns in the vicinity of the PRB and are presented in **Appendix B**.

3 St. Julien's Creek Annex Site 21, Chesapeake, Virginia Background

3.1 St. Julien's Creek Annex Site 21 History

SJCA is situated at the confluence of St. Juliens Creek and the Southern Branch of the Elizabeth River in the City of Chesapeake, in southeastern Virginia (**Figure SJ-1**). The installation began operations as a naval ammunition facility in 1849 and ordnance operation were discontinued in 1977. The SJCA facility has also been involved in non-ordnance services, including degreasing; operation of paint shops, machine shops, vehicle and locomotive maintenance shops, pest control shops, battery shops, printing shops, electrical shops, boiler plants, wash racks, and potable water and salt water fire-protection systems; fire-fighter training; and storage of oil and chemicals. The current primary mission of SJCA is to provide a radar-testing range and various administrative and warehousing facilities and light industrial shops for nearby Norfolk Naval Shipyard and other local naval activities.

Site 21 is located in an industrial area in the south-central portion of SJCA (**Figure SJ-1**). Historically, the buildings at Site 21 were used as machine, vehicle, and locomotive maintenance shops, electrical shops, and munitions loading facilities. The outdoor areas were used for equipment and chemical storage. Currently, the existing buildings and the Site 21 area are used for storage and maintenance activities. Building 1556, constructed in 1992, is currently used as the Mid-Atlantic Regional Maintenance Center warehouse (CH2M HILL, 2008a).

Figure SJ-1. St. Julien's Creek Site 21 Location Map

3.2 St. Julien's Creek Annex Site 21 Physical and Hydrogeologic Setting

The majority of the Site 21 ground surface is covered with asphalt, with the exception of a few small, unconnected grassy areas. Topography is relatively flat, with ground surface elevations ranging from 7 to 9 feet amsl.

The subsurface geology at Site 21 consists of the fine to coarse silty and clayey sands of the Columbia aquifer, underlain by the clay of the Yorktown confining unit. The Columbia aquifer extends to a depth of 13.5 to 20 feet bgs with the average depth to the confining unit being approximately 17 feet. The Yorktown confining unit ranges between 17 and 38 feet thick at the site and overlies the Yorktown aquifer. Cross sections are provided in **Appendix A**.

A storm sewer system passes through Site 21 and discharges to the tidal wetland south of the site. The majority of precipitation on Site 21 runs off into the storm sewer system. A separate storm sewer system serves the eastern quarter of Site 21 acreage and discharges to the Elizabeth River. The small amount of precipitation not captured by the storm sewer system infiltrates to the groundwater, flows as runoff toward Site 2, evaporates, or transpires.

Shallow groundwater at Site 21 is generally encountered from 2 to 7 feet bgs. In general, shallow groundwater flows southwest in the eastern portion of the site and southeast in the western portion of the site, toward the storm sewer system east of Building 1556 (**Figure SJ-2**). Much of the storm sewer system is located beneath the water table and pipe bedding material creates a preferential pathway that controls the flow of groundwater. A video survey did not reveal leaks in the sewer line itself that could be responsible for this hydraulic control.

Figure SJ-2. St. Julien's Creek Site 21 Groundwater Contour Map

Aquifer tests conducted at Site 21 indicate that the average hydraulic conductivity in the Columbia aquifer is approximately 7 feet per day. Groundwater flow velocity was calculated at 0.196 feet per day (72 feet per year) using an average hydraulic gradient of 0.007 feet per foot and an estimated effective porosity of 0.25 (typical for silty sand). Since flow at Site 21 is heavily influenced by the position of the storm sewer system, it is likely that the actual velocity in areas close to the sewer lines is higher than calculated (CH2M HILL, 2008a).
3.3 St. Julien's Creek Annex Site 21 Contaminant Distribution Prior to Treatment

Prior to implementation of the RA at Site 21, TCE and cis-1,2-DCE were the most frequently detected contaminants in the shallow aquifer and the plume of these contaminants extended across over 8 acres of the site. The deeper, Yorktown aquifer has not been impacted by the historical contaminant releases. The maximum concentration of TCE detected in shallow groundwater at Site 21 during the baseline monitoring event for the RA was 12,500 µg/L at SJS21-MW15S as shown on **Figure SJ-3** (Shaw, 2011). Depth-specific groundwater samples collected at the bottom of the Columbia aquifer identified chlorinated VOC concentrations 2 to 7 times higher than in groundwater samples collected over the entire screened interval as described in the Remedial Investigation (RI) (CH2M HILL, 2008a). This in addition to the magnitude of the concentration supports the potential for dense non-aqueous phase liquid (DNAPL) to have been present at the site, although no visible evidence of DNAPL was ever observed in the field.

Figure SJ-3. St. Julien's Creek Site 21 TCE Plume (2008)

3.4 St. Julien's Creek Annex Site 21 Treatment Area and Wells Reviewed in Desktop Evaluation

ZVI injections began on December 1, 2010 and were completed on February 2, 2011. Because of the depth stratification of the contamination at Site 21, ZVI was injected into the bottom 5 feet of the shallow (Columbia) aquifer in two areas of the site with concentrations greater than 1000 µg/L for any of the site COCs (TCE, cis-1,2-DCE, and VC). The total areal extent of the two ZVI treatment areas was 18,500 square feet. The soil mass within the target treatment zone was estimated to be 5,365 tons (dry weight basis), assuming a soil bulk density of 116 lb/cubic foot. Based on a target ZVI dosage of 0.8 percent (lbs of ZVI per lb of soil), approximately 85,800 lbs of ZVI were determined to be needed for the site. DPT injection points were placed on 9.4-foot centers. This geometry was developed to provide complete coverage of the treated area using an assumed radius of influence (ROI) of 5.4 feet and a 13 percent overlap of treatment areas. Injection locations were placed at least 10 feet from buildings and known utility locations to avoid damage to structures and short-circuiting through preferential flow paths. Two-hundred and two temporary DPT ZVI injection points were completed, as shown in **Figure SJ-4**. The

DPT injection points extended to the Yorktown confining unit at approximately 17 feet bgs. Approximately 425 lbs of ZVI were injected per injection point. ZVI was mixed with water to create a ZVI/water slurry to facilitate injection. The ZVI slurry for injection contained approximately 3 lbs of ZVI per gallon of water. This corresponds to 142 gallons of slurry per injection point. The ZVI/water slurry was delivered using a high pressure injection process (Shaw, 2011a). Because of the potential for daylighting at the site, much of the ZVI was preferentially injected in the bottom five feet of the Columbia aquifer, just above the Yorktown confining unit, where contamination was noted to be at highest concentrations during investigations. Areas of the plume not treated with ZVI were treated with emulsified vegetable oil (EVO) to stimulate reductive dechlorination.

Figure SJ-4. St. Julien's Creek Site 21 Treatment Area and Wells Included in Desktop Review

For this study, pre- and post-treatment data from monitoring wells located within the ZVI treatment areas were evaluated. Wells included in the review are shown on **Figure SJ-4** and listed in **Table SJ-1**. Upgradient and downgradient well results are not discussed at length for this site because they were within areas treated with EVO, making it difficult to differentiate between VOC and geochemical changes due to biological versus abiotic (ZVI) processes.

Table SJ-1 St. Julien's Creek Annex Site 21 Wells Included in Desktop Review

East Area			
Source Area	MW27SR and MW16S		
West Area			
Source Area	MW15S, MW12S, MW20SR, MW02S, and MW14S		

3.5 St. Julien's Creek Annex Site 21 Desktop Evaluation Results

This section presents an evaluation of the results of ZVI injections with regard to treatment performance (reduction in VOC concentrations) and groundwater geochemistry changes created by the ZVI injections.

3.5.1 St. Julien's Creek Annex Site 21 Baseline Groundwater Conditions

Baseline (pre-injection) groundwater geochemistry data for the wells listed in **Table SJ-1** were collected in November 2010. Periodic monitoring of these wells has continued throughout the post-injection period. A summary of key geochemical parameters is presented in **Table SJ-2** for the baseline sampling as well as the November 2015 monitoring period.

For the eastern ZVI treatment zone, the results indicate the following baseline groundwater conditions:

- DO concentrations ranged from 0.6 mg/L to 2 mg/L
- pH ranged from 5.36 to 6.92
- ORP ranged from -2.8 mV to 128.5 mV
- Dissolved iron concentrations ranged from 0.756 mg/L to 12 mg/L
- Sulfate concentrations ranged from 7.1 mg/L to 99.1 mg/L
- Sulfide was not detected (less than approximately 0.6 mg/L)
- Methane concentrations ranged from 24.8 μg/L to 68.4 μg/L (0.0248 mg/L to 0.0684 mg/L)

Based on these values, baseline geochemical conditions in the eastern ZVI treatment zone appear to be generally oxic to slightly anaerobic, with aerobic respiration and iron reduction likely key terminal electron accepting processes (TEAPs) occurring in the aquifer. Strongly reducing conditions do not appear to have been present to a significant degree for baseline conditions.

Small amounts of VC, ethene, and methane were detected in some wells during the baseline sampling. Reductive dechlorination of TCE to VC and ethene and production of methane occur only under strongly reducing conditions. Thus, these detections suggest that more reducing conditions (such as sulfate reducing and methanogenesis) were present to some degree in microzones within the aquifer. The limited amount of VC and other compounds indicative of highly reducing conditions that were detected indicates that highly reducing conditions were not widely present in the eastern ZVI treatment zone under baseline conditions.

For the western ZVI treatment zone, the results indicate the following baseline groundwater conditions:

- DO concentrations ranged from 0.4 mg/L to 2mg/L
- Dissolved iron concentrations ranged from 0.758 mg/L to 5.78 mg/L
- Sulfate concentrations ranged from 2.3 mg/L to 99.1 mg/L
- Sulfide concentrations ranged from less than detectable (< 0.6 mg/L) to an estimated value of 0.67 mg/L.
- Methane concentrations ranged from 133 to 582 μg/L (0.133 to 0.582 mg/L)
- pH ranged from 4.99 to 6.46
- ORP ranged from -77 to 186.9 mV

Based on these values, baseline geochemical conditions in the western ZVI treatment zone appear generally similar to those in the eastern ZVI treatment zone, oxic to slightly anaerobic, with aerobic respiration and iron reduction likely the predominant TEAPs occurring in the aquifer. Strongly reducing conditions do not appear to have been present to a significant degree under baseline conditions in the western treatment area.

Methane and VC were detected at greater concentrations during the baseline sampling than in eastern ZVI treatment zone, indicating that microzones with more reducing conditions (such as sulfate reducing and

methanogenesis) were also present and possibly to a greater extent than in the eastern ZVI treatment zone. However, highly reducing conditions do not appear to have been widely present in the western ZVI treatment zone prior to ZVI injections.

3.5.2 St. Julien's Creek Annex Site 21 Evaluation of Effectiveness of ZVI Injections

Baseline and the most recent post-injection VOC data for both ZVI treatment areas are presented in **Table SJ-2**. These data indicate that the ZVI injections were effective in both source zones for treating target VOCs.

TCE concentrations in well MW27SR (eastern source area) declined from a baseline value of 5440 μ g/L to less than detectable (< 0.5 μ g/L). Baseline concentrations of cis-1,2-DCE, 1,1-DCE, and VC at 1560, 23, and 22 μ g/L, respectively, were also reduced to < 0.5 μ g/L each in this well. Similar performance was measured in well MW16S, with a baseline TCE concentration of 3770 μ g/L reduced to 2 μ g/L. Baseline concentrations of cis-1,2-DCE, 1,1-DCE, and VC at 598, 29.6, and 33.8 μ g/L, respectively, were also reduced to <0.5, <0.5, and 0.59 (J), respectively.

Significant and, in a few wells, nearly complete treatment of VOCs was also observed in source area wells within the western ZVI treatment zone. In well MW15S, TCE concentrations declined from a baseline value of 12,500 μ g/L to less than detectable (< 0.5 μ g/L). Baseline concentrations of cis-1,2-DCE, 1,1-DCE, and VC at 1010, 58, and 55 μ g/L, respectively, were also reduced to 0.76 (J), < 0.5, and 3 μ g/L, respectively.

Time series plots of TCE, DCE, and VC during the post-injection monitoring period for wells located within both ZVI treatment zones are presented in **Charts SJ-1 through SJ-3**. It can be seen in **Chart SJ-1** that TCE concentrations declined relatively quickly in all wells after ZVI injections were completed in February 2011.

Charts SJ-2 and SJ-3 show time series plots for cis-1,2-DCE and VC during the post-injection monitoring period. If reaction of TCE and the injected ZVI were proceeding primarily via β -elimination, more limited generation of cis-1,2-DCE and VC than shown in these charts would be expected. These charts suggest that while some degree of β -elimination may be occurring, other processes, such as reductive dechlorination also appear to have occurred. Well MW15S in particular showed the greatest concentrations of reductive dechlorination daughter products. Dechlorination reactions continued over the 5 year post-injection monitoring period.

Data presented in **Table SJ-2** indicates that the ZVI injections caused changes in several geochemical parameters in groundwater within the ZVI treatment zones. Time series plots for pH, ORP, dissolved iron, alkalinity, sulfide, sulfate, dissolved arsenic, TOC, ethene, ethane, and, methane are shown in **Charts SJ-4 through SJ-14**. Geochemical changes observed in these charts include the following:

- pH generally increased during the post-treatment monitoring period. This increase is not unexpected given that the reaction of ZVI and water generates OH⁻ anion
- ORP generally decreased shortly after injection, then increased throughout the post-injection monitoring period.
- Dissolved iron increased significantly during the post-injection monitoring period
- Alkalinity increased during the post-injection monitoring period, consistent with the generation of OH⁻ anion
- TOC increased during the post-injection period. An increase in TOC was unexpected given that the ZVI injectate did not include TOC-containing material and the ZVI injection zones were generally not located downgradient of locations where EVO was injected.
- Sulfide was detected during the first two years after ZVI injection.
- Sulfate generally declined during the post-injection monitoring period but was not completely consumed.
- Arsenic increased in most wells during the post-injection monitoring period
- Ethene production began shortly after ZVI injections and continued to be produced generally concurrently with VC production
- Similar to ethene, ethane production began shortly after ZVI injections and continued to be produced generally concurrently with VC production
- Methane production began shortly after ZVI injections and continued throughout the post-injection monitoring

3.6 St. Julien's Creek Annex Site 21 Changes in Groundwater Flow

Groundwater flow maps from 2010 and 2016 are included in **Appendix B**. Based on these maps, no notable change in groundwater flow is noted due to ZVI Injection. No additional data were collected to evaluate hydraulic conductivity post-treatment.

4 NSWC White Oak Site 13, White Oak, Maryland Background

4.1 White Oak Site 13 History

Former NSWC White Oak is located in Silver Spring, Maryland, approximately 4 miles northwest of Washington, D.C. (Figure WO-1). The facility encompasses approximately 710 acres and is located in both Prince George and Montgomery counties. Approximately 635 acres of the property is undeveloped. The facility was established in 1946 as the Naval Ordnance Laboratory. The laboratory conducted research, development, and evaluations for surface warfare weapon systems, ordnance technologies, underwater weapons, and strategic systems. Former NSWC White Oak was closed in 1997 under the Base Realignment and Closure Act. Approximately 662 acres were transferred to the General Services Administration (GSA) and the remaining 48 acres were transferred to the Army.

Figure WO-1. White Oak Site 13 Location Map

Site 13 is located in the northeast portion of NSWC White Oak, along the northern property line (**Figure WO-1**). Anecdotal accounts state that between 1970 and 1978, approximately 6,000 to 10,000 gallons of oily sludge from storage tanks containing No. 6 fuel oil were spread over the surface of Site 13; however, the location and history of Site 13 is not well documented and very little petroleum contamination has been found in the soil and groundwater in the area that is currently considered Site 13 (AGVIQ/CH2M HILL, 2010b).

4.2 White Oak Site 13 Physical and Hydrogeologic Setting

The surface of Site 13 gently slopes to the west with a maximum elevation relief across the site of approximately 5 feet. The topography immediately adjacent to Site 13 to the northwest, west and southwest drops steeply at a grade of approximately 33 percent into the valley formed by West Farm Branch.

Site 13 geology, as depicted on the cross-sections included in **Appendix A** consists of a layer of silty sand and gravel (Coastal Plain deposits) ranging in thickness from 0 to 10 feet. The Coastal Plain deposits are underlain by a 10 to 20-foot layer of decomposed rock (saprolite). This grades from a micaceous silt or silty sand with varying amounts of clay and schist fragments to a severely weathered schist with relief texture. Fractured rock underlies the saprolite; the competent bedrock is primarily a garnet schist.

The depth to the water table is approximately 10 to 12 feet. The water table at Site 13 is present in the lowpermeability saprolite and the saturated thickness above the bedrock in this area is approximately 20 to 25 feet. Groundwater flow beneath Site 13 is primarily to the west and northwest, toward and into West Farm Branch (**Figure WO-2**). Groundwater velocity was estimated at 0.096 feet per day or 35 feet per year (CH2M HILL, 2008b).

Figure WO-2. White Oak Site 13 Groundwater Contour Map (2014)

4.3 White Oak Site 13 Contaminant Distribution Prior to Treatment

The groundwater at Site 13 is impacted by 1,1,2,2-tetrachloroethane (1,1,2,2-PCA), PCE, TCE, cis 1,2-DCE, and VC. The groundwater plume at Site 13 extends off GSA property to the northwest toward West Farm Branch, on to private property owned by a sand and gravel quarry. Prior to the ZVI treatments, the total VOC concentrations in groundwater samples from several Site 13 wells were greater than 1,000 μ g/L. The area of the defined Site 13 groundwater plume and the existing monitoring well network is shown in **Figure WO-3**.

Figure WO-3. White Oak Site 13 Total VOC Plume (2004)

4.4 White Oak Site 13 ZVI Treatment Area and Wells Reviewed in Desktop Evaluation

In January and February 2005, fifteen injection borings ranging in depth from 28 to 41 feet bgs were drilled using a combination of hollow-stem auger (for surface casings) and air-rotary (for rock drilling) methods (**Figure WO-4**). Injection borings were drilled 3-feet into competent bedrock at the site. Saprolite was then pneumatically fractured in 3.5-foot intervals by applying high-pressure nitrogen gas for about 10 seconds. After fracturing each interval, ZVI powder was mixed with water in a slurry and injected into the fractured aquifer using a pressurized nitrogen system (Ferox). A total of 77,150 lbs of ZVI were injected, based on a dosage of 0.2 percent (lbs of ZVI per lb of soil) (Shaw, 2005).

In June 2010, while treatment onsite was successful, an untreated portion of the VOC-plume which had migrated offsite was determined to warrant additional treatment. A total of fifteen new injection borings were completed to address offsite contamination using the same methodology used during the first round of injections (**Figure WO-4**). The total depths of these boreholes ranged from 25 to 36 feet bgs. Due to excessive daylighting that occurred during the initial injection, hydraulic injections were used in some locations for the second injections. Four additional injection points were added using DPT to provide additional coverage and one existing point (IW01) was retreated. A total of 139,265 lbs of ZVI was injected during the second mobilization, based on a dosage of 0.5 percent (CH2M HILL, 2008b).

For this study, pre- and post-treatment data were evaluated from wells located in both treatment areas. Wells included in this desktop review are tabulated on **Table WO-1** and shown in **Figure WO-4**. DPT groundwater sampling results for the onsite portion of the base are also included in the evaluation for the purpose of completeness because no monitoring wells were installed across most of the onsite treatment area prior to or in the few years following the first injection.

ANALYSIS OF LONG-TERM PERFORMANCE OF ZERO VALENT IRON TREATMENT AT NINE SITES

Figure WO-4. White Oak Site 13 Treatment Area and Wells Included in Desktop Review

Table WO-1. Wells Included in Desktop Review for White Oak Site 13

Onsite Treatment Area	13GW02, 13GW206, 2001 DPT locations (for VOCs only), 13GW300 (post 2010 only) and 13GW301 (post 2010 only)
Offsite Treatment Area	13GW202, 13GW303, and 13GW304

4.5 White Oak Site 13 Desktop Evaluation Results

This section presents an evaluation of the performance of the ZVI treatment (reduction in VOC concentrations) and groundwater geochemistry changes created by the ZVI treatment in the on-site and off-site treatment areas.

4.5.1 White Oak Site 13 Baseline Groundwater Conditions

Baseline sampling for the 2005 on-site injection event was completed in August of 2004. Baseline sampling for the June 2010 event was completed in May 2010. Because the plume at the site on which the design was based was delineated using DPT results for which only VOC concentrations were evaluated, the baseline geochemical conditions in the middle of the 2005 treatment area are unknown. The wells which are now in the center of the 2005 treatment area (13GW300 and 13GW301) were not installed until 2010. Consequently, this discussion is focused on 2004 data from three wells: 13GW02, 13GW202, and 13GW206. 13GW02 and 13GW206 are on the downgradient edge of the 2005 treatment area, but are upgradient of the 2010 treatment area. 13GW202 is within the 2010 treatment area. No baseline data from the wells installed immediately prior to the 2010 treatment are discussed in this section, as the first samples collected from these wells may have been impacted by the 2005 injection event. However, a summary of pre-treatment key geochemical parameters is provided in **Table WO-2** and this table includes May 2010 results for 13GW303 and 13GW304, the first round available for those two 2010 treatment area wells.

The 2005 pre-treatment results for 13GW02, 13GW202, and 13GW206 indicate the following baseline water conditions at the site:

- DO concentrations ranged from 0.5 mg/L to 7 mg/L
- pH ranged from 5.48 to 5.96
- ORP ranged from -1 mV to 238 mV
- Dissolved iron ranged from not detected (14.4 U μg/L) to 24,000 μg/L
- Nitrate ranged from 0.05 mg/L to 0.72 mg/L
- Sulfate ranged from 4.1 mg/L to 90.3 mg/L
- Chloride ranged from 60.2 mg/L to 100 mg/L
- Alkalinity ranged from 9.1 J mg/L to 73 J mg/L
- TOC was consistent across the 3 wells at 1 mg/L

Baseline geochemical conditions varied across the site. Conditions in the wells within the 2005 treatment area (13GW02 and 13GW206), were more oxic, while 13GW202, which is off-site and downgradient indicated reducing baseline conditions in 2004. Dissolved iron and methane concentrations were all considerably higher in the sample from 13GW202 than in the other two wells, while ORP and concentrations of DO, nitrate, and sulfate were all considerably lower in 13GW202 than in 13GW02 and 13GW206.

1,1,2,2-PCA was detected at a baseline concentration of 700 µg/L in the sample from 13GW02, but was not detected in the other two wells. However, this constituent was detected in samples from five DPT sampling stations (**Figure WO-4 and Table WO-2**) at concentrations up to 946 µg/L. For the chlorinated ethenes, cis-1,2-DCE was detected at the highest concentrations, with monitoring well results ranging from 84 µg/L to 400 µg/L and DPT detections ranging from 49.9 µg/L to 755 µg/L (23 to 28-ft bgs sample from 13DP218). TCE was detected at lower concentrations with well concentrations ranging from 9.5 J µg/L to 150 µg/L and 2001 DPT results ranging from 55 µg/L (16 to 21 ft-bgs sample from 13DP208). Trans-1,2-DCE was also detected at the site at a maximum concentration of 148D µg/L (16 to 21 ft-bgs sample from 13DP208). VC was not detected across most of the site and the highest detection was 10.3 µg/L, indicating incomplete dechlorination of cis-1,2-DCE and trans-1,2-DCE following generation of these daughter products during breakdown of TCE and 1,1,2,2-PCA.

4.5.2 White Oak Site 13 Evaluation of Effectiveness of ZVI Injections

4.5.3 On-site Treatment Area

Baseline and the most recent post-injection VOC data (November 2015) for the on-site ZVI treatment area are presented in **Table WO-2**. **Charts WO-1 through WO-6** show temporal trends for VOCs. **Charts WO-7 through WO-14** show select geochemical and field parameter temporal trends for each injection area. DPT VOC results are shown for the on-site injection area in **Charts WO-1 through WO-6**, but are available for the 2001 event only and no geochemical or field data were collected for those samples. Nitrate data were not plotted as most results were not detected.

Reductions in VOC concentrations were variable across the on-site injection area, with very effective reduction observed in samples from 13GW02, and less effective reduction observed in 13GW206. Increases in VOCs (1,1,2,2-PCA, cis-1,2-DCE, trans-1,2-DCE and VC) were observed over time in samples from 13GW300, indicating some migration of contaminants may be occurring.

Highly reducing conditions (lowest ORP value of -398 mV) were achieved in 13GW02, but were not achieved in other monitoring wells possibly explaining the inconsistency in treatment efficacy across the on-site treatment area (**Chart WO-9**). DO concentrations were similarly optimal in samples from 13GW02, with concentrations less than 1 mg/L for most of the post-treatment monitoring period. Concentrations of DO in 13GW206 and 13GW300 were equal to or greater than 1 mg/L throughout the monitoring period (**Chart WO-7**). Increases in pH were

observed in the sample from 13GW02 following both rounds of injection, as expected based on generation of the hydroxyl radical. An increase in pH was observed in the sample from 13GW206 following the first injection, but conditions returned to baseline within one year. No notable pH increases were observed in the other two on-site treatment area wells (13GW300 and 13GW301), which were not installed until a number of years after the 2005 injection was completed (Chart WO-8). Dissolved iron concentrations increased in all on-site treatment area wells with the exception of 13GW02 (Chart WO-10). Sulfate was not detected during most rounds of monitoring following the first injection in samples from 13GW02. Sulfate was also generally non-detect in samples from 13GW206, indicating sulfate reducing conditions were never achieved in the vicinity of that monitoring well (Chart WO-11). Chloride concentrations demonstrated an increase following the 2005 injections in samples from 13GW02 and 13GW206, and have steadily increased over the monitoring period in samples from 13GW206 is not consistent with the increase in chloride (Chart WO-12). No meaningful trend in alkalinity was observed over the monitoring period (Chart WO-13). TOC concentrations increased in samples from 13GW02 and 13GW206 following the 2005 injections, but have since returned to baseline (Chart WO-14).

4.6 Offsite Treatment Area

Concentrations of COCs were reduced in most wells in the off-site treatment area following the 2010 injections, but only clean up goals (MCLs) were only achieved in one of the wells monitored, 13GW202. While concentrations in this well initially increased, they subsequently decreased substantially (**Charts WO-15 through WO-20**). Modest decreases in ORP and DO were observed in off-site wells, with optimal DO values of less than 1 mg/L and ORP values of less than -300 mV not achieved in any off-site wells (**Charts WO-21 and WO-23**). The most significant

decreases in ORP were observed in samples from 13GW202, which is also the well that demonstrated the greatest decreases in VOC concentrations. Small increases in pH were observed immediately following the 2010 injections, but conditions have since returned to baseline in all wells with the exception of 13GW202 (**Chart WO-22**). Similarly, dissolved iron concentrations increased in samples from all three off-site wells following the 2010 injection, but have returned to baseline concentrations, or lower in subsequent events (**Chart WO-24**). Sulfate concentrations decreased in all three off-site wells, indicating sulfate-reducing conditions were achieved (**Chart WO-25**). Chloride and alkalinity decreased in all off-site wells following treatment, inconsistent with expected results (**Charts WO-26 and WO-27**). Similar to the on-site treatment area, TOC concentrations increased following the 2010 injections in the off-site treatment wells, and have since returned to baseline (**Chart WO-28**).

4.7 White Oak Site 13 Changes in Groundwater Flow

Groundwater flow maps from 2000 and 2015 are included in **Appendix B**. Based on these maps, no notable change in groundwater flow is noted due to injection operations. However, the well network is limited.

February 2005 Injection

-February 2005 Injection

-13GW303

-June 2010 Injection

-June 2010 Injection

5 Savannah Air National Guard Base, Site 8, Garden City, Georgia

5.1 SANG Site 8 Site History

SANG is located in the northeast coastal region of Georgia, approximately 8 miles northwest of the City of Savannah in Garden City, Georgia. SANG is located adjacent to the eastern edge of the Savannah International Airport (SIA) (**Figure SV-1**). Property north and northwest of the airport is largely undeveloped and a substantial amount of this land is used for agricultural and commercial forest purposes. Commercial and limited residential developments occupy some of the land to the south. To the east and southeast, the Seaboard Coast Line and Central of Georgia Railroads occupy the majority of the land. Taxiways, along with approximately 180 buildings serving administrative and industrial purposes, comprise the SANG. The industrial buildings include aircraft hangars, vehicle maintenance and bulk fuel storage facilities, and other mission-support infrastructure. The SANG shares use of two runways with the SIA (ANG, 2008).

Figure SV-1. SANG Site 8 Location Map

Site 8, the Old 165th Aircraft Washrack, is located on the eastern edge of the SIA. The former aircraft washrack was used from 1961 to 1983 for aircraft degreasing and painting. During operations, wastewater from the washrack was collected into a storm drain and discharged to an adjacent drainage ditch. Anecdotal evidence suggests that during the course of operation at Site 8, detergents, paints, PD-680, TCE, and trichloroethane (TCA) were used at the site at an estimated rate of 40 gallons per month (estimated total discharge of 11,000 gallons). Spent solvents were collected in storm drains and discharged directly into an adjacent drainage ditch. Because a low-lying area surrounds the washrack/apron area, discharge runoff has historically been a pathway of concern (ANG, 2008).

5.2 SANG Site 8 Physical and Hydrogeologic Setting

The surficial aquifer at Site 8 is composed of undifferentiated deposits of silt, sand, and clay. Depth to water is between 2 to 10 feet bgs. The aquifer is approximately 80 feet thick at SANG and is bounded at the bottom by the Hawthorn Group, which is approximately 120 feet thick and acts as a confining unit (**Figure SV-2**). Underlying the Hawthorn Group is the Floridan aquifer. The Floridan aquifer is the principal aquifer system in the Savannah area; most industrial and municipal water users rely on it for water supply. Cross sections are provided in **Appendix A**.

Groundwater flow is to the east in the western portion of the site and to the south in the eastern portion of the site (**Figure SV-2**). Based on an average hydraulic gradient of 0.017 feet per foot, an assumed effective porosity of 0.30, and a hydraulic conductivity of 1.79 feet per day, the average seepage velocity is estimated to be 0.10 feet per day, or 37 feet per year.

Figure SV-2. SANG Site 8 Groundwater Contour Map (2015)

5.3 SANG Site 8 Contaminant Distribution Prior to Treatment

The VOC plume at Site 8 originates in the southeast corner of the parking lot at the site near the storm drain which is a suspected source. Prior to any treatment, concentrations of numerous VOCs exceeded MCLs: TCE (maximum concentration of 100,000 μ g/L), cis-1,2-DCE (maximum concentration of 86,000 μ g/L), VC (maximum concentration of 3,900 μ g/L), and 1,1,1-TCA (maximum concentration of 1,300 μ g/L) were the primary contaminants. Baseline total VOC concentrations (before any type of treatment) are shown on **Figure SV-3**.

Figure SV-3. SANG Site 8 Total VOC Plume (2008-2010)

5.4 SANG Site 8 Treatment Area and Desktop Review

A number of treatments have been implemented at Site 8. The original remedy for groundwater at the site consisted of air sparging/soil vapor extraction (AS/SVE) in the source area with in situ bioremediation using emulsified vegetable oil with bioaugmentation culture, and pH buffer along the perimeter of the plume and also in the source zone after completion the AS/SVE. These initial treatments began in 2008. Although significant reduction in VOC concentrations were achieved within the source zone by the completion of AS/SVE followed by in situ bioremediation, residual concentrations were not anticipated to reach risk reduction standards (RRS) within a reasonable time after completion of the source zone remedies. Therefore, additional in situ treatment with ZVI was planned. Three rounds of ZVI treatment were completed using pneumatic fracturing methodology. During the first injection in February 2011, 6,350 lbs of powdered ZVI and 192 lbs of EVO were injected into nine fracturing and injection points. Iron dosage was based on 0.4 percent (lbs of ZVI per lb of soil). During the second injections in November/December 2011, additional injections were completed around 08-PZ-04 and 14,000 lb of ZVI and 9,700 lbs of EHC were injected through 13 points. The final injection was completed in February 2012. 1,900 lbs of ZVI and 2,800 lbs of EHC were injected into 12 locations during that effort. Injection points are shown on **Figure SV-4**.

Wells included in the desktop review are tabulated in Table SV-1 and shown on Figure SV-4.

Source Area	08-MW01S, 08-MW18, 08-MW17	
Downgradient	08-MW28	

Table SV-1. Wells Included in Desktop Review for SANG Site 8

ANALYSIS OF LONG-TERM PERFORMANCE OF ZERO VALENT IRON TREATMENT AT NINE SITES

Figure SV-4. SANG Site 8 Treatment Area and Wells Included in Desktop Review

5.5 SANG Site 8 Desktop Evaluation Results

This section represents an evaluation of the performance of the ZVI treatment (reduction in VOC concentrations) and groundwater geochemistry changes created by the ZVI treatment in the injection areas.

5.5.1 SANG Site 8 Baseline Groundwater Conditions

No specific baseline event was completed for the ZVI injections at Site 8. However, the event preceding the initiation of the February 2011 injections was used as baseline data for each selected well (Date ranges from December 2008 through December 2010). A summary of pre-treatment key field parameters is provided in **Table SV-2**.

The pre-treatment results indicate the following baseline conditions for the treatment area of the site:

- DO concentrations ranged from 0.32 mg/L to 0.63 mg/L
- pH ranged from 4.02 to 4.76
- ORP ranged from -68.1 mV to -143 mV

These results indicate the treatment area of the site was under reducing and acidic conditions prior to treatment. The reducing conditions may be a result of the previous EVO injections in the area. The VOC detected at the highest concentration at the site was cis-1,2-DCE which was detected at a maximum concentration of 1,200 D μ g/L (08MW01S). While PCE, TCE, trans-1,2-DCE, and VC were also detected, concentrations were generally an order of magnitude or more lower than the maximum cis-1,2-DCE concentration (**Table SV-2**).

5.5.2 SANG Site 8 Effectiveness of ZVI Injections for Treating COCs

Baseline and the most recent post-injection VOC data available for each well (May or November 2015) are presented in **Table SV-2**. Charts SV-1 through SV-5 show temporal trends for VOCs. Data indicate concentrations

were decreasing prior to ZVI injections being initiated and continued to decrease following injections. VC was generated in 08-MW-01S, but concentrations subsequently were reduced to levels below reporting limits. Overall, the injections, possibly in conjunction with previous treatments, were effective in reducing concentrations in samples from all source area locations. While no obvious downward trend in DO concentrations was observed, concentrations generally remained less than 1 mg/L throughout the post-treatment monitoring period (**Chart SV-6**). pH was increased following ZVI injections, which may have increased the degree of biological degradation occurring (**Chart SV-7**). ORP values decreased, but ideal levels, less than -400 mV (based on Gavaskar, 2005) were not achieved. Concentrations in downgradient well 08MW28 remained less than MCLs throughout the monitoring period, indicating no downward migration occurred.

5.6 SANG Site 8 Changes in Groundwater Flow

Groundwater flow maps from 2008, 2011, and 2015 are included in **Appendix B**. Based on evaluation of flow over time, there appears to be some mounding in the vicinity of the ZVI injections, but it is not clear whether or not this could be due to the ZVI treatment. No aquifer testing was completed to evaluate potential loss of hydraulic conductivity over time in the area.

6 Arnold AFB SWMU 16, Manchester, Tennessee Background

6.1 Arnold AFB Site 8 History

Arnold AFB is located in south-central Tennessee, straddling the boundaries of Coffee and Franklin Counties (Figure AA-1). Arnold AFB houses the Arnold Engineering Development Complex, where research and development is conducted for the United States Air Force (USAF), Department of Defense (DoD), and other government agencies. SWMU 16 is a former leach/burn area located near the Retention Reservoir at the installation. It consisted of a 20-foot by 20-foot concrete pad and a 50-foot-long concrete ditch that discharged into a 20-foot-diameter soil depression. In the 1950s and 1960s, the site was used to transfer fuels between trucks, and to burn and leach small amounts of fuels and propellants. Chlorinated hydrocarbon solvents and fuels were released at SWMU 16 during operation of the waste transfer facility. The site is currently covered with grass and gravel, and adjacent areas are wooded. The site is bounded to the east by the Retention Reservoir and to the north by Crumpton Creek, which originates as seepage through the Retention Reservoir's earthen dam (Figure AA-2).

Figure AA-1. Arnold AFB SWMU 16 Location Map

Figure AA-2. Arnold AFB SWMU 16 Groundwater Contour Map (2010)

6.2 Arnold AFB Site 8 Physical and Hydrogeologic Setting

The site is located at an elevation approximately 1,000 feet amsl. The ground surface slopes downward to the northwest from the site and descends approximately 30 feet in elevation over roughly 500 lateral feet before reaching Crumpton Creek below the base of the Retention Reservoir dam. SWMU 16 is underlain by approximately 70 to 90 feet of unconsolidated residual material consisting of silty clay, clayey sands, and clayey gravels. Depth to shallow groundwater is approximately 10 feet. The unconsolidated shallow aquifer overlies the Ft. Payne Limestone formation, present at roughly 70 to 90 feet bgs (**Appendix A**). The limestone is underlain by the Chattanooga Shale formation, which is approximately 30 feet thick beneath Arnold AFB. This shale is considered an aquitard, as well as the base of the Arnold AFB aquifer system.

Groundwater near the SWMU follows an approximate 600-foot flow path to the northwest (**Figure AA-2**). It begins as recharge near the former leach/burn area, extends downward to the upper portion of the intermediate aquifer, and returns to the surface near Crumpton Creek just below the Retention Reservoir dam. Deep and intermediate wells (> 30 feet bgs) in the unconsolidated over burden located near Crumpton Creek are often under artesian conditions, supporting this upward groundwater flow potential and discharge within the area of the creek. Groundwater velocity was estimated at 0.2 feet per day or 81 feet per year, based on a gradient of 0.013 feet per foot and a hydraulic conductivity of 4.25 feet per day.

6.3 Arnold AFB Site 8 Contaminant Distribution Prior to Treatment

The primary contaminants at SWMU 16 are VOCs and nitrate/nitrite. The nitrate/nitrites are present at the site as a result of a treatment completed in the 1990s to treat soils contaminated with benzene, toluene, ethylbenzene, and xylenes (BTEX) beneath the leach/burn area. Soil was excavated to the water table (approximately 15 feet) and then soil was biologically treated by mixing with chicken manure, wood shavings, and white rot fungus. The treated soil was then returned to the excavation. This treatment was effective in reducing BTEX concentrations in the soil to values at or below the detection limits, but the use of the chicken manure resulted in groundwater nitrate/nitrite as nitrogen (NO_3/NO_2 -N) concentrations approaching 500 mg/L (CH2M HILL, 2006a).

The VOC plume at SWMU 16 extends from the source area near the Retention Reservoir approximately 500 feet to the northwest and discharges to Crumpton Creek through groundwater seeps. TCE is the most prevalent VOC in the plume. The highest measured concentrations (as high as 14,000 μ g/L) were found in the shallow wells located near the source area (**Figure AA-3**) prior to the ZVI treatment (CH2M HILL, 2006b).

Figure AA-3. Arnold AFB SWMU 16 TCE Plume

6.4 Arnold AFB Site 8 Treatment Area and Wells Evaluated in Desktop Evaluation

Two ZVI treatability studies were conducted at SWMU 16. In May 2003, a pilot-scale Ferox ZVI treatability study was conducted to evaluate the effectiveness of ZVI emplaced using the Ferox process in destroying TCE and the effect of high NO₃/NO₂-N concentrations on that process (CH2M HILL, 2006a). During the injection process, nitrogen gas was used to first fracture the target zone to widen existing subsurface fractures and to create new ones. Upon fracture completion, the iron slurry (water and ZVI powder) was added to the nitrogen gas stream and carried to the subsurface, where it was impregnated into the matrix. Five injection borings were completed within the target treatment area (**Figure AA-4**). Packers were used to seal off the borehole and the injection vertical zone of influence was set at 2 ½ -foot increments. A total of 13,000 lbs of iron was injected into the subsurface based on an iron to TCE ratio of 2,000:1. This represents a dosage of approximately 0.2 percent (lbs of ZVI per lb of soil).

In 2005, a pilot-scale treatability study consisting of subsurface soil mixing with ZVI-bentonite gel injection was performed (EFS, Inc., 2006). The objective of this treatability study was to evaluate the effectiveness of the technology in destroying TCE and NO₃/NO₂-N in groundwater beneath the source area. A slurry of 2376-lb ZVI and 2970-lb bentonite was mixed onsite on a slurry mixing truck to treat each 100-cubic yard batch of soil (representing a dose of 0.8 percent). Slurry material was pumped with a slurry pump through a 4-inch line mounted on an excavator to fill cells. SWMU 16 was separated in cells which consisted of 10-foot by 10-foot, 15-foot deep areas. Each cell equaled approximately 55.55-cubic yards, with a mixing overlap of approximately 1-foot. Mixing was accomplished using a Lang Tool 290-LTC In-Situ blender mounted on a hydraulic excavator (EFS, 2006). The areal extent of the soil mixing area is shown on **Figure AA-4**.

Wells included in this desktop review are included in **Table AA-1** and shown on **Figure AA-4**. Note that the Demonstration Plan indicated that MW-317 would be discussed as an upgradient well. However, this well was only sampled for VOCs, and none were detected. No field data is available for this well. As such, it has been excluded from the discussion.

Figure AA-4. Arnold AFB SMWU 16 Treatment Area and Wells Included in Desktop Review

Table AA-1	. Arnold Air Force	Base SWMU	16 Wells I	Included in	Desktop Review
------------	--------------------	-----------	------------	-------------	-----------------------

Treatment Area	PZ-1601, MW-640 (baseline and post-Ferox only, removed during mixing), MW-641(baseline and post-Ferox only, removed during mixing)
Downgradient	DP-1601 and DP-1602

6.5 Arnold AFB Site 8 Desktop Evaluation Results

This section presents an evaluation of the performance of the ZVI treatment (reduction in VOC concentrations) and groundwater geochemistry changes created by the ZVI treatment. Because only two wells were present in the ZVI treatment area prior to treatment and only one temporary well was reinstalled in this area post-treatment, the treatment area discussion is limited to baseline data for MW-640 and MW641 and post-treatment data for PZ-1601.

6.5.1 Arnold AFB Site 8 Baseline Groundwater Conditions

Pre-injection groundwater geochemistry data for the wells listed in **Table AA-1** were collected between May 2000 and April 2003. Periodic monitoring of these wells continued through August 2011, although parameters monitored varied considerably from round to round. A summary of key geochemical parameters from the May 2000 and April 2003 rounds of monitoring and the August 2011 round is presented in **Table AA-2**.

The results indicate the following baseline groundwater conditions:

- Dissolved oxygen (DO) concentrations ranged from 0.07 mg/L to 0.13 mg/L
- pH ranged from 3.92 to 3.94 (May 2000 results, because 2003 results were not available)
- ORP ranged from 79 mV to 151 mV (May 2000 results, because 2003 results were not available)
- Chloride ranged from 8.1 mg/L to 8.4 mg/L
- Nitrate ranged from 22 mg/L to 147.9 mg/L
- Methane ranged from 56 μg/L to 3700 μg/L

Based on these results, baseline geochemical conditions in the ZVI treatment area appear to be oxic to slightly reducing. Strongly reducing conditions do not appear to have been present to a significant degree for baseline conditions. Baseline pH at the site was acidic. Some of the geochemical results, such as for nitrate and methane, may include residual impacts from the application of chicken manure and other bio-amendments during previous remediation activities.

Baseline concentrations of TCE in the treatment zone ranged from 692 μ g/L to 5,616 μ g/L. Concentrations of cis-1,2-DCE ranged from 7.71 μ g/L to 64.02 μ g/L. Baseline concentrations of VC ranged from 1.09 μ g/L to 3.43 μ g/L. Based on the relatively low concentrations of daughter products, significant reductive dechlorination was not occurring at the site at the time of the ZVI treatment.

6.5.2 Arnold AFB Site 8 Evaluation of Effectiveness of ZVI Injections

Baseline and the most recent post-treatment VOC data for the ZVI treatment area and two downgradient wells (DP-1601 and DP-1602) are presented in **Table AA-2**. These data indicate that the ZVI treatments effectively reduced the maximum TCE concentration in the treatment area from 5,616 μ g/L (April 2003) to 480 μ g/L (August 2011). However, concentrations of daughter products increased considerably, with the cis-1,2-DCE concentration rising from 64.02 μ g/L to 15,500 μ g/L and the VC concentration rising from 3.43 μ g/L to 6,600 μ g/L. These data are indicative of an incomplete reductive dechlorination pathway for degradation at this site, rather than the β -elimination pathway. Similar trends were observed in downgradient wells DP-1601 and DP-1602. Time series plots of TCE, DCE, and VC prior to and following treatment in the source area and in downgradient wells are presented in **Charts AA-1 through AA-6**.

The ZVI was effective in reducing nitrate concentrations in the source area from 148 mg/L to 9.69 mg/L. A time series plot for nitrate is included as **Chart AA-7**. It appears, based on the concentrations of nitrate in downgradient wells (**Chart AA-8**) that there may have been some migration downgradient; however, concentrations also decreased considerably in downgradient wells over time.

6.5.3 Geochemistry Changes

Data presented in **Table AA-2** indicates that the ZVI treatment caused minor changes in monitored geochemical parameters in groundwater within the ZVI treatment zone. Time series plots for available pH, ORP, DO, and chloride data are shown in **Charts AA-9 through AA-16**.

- pH increased during the post-treatment monitoring period in the source area and to a lesser extent in downgradient wells. This increase is not unexpected given that the reaction of ZVI and water generates OH⁻ anion
- ORP decreased following treatment, particularly in the source area, but very low ORP values favorable for βelimination (-400 mV, based on Gavaskar, 2005) were never achieved, even in the ZVI mixing area. Decreases in the downgradient area were minor and conditions have returned to baseline levels in downgradient wells.
- DO concentrations in the source area have fluctuated over time and did not demonstrate any meaningful trend. However, downgradient DO concentrations did decrease following treatment.

• Chloride concentrations have increased over time, an indication of dechlorination of CVOCs.

6.5.4 AAFB SWIMU 16 Changes in Groundwater Flow

Groundwater flow maps from May 2000 (pre-injection and soil mixing) and March, July, and October 2010 (most recent events in which wells were gauged) are included in **Appendix B**. Based on these maps, no notable change in groundwater flow is noted due to ZVI treatment. However, because the well network is very limited in the source area, changes in flow may be difficult to observe.

7 USACE St. Louis Ordnance Plant Operable Unit (OU) 1, St. Louis, Missouri

7.1 St. Louis Ordnance Depot OU1 Site History

The St. Louis Ordnance Plant is located on the western boundary of the city limits of St. Louis (Figure SL-1). The St. Louis Ordnance Plant operated from 1941 to 1945 as a small arms ammunition production facility. The plant was divided into two areas designated No. 1 (east of Goodfellow Boulevard) and No. 2 (west of Goodfellow Boulevard). The former Hanley Area consists of the 14.68 acres at the northeastern end of Plant Area No. 2 at the intersection of Stratford Avenue and Goodfellow Boulevard (Figure SL-1). The processes there consisted of the blending of primary explosives, incendiary compounds, and the tracer charging of .30- and .50-caliber projectiles as part of the assembly of the final product. Powder wells installed in 1941 received wastewater from buildings and magazines until 1945. The powder wells provided sediment collection before discharge to the sanitary sewer. The former Hanley Area takes its name from Hanley Industries, Inc., which leased the area in 1959 and conducted operations there through 1979. Hanley used the site for research, development, manufacture, and testing of various explosives. Over that time, Hanley produced specialty ordnance and non-ordnance devices for the U.S. military and the National Aeronautics and Space Administration. Hanley used most of the buildings to load detonators and primers and to mix explosives. Explosives were dried in magazines by leaving cans of explosives exposed to the air, and a lead azide reactor was operated in one of the magazines, the location of which is unknown. Hanley reportedly did not use the powder wells or sumps on the property for wastewater disposal (USACE, 2010).

Figure SL-1. St. Louis Ordnance Plant OU1 Site Location Map

The site ground surface consists of paved areas and landscaped vegetation. The site is completely fenced (partially with iron fencing and the remaining with a 6-foot-tall chain link fence). The site contains underground rooms (former basements and bunkers), tunnels for service utilities, and a combined underground wastewater and stormwater collection system. The underground structures are still intact. Most other buildings have been demolished or are currently only used for storage. Building 219G is occupied during business hours (USACE, 2010).

7.2 St. Louis Ordnance Depot OU1 Physical and Hydrogeologic Setting

Overburden soils at the site consist primarily of clay. Fill material including gravel, concrete rubble, brick debris, and sand has been observed in portions of the site as deep as 11 feet. A layer of interbedded clay and silt is observed between roughly 20 to 25 feet bgs in the north part of the former Hanley Area. A hard, dry, completely weathered shale is present beneath the clay (USACE, 2010). The thickness of the weathered shale ranges from 6 to 12 feet in boreholes advanced to depths at which the competent bedrock is encountered. Groundwater is present within more permeable silt and clay lenses that are locally discontinuous within the upper clay unit. Saturated conditions are not observed within the weathered shale beneath the clay unit. **Appendix A** includes a cross section and cross section location. Groundwater is encountered in a 6-inch saturated coal layer within the discontinuous silt and clay lenses. Groundwater generally flows from the south and west to the east-northeast. There is a local groundwater high west of former Building 220 in the northern part of the site (**Figure SL-2**).

Figure SL-2. St. Louis Ordnance Plant OU1 Groundwater Contour Map (2015)

7.3 St. Louis Ordnance Depot OU1 Contaminant Distribution

Dissolved-phase groundwater contamination was identified in three distinct plumes containing one or more chlorinated VOCs at the site. Only one of these plumes was treated with ZVI. Consequently, the remainder of this nature and extent description is focused on that area, designated as Plume A. Plume A consisted of elevated concentrations of PCE, TCE, and cis-1,2-DCE, with PCE at a maximum concentration of 43,300 µg/L. The plume originates on the northside of a parking lot near a sewer system. A former building (220) was previously located in

this area and is suspected to have been the source. The presence of TCE and cis-1,2-DCE may be attributed to reductive dechlorination of PCE. There is no historical record of a single large spill, but sporadic discharge of small quantities of spent product is assumed to have occurred. **Figure SL-3** illustrates areal extent of total VOC concentrations in and around the treatment area prior to the RA. The depth of groundwater contamination extends from the water table to the weathered shale interface at roughly 26 to 28 feet bgs.

Figure SL-3. St. Louis Ordnance Plant OU1 Total VOC Plume

7.4 St. Louis Ordnance Depot OU1 ZVI Treatment Area and Wells Reviewed in Desktop Review

In March 2012, soil mixing was performed to reduce PCE concentrations in groundwater below the active treatment remediation goal of 21,000 μ g/L. ZVI soil mixing occurred over an area of 1,491 square feet to an average depth of 25.05 feet, for a total treatment volume of 1,383 cubic yards of soil. The treatment depth was based on the depth to the weathered shale bedrock. To mix the soil, ZVI was placed directly into an open borehole advanced to the depth of each column. The column was then mixed using an auger 5 feet in diameter.

An estimated 659 pounds of contaminant mass were present in the subsurface within the treatment area: 23 pounds dissolved in groundwater and 636 pounds adsorbed to soil. The mass of contaminants dissolved in groundwater and adsorbed to the soil was estimated based on various site assumptions including estimated porosity (0.25), soil density (1.5 tons per cubic yard), average concentrations of PCE detected in soil (169 mg/kg), and maximum concentrations of PCE in groundwater (43,300 µg/L). Based on those calculations and a factor of safety of 25, a minimum ZVI dosage of 0.6 percent by mass was determined to be needed to effectively treat PCE in groundwater and adsorbed to soil. A remediation dosage of 1 percent ZVI, by mass of soil, was used. Twenty-two tons of ZVI were incorporated into 1,383 cubic yards of soil. One-quarter ton of ZVI was introduced into each of 88 soil mixing columns (**Figure SL-4**) to distribute the ZVI evenly throughout the treatment area. Soil mixing was conducted without adding water.

Wells reviewed as part of this desktop study are included in Table SL-1 and shown on Figure SL-4.

Figure SL-4. St. Louis Ordnance Plant OU1 Treatment Area and Wells Included in Desktop Review

Table SL-1. Wells Evaluated for St. Louis Ordnance Plant OUI

Source Area	MW-111 (pre-mixing) and replacement well (MW-119)
Downgradient	MW-107, MW-108, MW-110 and MW-116

7.5 St. Louis Ordnance Plant OU1 Desktop Evaluation Results

This section represents an evaluation of the performance of the ZVI treatment (reduction in VOC concentrations) and groundwater geochemistry changes created by the ZVI treatment in the soil mixing area.

7.5.1 St. Louis Ordnance Plant OU1 Baseline Groundwater Conditions

Baseline data were collected for soil-mixing area well MW-111 and downgradient wells MW107 and MW110 in December 2011. Samples from August 2010 were used as baseline data for other downgradient wells (MW-108 and MW-116), as data were not collected from those wells in December 2011. A summary of pre-treatment key geochemical parameters is provided in **Table SL-2**.

The pre-treatment results indicate the following baseline conditions for the treatment area of the site:

- DO concentrations ranged from 0.11 mg/L to 6.77 mg/L, although all but one of the reviewed wells had a baseline DO of less than 1.
- pH ranged from 5.79 to 6.3.
- ORP ranged from 98.7 mV to 232.2 mV.

These results indicate the treatment area of the site was under slightly oxic to slightly reducing conditions prior to treatment. Highest baseline concentrations of PCE (36,100 μ g/L), TCE (1,720 μ g/L), and cis-1,2-DCE (324 μ g/L) were detected in the sample from MW-111. Trans-1,2-DCE and VC were not detected during the baseline round of monitoring, indicating complete reductive dechlorination was not occurring prior to ZVI treatment **Table SL-2**.

7.5.2 St. Louis Ordnance Plant OU1 Effectiveness of ZVI Injections

Baseline and the most recent post-injection VOC data available for each well (April 2015) are presented in **Table SL-2**. **Charts SL-1 through SL-3** show temporal trends for PCE, TCE, and cis-1,2-DCE in the source area (MW-111/MW119). **Charts SL-4 through SL-6** should temporal trends for PCE, TCE, and cis-1,2-DCE in downgradient wells (MW-107, MW-108, MW-110, and MW-116). Data indicate significant decreases in PCE concentrations in the source/treatment area (from 36,100 µg/L to not-detected) and to a lesser extent in downgradient well MW-110 (from 9,380 µg/L to 7,980 µg/L). In the source area, TCE and cis-1,2-DCE concentrations increased temporarily following injections, but were subsequently reduced to 0.73 J µg/L and 70.5 µg/L, respectively, indicating some reductive dechlorination occurred. TCE and cis-1,2-DCE increased in downgradient well MW-110, but did not subsequently decrease and remain at greater than baseline levels based on the April 2015 sampling event (**Table SL-1** and **Charts SL-5** and **SL-6**). Overall, the injections were effective in reducing concentrations in the source area to around or less than MCLs, and the site clean-up goal of 21,000 µg/L was achieved in all monitoring locations.

Field parameters indicate highly reducing conditions were reached in the mixing area (ORP of -383 mV, DO concentration of 0.01 mg/L). ORP increased to -65.8 by April 2015. pH also increased from 6.17 (baseline in December 2011) to 8.5 (August 2013), but has since decreased to 7.45 (April 2015). Decreases in ORP were not noted in downgradient wells, though pH increased slightly and DO decreased (**Charts SL-10 through SL-12**)

7.6 St. Louis Ordnance Plant OU1 Changes in Groundwater Flow

Groundwater flow maps from 2008 and 2015 are included in **Appendix B**. Based on evaluation of flow over time, there does not appear to be any change in groundwater flow resulting from the ZVI injections.

8 MCB Camp Lejeune Site 89, Jacksonville, North Carolina

8.1 Camp Lejeune Site 89 History

MCB Camp Lejeune is located in Onslow County, North Carolina (**Figure CL-1**). The Base covers 236 square miles and is bisected by the New River, which flows in a southeasterly direction and forms a large estuary before entering the Atlantic Ocean. The Atlantic Ocean borders the base on the southeast. The mission of Camp Lejeune is to maintain combat-ready units for expeditionary deployment (<u>www.lejeune.marines.mil</u>). Site 89 is located to the west of the New River, on Camp Geiger. The Site 89 investigative area includes the Former Defense Reutilization and Marketing Office (DRMO), the woods to the east and the south of the former DRMO, and a portion of Camp Geiger to the west. The former DRMO, operated by the Defense Logistics Agency, was used as a storage yard for miscellaneous items such as scrap and surplus metal, electronic equipment, vehicles, rubber tires, and fuel bladders (mobile storage tanks) until 2000. According to historical records, the Base Motor Pool operated at the site until 1988. Reportedly, various solvents, such as acetone, TCE, and 2-butanone (methyl-ethyl-ketone [MEK]) were used by the Base Motor Pool for cleaning parts and equipment. Historical records also indicate that a 550-gallon underground storage tank (UST), identified as UST STC-868, was installed at the site in 1983 and used to store waste oil. The UST was removed in 1993. The site has not been used since the DRMO relocated in 2000 (CH2M HILL 2008d).

Figure CL-1. Camp Lejuene Site 89 Location Map

8.2 Camp Lejeune Site 89 Physical and Hydrogeologic Setting

Site 89 is located within an interstream area of MCB Camp Lejeune and has little topographic relief. Edwards Creek is located to the west and south of the site and eventually flows into the New River.

Site 89 is underlain by the unconfined surficial aquifer (Appendix A). The Surficial aquifer is underlain by a semiconfining unit (Upper Castle Hayne Confining unit) that ranges in thickness from 20 to 40 feet. This laterally discontinuous semi-confining unit separates the surficial aquifer from the deeper Castle Hayne aquifer and consists of silty sands, clays, and shell fragments. Groundwater flow within the surficial aquifer at Site 89 is to the south/southeast and is influenced by Edwards Creek (Figure CL-2). Groundwater flow within Castle Hayne aquifer is southeastward toward the New River. Groundwater flow velocity was estimated at 17 to 55 feet per year (CH2M HILL, 2012).

Figure CL-2. Camp Lejeune Site 89 Surficial Aquifer Groundwater Contour Map

8.3 Camp Lejeune Site 89 Contaminant Distribution Prior to Treatment

The primary contaminants at Site 89 are 1,1-2,2-PCA and TCE. 1,1,2,2-PCA was reported at a maximum concentration of 250,000 µg/L while TCE was reported at a maximum concentration of 440,000 µg/L. Other VOCs detected include PCE and daughter products of PCE and TCE (cis-1,2-DCE and VC). Highest concentrations were detected in the Surficial aquifer. Concentrations of up to 3,100 µg/L for TCE were also detected in the Upper Castle Hayne aquifer. VOCs were not detected in the Lower Castle Hayne aquifer. Pre-groundwater treatment isoconcentrations of total TCE and 1,1,2,2-PCA are shown on Figures CL-3a and CL-3b for the Surficial and Upper Castle Hayne aquifers, respectively. DNAPL has not been identified as a continuous layer in the subsurface but it was speculated to be present in pockets and ganglia.

Figure CL-3a. Camp Lejeune Site 89 Total TCE and 1,1,2,2-PCA Plume, Surficial Aquifer

Figure CL-3b. Camp Lejeune Site 89 Total TCE and 1,1,2,2-PCA Plume, Upper Castle Hayne Aquifer

8.4 Camp Lejeune Treatment Area and Wells Reviewed in Desktop Evaluation

Based on the findings of the environmental investigations, a time-critical removal action was completed in October 2000. Low temperature thermal desorption units were used to treat approximately 32,000 tons of contaminated soil. In addition, an aeration system was installed in Edwards Creek to assist in the remediation of VOCs in the creek. In 2004, an electrical resistance heating (ERH) pilot study was conducted as a remedial action (RA) for one area of DNAPL (Figure CL-4). An estimated 48,000 pounds of VOCs were removed during the thermal treatment (AGVIQ/CH2M HILL, 2010d).

Three other areas of Site 89 were treated with ZVI soil mixing in May through August 2008. Soil mixing activities were conducted over approximately 32,400 square feet to treat approximately 30,000 cubic yards of soil. As shown on Figure CL-4, a total of 515 soil mixing columns were laid out in a grid pattern, with 18 percent column overlap to achieve complete coverage of the treatment area. Mixing was conducted in a 25-foot column after removing approximately the top 3 feet of overburden. A batch plant was constructed on site to prepare the ZVI-bentonite slurry mixture to the project specifications (2-percent ZVI and 3-percent bentonite, by mass of soil). For each 10-foot diameter column, approximately 3,495 pounds of ZVI and 5,243 pounds of bentonite were used. In total, 924 tons of ZVI, 1,423 tons of bentonite, and 1,372,000 gallons of water were mixed into the treatment zone.

Wells evaluated as part of this desktop study are included in **Table CL-1** and shown on **Figure CL-4**. Downgradient wells were not included because all wells downgradient of the soil mixing areas were installed over a year after mixing was completed.

Table CL-1. Camp Lejeune Site 89 Wells Included in Desktop Review

Source Area IR89-MW20/67, IR89-MW22/63, IR89-MW23/70, IR89-MW27/65, and IR89-MW28/69
--

Figure CL-4. Camp Lejeune Site 89 Treatment Area and Wells Included in Desktop Review

8.5 Camp Lejeune Site 89 Desktop Evaluation Results

This section represents an evaluation of the performance of the ZVI treatment (reduction in VOC concentrations) and groundwater geochemistry changes created by the ZVI treatment in the soil mixing area.

8.6 Camp Lejeune Site 89 Baseline Geochemical Conditions

Baseline data were collected at Site 89 in April of 2008. A summary of pre-treatment key field parameters is provided in **Table CL-2**.

The pre-treatment results indicate the following baseline conditions for the treatment area of the site:

- DO concentrations ranged from 0.82 mg/L to 2.21 mg/L
- pH ranged from 6.28 to 6.66
- ORP ranged from -71 mV to -51 mV

These results indicate the treatment area of the site was under slightly oxic to slightly reducing conditions prior to treatment. Highest baseline concentrations of contaminants where were detected in the sample from IR89-MW20 (reinstalled following injection at IR89-MW67). TCE was detected in this well at a concentration of 490,000 μ g/L and 1,1,2,2-PCA was detected at a concentration of 110,000 ug/L. Daughter products of these chemicals were also detected at levels greater than 1,000 μ g/L (**Table CL-2**).

8.7 Camp Lejeune Site 89 Effectiveness of ZVI Injections

Baseline and the most recent post-injection VOC data available for each well are presented in **Table CL-2**. **Charts CL-1 through CL-8** show temporal trends for 1,1,2,2-PCA, 1,1,2-TCA, 1,1-DCE, 1,1-DCA, cis-1,2-DCE, trans-1,2-DCE, TCE, and VC. Data indicate significant decreases in concentrations of all VOCs to levels near or less than

laboratory detection limits in all treatment area wells. No generation of significant amount of daughter products was observed.

Field parameters indicate highly reducing conditions were reached in the mixing area (ORP of -711 mV and DO concentrations of <1 mg/L). However, DO and ORP both returned to baseline levels within a year after treatment was completed. pH also increased from around 6.5 (baseline in August 2008) to as high as 11.12 (May 2009), but has since decreased to around 9.5.

8.8 Camp Lejeune Site 89 Changes in Groundwater Flow

A groundwater contour map with pre-treatment conditions for Site 89 was not available. Consequently, no evaluation of changes to concentrations could be completed.

9 Naval Support Facility Indian Head, Site 17, Indian Head, Maryland Background

9.1 Indian Head Site 17 Site History

NSF Indian Head is located on the Potomac River and Mattawoman Creek (**Figure IH-1**), less than 30 miles south of Washington, D.C. NSF Indian Head was founded in 1890 as a gun test facility and has evolved and expanded to include numerous scientific and response-force missions serving all branches of the military (<u>http://www.cnic.navy.mil</u>).

Site 17 is in the southeast portion of the facility (**Figure IH-1**) and is defined as a 1,000-foot stretch of Mattawoman Creek shoreline where metal parts were discarded. A portion of the land at the site was created by filling the swamp/wetland with imported materials from other areas within NSF Indian Head. The defined area of Site 17 was expanded in 1997 to include the forested area 100 feet from the shoreline where dozens of rusted drums were identified. The site covers approximately 3.5 acres and was used for disposal of rocket motor casings, shipping containers, drums, and various metal parts from the 1960s until early 1980 (CH2M HILL, 2004)

Figure IH-1. Indian Head Site 17 Location Map

9.2 Indian Head Site 17 Physical and Hydrogeologic Setting

The majority of the Site 17 ground surface is covered with light vegetation. Soil at Site 17 consists of fill material from the ground surface to an approximate depth of 10 to 12 feet bgs. The fill is characterized by a mixture of silty sand, sandy silt, and wood fragments. The fill layer is underlain by a silty clay layer from 10 to 12 feet bgs to 18 to 20 feet bgs. Underlying the silt is a clay layer from an approximate depth of 18 to 20 feet bgs to depths greater than 25 feet bgs, although its total thickness is not known. A cross section of site geology is provided in **Appendix A**.

Depth to shallow groundwater is between 5 and 15 feet bgs. Shallow groundwater generally flows from northwest to southeast towards Mattawoman Creek (CH2M HILL, 2013b) (**Figure IH-2**). Groundwater flow velocity was estimated to be between 43 and 400 feet per year (CH2M HILL, 2008c).

Figure IH-2. Indian Head Site 17 Groundwater Contour Map (2000)

9.3 Indian Head Site 17 Contaminant Distribution Prior to Treatment

TCE is the primary contaminant of concern at Site 17 with a maximum concentration of 490,000 μ g/L prior to treatment in the upper surficial aquifer and 870,000 μ g/L prior to treatment in the lower surficial aquifer (**Figures IH-3a and IH-3b**). Two distinct plumes concentration were identified at the site. The North Plume covered approximately 2,000 square feet and the South Plume covered approximately 38,000 square feet. The North Plume consists primarily of low concentrations of VOCs, while a much higher concentrations of VOCs were observed in the South Plume (CH2M HILL, 2008c).

Figure IH-3a. Indian Head Site 17 TCE Plume, Upper Surficial Aquifer (2005)

Figure IH-3b. Indian Head Site 17 TCE Plume, Lower Surficial Aquifer (2005)

9.4 Indian Head Site 17 Treatment Area and Wells Evaluated for Desktop Review

In November 2012, the RA for Site 17 groundwater was completed. ZVI-soil mixing was conducted in the area where TCE concentrations exceeded 1,000 µg/L through the depth interval of 8 feet to 18 feet bgs. The target treatment zone had a surface area of 3,500 square feet and a volume of approximately 1,296 cubic yards. A refined column layout of 70 columns was developed (**Figure IH-4**), and 9-foot augers were used for mixing. Although most of the VOC mass resided within the interval of 8 to 18 feet bgs, soil mixing occurred between 2 feet and 18 feet bgs. Bentonite slurry was mixed at a batch plant onsite and used to facilitate the drilling. A total of 30 tons of bentonite were used; approximately 16 tons were used as part of the 61,500 gallons of slurry while the remaining 14 tons were used in the spoils and top 8 inches of the soil mixing to help dry the spoils and firm up the ground surface. Once the augers had been advanced to 8 feet bgs, ZVI was also added to the slurry to distribute it throughout the treatment zone. ZVI dosing was calculated based on 1 percent ZVI (lbs of ZVI per lb of soil) and an average soil density of 118 pounds per cubic foot (lb/ft³). Between 875 and 1,050 pounds of ZVI were mixed at each typical soil column (CH2M HILL, 2013b).

Data for Site 17 are sparse, with only VOC DPT data available in the source area prior to treatment. For this study, DP27 was used for the baseline data in the treatment area, while IS17-MW07 and IS17-MW08 were used for post-treatment data. The location of IS17MW08 roughly corresponds to the location of former DP27. **Figure IH-4** shows wells to be included in this analysis as well as the location of former DP27. Some data from crossgradient, downgradient, and upgradient wells was reviewed for the purpose of determining baseline geochemistry and effectiveness downgradient, but because of infrequency in data collection in these areas, trends were not assessed.

Figure IH-4. Indian Site 17 Treatment Area and Wells Included in Desktop Review

Table 6. Indian Head Site 17 Wells Included in Desktop Review

Upgradient	IS17MW03
Source Area	IS17MW07 and IS17MW08
Downgradient	IS17MW10
Crossgradient (to evaluate diversion of groundwater around treatment)	IW17MW02 and IW17MW06

9.5 Indian Head Site 17 Desktop Evaluation Results

This section represents an evaluation of the performance of the ZVI treatment (reduction in VOC concentrations) in the soil mixing area.

9.5.1 Indian Head Site 17 Baseline Conditions

Because baseline geochemical data were not collected from the treatment area, this discussion is based on upgradient well IS17MW03 and cross-gradient well IS17-MW02. Data are included on **Table IH-2**.

The pre-treatment results indicate the following baseline conditions for the treatment area of the site:

- DO concentrations measured ranged from 10.1 mg/L to 13.11 mg/L
- pH ranged from 4.92 to 5.87
- ORP ranged from -54 mV to 123 mV

These results indicate the treatment area of the site was under oxic and acidic conditions prior to treatment. (**Table CL-2**). Maximum concentrations of TCE, cis-1,2-DCE, and VC were 870,000 μ g/L, 170,000 μ g/L, and 14,000 μ g/L, respectively. The presence of some reductive dechlorination daughter products indicates reducing conditions are likely present in microzones at the site.

9.5.2 Indian Head Site 17 Effectiveness of ZVI Injections

Baseline and the most recent post-injection VOC data available for each well are presented in **Table IH-2**. **Charts IH-1 through IH-3** show temporal trends for TCE, cis-1,2-DCE, and VC. Data indicate significant decreases in concentrations of all VOCs. While concentrations of daughter products did not increase during the monitoring period, there was a noticeable lag in decreases in daughter product concentrations, relative to the decreases in TCE concentrations, indicating some concentration decreases were likely a result of reductive dechlorination.

Field parameters indicate reducing conditions were reached in the mixing area (ORP of -351 mV and DO concentrations of <1 mg/L). pH also increased to 8.57.

9.5.2.1 Indian Head Site 17 Changes in Groundwater Flow

Because only three wells were present prior to soil mixing and no recent groundwater flow maps have been generated, insufficient data were available to determine whether changes to hydraulic characteristics or groundwater flow occurred as a result of the treatment.

10 Conclusions and Recommendations for Further Study

10.1 Desktop Review Summary

Table 10-1 summarizes the results of the desktop review for each site.

	Duincom			
Site Name	Contaminants and Highest Baseline Concentration(s)	Groundwater Velocity (ft/year)	ZVI Dosage (Ibs ZVI/Ib soil)	Conclusions and Comments
PRB Sites				
ABL Site 1	TCE: 110 μg/L	293	40 percent -8+50 mesh Envirometa I ZVI/60 percent sand PRB (trenched)	Reductions of 70% observed downgradient of the PRB. pH downgradient of the PRB continues to increase (a positive indicator of continued flow through the PRB). ORP has returned to near baseline levels in downgradient wells, but is still lower than in upgradient wells. Other geochemisty parameters (e.g. sulfate) do not indicate highly reducing conditions.
McGuire OT-16	TCE: 400 μg/L	376	0.5 percent Hepure ZVI, injected PRB using Ferox (nitrogen) process	Average reduction of 33% was observed, based on wells within, downgradient, and crossgradient of the PRB. No generation of daughter products was observed. Minimal and short-lived changes in field parameters (pH, ORP, DO) were observed. No changes in hydraulic characteristics were observed.
Injection Sites				
St. Julien's Creek Site 21	TCE: 12,500 μg/L	72	0.8 percent Hepure ZVI using Ferox	ZVI injections very effective in reducing all chlorinated VOCs to levels at or near MCLs in all monitoring wells within the ZVI treatment areas. A 96% reduction in total VOCs was observed. Geochemical changes and concentrations trends indicate mechanisms behind the CVOC reductions are both β -elimination and reductive dechlorination. Elevated pH and alkalinity remain in treatment areas. Indicators of reducing conditions, such as sulfide, have returned to near baseline levels. Arsenic concentrations have increased significantly.
White Oak Site 13	1,1,2,2-PCA: 946 μg/L TCE: 535 μg/L cis-1,2-DCE: 755 μg/L trans-1,2-DCE: 148 μg/L	35	0.2 percent (on-site) 0.4 percent (off-site) Hepure ZVI injected using Ferox	ZVI effective in reducing concentrations of CVOCs by ~85% both on and off-site. Efficacy was inconsistent from location to location, particularly in the on-site wells. Highly reducing conditions were achieved in only one well (13GW02) and of the wells in the treatment areas, clean up goals were only attained in 13GW02 and 13GW202. Inconsistent treatment in the on-site area may be a result of the lower dose used in that area, varying redox conditions across the site or possible sorbed mass in the source zone resulting in continued back diffusion following treatment.

Table 10-1. Nine Site Summary of ZVI Treatment Performance

Site Name	Primary Contaminants and Highest Baseline Concentration(s) cis-1,2-DCE: 1,200 μg/L	Groundwater Velocity (ft/year) 37	ZVI Dosage (Ibs ZVI/Ib soil) 0.4 percent Hepure ZVI injected using Ferox	Conclusions and Comments Concentrations of COCs in monitoring wells within the treatment area reduced to less than MCLs (~99.4%). Because concentrations were already decreasing as a result of previous treatments in the area, it is uncertain the degree to which the ZVI contributed to site clean-up. pH increased following treatment, and DO was maintained at levels less than 1 mg/L throughout most of the post-treatment monitoring period. ORP was also reduced, but not to levels ideal for abiotic reduction of chlorinated ethenes.
Mixing Sites				
Arnold AFB SWMU 16	TCE: 5,616 μg/L	81	0.2-percent (injections) 0.8-percent ZVI (mixing)	Substantial decreases of TCE observed in the source area as well as in downgradient wells. Nitrate also effectively treated with ZVI. Strongly reducing conditions were not achieved at this site and significant generation of daughter products occurred. This in conjunction with probably movement of contaminants resulted in an overall increase of total VOCs at the site. Daughter products did not subsequently degrade.
St. Louis Ordnance Depot OU1	PCE: 36,100 μg/L	No aquifer testing completed	1-percent ZVI – mixed with no clay addition or water	Concentrations of COCs in monitoring wells within the treatment area and the downgradient area reduced to less than the site clean-up goal of 21,000 μ g/L (average reduction of 99.8%). Highly reducing conditions favorable for β -elimination achieved in the mixing area. Some evidence of reductive dechlorination also observed. pH increased and DO maintained at levels less than 1 mg/L throughout post-treatment monitoring period in the soil-mixing area. DO also reduced to less than 1 mg/L during most rounds of downgradient well monitoring. Some reduction in concentrations downgradient also occurred.
Camp Lejeune Site 89	1,1,2,2-PCA: 110,000 μg/L TCE: 490,000 μg/L cis-1,2-DCE: 140,000 μg/L trans-1,2-DCE: 26,000 μg/L VC: 3,400 μg/L	17-55	2-percent ZVI, 3- percent bentonite mixture	Concentrations reduced by >99.9% in all treatment area wells (in most cases to less than laboratory detection levels). No rebound of VOCs observed. ORP reduced to -711 mV. DO was also reduced and pH increased, but some rebound of these parameters has occurred.

Table 10-1. Nine Site Summary of ZVI Treatment Performance

Site Name	Primary Contaminants and Highest Baseline Concentration(s)	Groundwater Velocity (ft/year)	ZVI Dosage (Ibs ZVI/Ib soil)	Conclusions and Comments
Indian Head Site 17	TCE: 870,000 μg/L cis-1,2-DCE: 170,000 μg/L VC: 14,000 μg/L	43-400	1-percent ZVI, ZVI/benton ite slurry	Concentrations reduced by >99%, to levels just greater than MCLs. Highly reducing conditions achieved in the mixing area. pH increased following treatment, DO was reduced to levels less than 1 mg/L. No rebound of contaminants observed.

Table 10-1. Nine Site Summary of ZVI Treatment Performance

10.2 General Conclusions and Recommendations:

The amount of performance data available for the ZVI treatment systems varied widely between sites. In most cases, the amount of upgradient, treatment zone, and downgradient data was less than optimal, if not insufficient, for conducting a comprehensive evaluation of VOC and geochemical changes achieved throughout the treatment periods. Teams planning the implementation of ZVI treatment systems should consider the type of long term VOC and geochemical monitoring needed to fully document system performance and provide appropriate monitoring points for data collection. Insufficient characterization was also problematic during implementation of the RA at some of the sites. This was especially true for the PRB sites, where insufficient data around the PRBs at the time of installation resulted in placement of the PRBs either upgradient of the highest levels of contamination (both ABL Site 5 and McGuire) or left the PRB too short to intercept all contaminated groundwater (McGuire). Teams designing treatments based on DPT data only should consider collecting baseline geochemistry data prior to treatment to allow for comparison following treatment. Additionally, changes in hydraulic characteristics following ZVI treatment where not assessed at most sites and would be of benefit in determining long term effectiveness of ZVI.

The degree of VOC degradation achieved by the various ZVI treatment systems varied from as little as 33 percent to nearly 100 percent. The greatest degree of VOC treatment was achieved within ZVI soil mixing zones. The PRB sites reviewed were relatively ineffective, primarily due to placement, but also possibly due to insufficient iron at the McGuire site, where the iron was unable to achieve long-lasting reducing conditions. Injected ZVI treatment systems had the greatest variability in VOC degradation results, with one site resulting in an overall increase in VOC concentrations, while other sites achieved clean-up levels of >99 percent. VOC performance appears related to ZVI dose (ZVI to soil ratio) as well as site conditions prior to treatment (sites already under reducing conditions performed better).

Evidence of degradation through the sequential reductive dechlorination pathway was found at all of the injected ZVI treatment systems, downgradient of one PRB, and at two of the four soil mixing sites. The least amount of evidence for the reductive dechlorination pathway was found at Camp Lejeune Site 89 (dose of 2 percent) and Indian Head Site 17 (dose of 1 percent). **Table 10-2** shows performance at each site as well as ORP achieved, dosage, and daughter product generation.

Site	Iron Dose (ZVI:soil mass ratio)	Lowest ORP Achieved During Treatment (mV)1	Percent Reduction/Increase in Concentrations1	Generation of Daughter Products Observed	If Yes, with or without subsequent Reductions
				Yes (but may be due to	
ABL Site 5	40*	-212	-70.7%	migration)	Without
McGuire OT-16	0.5	-501.4	-33%	No	NA
St. Julien's Creek Site 21	0.8	-418.1	-96.3%	Yes	With
White Oak Site 13	0.2 (onsite)/0.5 (offsite)	-303	-58.6% (onsite)/- 85.6% (offsite)	Yes	With
Savannah ANG Site 8	0.4	-184.9	-99.4%	Yes	With
Arnold Air Force Base SWMU 16	0.2	-205	+397%	Yes	Without
St. Louis Ordnance Depot OU1	1	-400	-99.8%	Yes	With (source area)
Camp Lejeune Site 89	2	-711	-99.99%	No	NA
Indian Head Site 17	1	-308	-99.98%	No	NA

Table 10-2. ZVI Design Metrics and Performance

* Based iron: sand ratio in PRB

¹ Treatment Area, or downgradient for the ABL PRB

Downgradient geochemical changes in groundwater quality most frequently observed include increases in pH and decreases in ORP, DO and other terminal electron acceptors (e.g. sulfate). At the only site where arsenic data were available (St. Julien's Creek Site 21), arsenic concentrations increased considerably in ZVI treatment areas. Additional investigation may be helpful in evaluating arsenic mobilization at ZVI sites.

Many parameters indicative of ZVI performance rebounded to baseline conditions within months of treatment, indicating long-term effectiveness of ZVI may be limited, particularly with respect to generation of conditions favorable for β -elimination. **Table 10-3** shows time to ORP rebound for each site evaluated. However, because increased pH and more mildly reducing conditions are more favorable for reductive dechlorination, ZVI may maintain sufficient reactivity to facilitate continuing biological reactions.

Site	Time to ORP Rebound in Treatment Area (days)	Time to ORP Rebound in Downgradient Wells (days)
ABL Site 5	N/A	1461
McGuire OT-16	151	609
St. Julien's Creek Site 21	1826	N/A
White Oak Site 13 (on site)	N/A*	N/A
White Oak Site 13 (off site)	N/A*	N/A
Savannah ANG Site 8	N/A*	N/A
Arnold Air Force Base SWMU 16	304	1218
St. Louis Ordnance Depot OU1	1673	915
Camp Lejeune Site 89	426	N/A
Indian Head Site 17	NR	NR

Table 10-3. ORP Time to Rebound

*Time to rebound not calculated for White Oak and Savannah ANG as ORP results are still decreasing as of the most recent sampling event

NR indicates baseline data not recorded

11 References

AGVIQ-CH2M HILL, 2006. Final Pre-construction Work Package – Site 5 Groundwater, Allegany Ballistics Laboratory, Rocket Center, West Virginia. March.

AGVIQ/CH2M HILL 2010a. Long-term Monitoring for Site 13 and Off-site 13 Groundwater, Former NSWC White Oak, Silver Spring, Maryland. October.

AGVIQ/CH2M HILL 2010b. Non-time-critical Removal Action Summary Report Site 89, Operable Unit 16, Marine Corps Base Camp Lejeune, Jacksonville, North Carolina. March

Air National Guard (ANG). 2008. *Final Remedial Action Work Plan for Sites 8 and 10.* Prepared for Savannah Air National Guard Base, Garden City, Georgia. May.

Arnold, W., and Roberts, A. 2000. *Pathways and Kinetics of Chlorinated Ethylene and Chlorinated Acetylene Reaction with Fe(0) Particles, Environ. Sci.* Technol. 2000, 34, 1794-1805

Barcelona, M., Holm, T., Schock, M., and George, G. 1989. *Spatial and Temporal Gradients in Aquifer Oxidationreduction Conditions. Water Resources Research*. Vol 25, Pages 991-1003. May

CB&I, 2015. Draft Pilot Test Remedial Action Construction Report, BOMARC OT-16 Trichloroethene Groundwater Plume, Joint Base McGuire-Dix-Lakehurst, New Hanover Township, New Jersey. August.

CH2M HILL. 2003. Final Focused Remedial Investigation for Site 5, Groundwater, Surface Water, and Sediment, Allegany Ballistics Laboratory, Rocket Center, West Virginia. August.

CH2M HILL. 2004. Final Remedial Investigation Report, Sites 11, 13, 17, 21, and 25, Indian Head Division – NSWC, Indian head, Maryland.

CH2M HILL. 2005. Final Basis of Design for Site 13 Zero Valent Iron Injection, Former Naval Surface Warfare Center White Oak, Silver Spring, Maryland. October.

CH2M HILL. 2006a. Solid Waste Management Unit 16 – In Situ Chemical Reduction Pilot Test Results, Arnold Air Force Base. January.

CH2M HILL. 2006b. Corrective Measures Study – SWMU 16, Arnold Air Force Base, Tennessee. September.

CH2M HILL. 2008a. *Final Remedial Investigation Report for Site 21, St. Julien's Creek Annex, Chesapeake, Virginia.* June.

CH2M HILL. 2008b. Basis of Design Off-Site 13Zero-valent Iron Injection Former Naval Surface Warfare Center, White Oak, Silver Spring, Maryland. March.

CH2M HILL. 2008c. Final Site 17 Groundwater Feasibility Study, Naval Support Facility, Indian Head, Indian Head, Maryland. October.

CH2M HILL. 2008d. Comprehensive Remedial Investigation Site 89 – Operaable Unit 16, Former Defense Reauthorization and Marketing Office (DRMO), Marine Corps Base Camp Lejeune, Jacksonville, North Carolina. May.

CH2M HILL. 2012. Feasibility Study, Site 89, Operable Unit No. 16, Marine Corps Base, Camp Lejeune, Jacksonville, NC, February.

CH2M HILL. 2013a. Final Comprehensive Fourth Five-Year Review, Allegany Ballistics Laboratory, Rocket Center, West Virginia. August.

CH2M HILL, 2013b. Final Soil Mixing Completion Report, Naval Support Activity Indian Head, Indian Head, Maryland. June.

EFS, Inc. 2006. Site Work Summary Report. In-situ Soil Mixing, Arnold Air Force Base, Tullahoma, Tennessee. Prepared for Arnold AFB. February.

Gavaskar, et. al. 2005. *Cost and Performance Report Nanoscale Zero-valent Iron Technologies for Source Remediation*. September.

Shaw, 2005. Draft Close-out Report for Site 13 – Zero-valent Iron Injection, Former Naval Surface Warfare Center White Oak, Silver Spring, Maryland. October.

Shaw, 2011a. In-situ Chemical Reduction Zero Valent Iron Injection, St. Juliens Creek Annex, Site 21, Chesapeake, Virginia. April.

Shaw, 2011b. *Technical Memorandum Baseline Sampling Results, St. Julien's Creek Annex, Site 21, Chesapeake, Virginia*. February.

Shaw, 2013. Final Pilot Test Remedial Action Work Plan, BOMARC OT-16 Trichloroethene Groundwater Plume, Joint Base McGuire-Dix-Lakehurst, New Hanover Township, New Jersey. April.

Sovereign, 2016. Final Ninth Semi-Annual Sampling Event Analytical Results, Site 21 Technical Memorandum, St. Julien's Creek Annex, Chesapeake, Virginia. May.

United States Army Corps of Engineers (USACE), 2010. *Proposed Plan, St. Louis Ordnance Plant, Former Hanley Area, St. Louis, Missouri*, November.

United States Air Force (USAF), 2012. *Final Proposed Plan for BOMARC OT-16 Trichloroethene Groundwater Plume, Joint Base McGuire-Dix-Lakehurst, New Jersey*. February.

United States Geological Survey (USGS) 1996. *Hydrogeologic Framework McGuire Air Force Base and Vicinity, Burlington County, New Jersey*.

URS Corporation, 2003. *Remedial Investigation Report, Delineation of the BOMARC Trichloroethene,* Groundwater Plume. November.

USGS and Air Force Research Laboratory (AFRL) 2003. *Natural Attenuation of Chlorinated Solvent,* Ground-Water Plumes Discharging to Wetlands, Preliminary Report Subject to Revision. September.

Tables

TABLE AB-2 Allegany Ballistic Lab Site 5 Pre- and Post-ZVI Treatment Groundwater Concentrations

Wall		Upgradie	nt of PRB		Downgradient of PRB					
weii	5GW13	5GW13	5GW17	5GW17	5GW18	5GW18	5GW22	5GW22	5GW25	5GW25
Location	UG	UG	UG	UG	UG	UG	UG	UG	UG	UG
Sample Date	Oct-05	Jan-15	Oct-05	Jan-15	Oct-05	Jan-15	Oct-05	Jan-15	Oct-05	Jan-15
Parameter										
DO, mg/L	0	0	0	0	0	0	2.46	NS	NS	0
Total Iron, ug/L	1480	550	729	83.2	1310	7470	5720	NS	NS	2460
Total Manganese ug/L	3420	957	883	462	57.1	207	393	NS	NS	322
Total Arsenic ug/L	2.3 UL	NA	2.3 U	NA	29.6	NM	2.3 UL	NS	NS	NM
Dissolved Iron, ug/L	NM	679	NM	47.9	NM	5970	NM	NS	NS	2250
Dissolved Manganese (mg/L)	NM	916 L		492		191 L	NM	NS	NS	296 L
Chloride	30	NA	20	NM	16	NM	13	NS	NS	NM
Bicarbonate	77	NA	71	NM	180	NM	100	NS	NS	NM
Sulfate, mg/L	280	NA	200	NM	43	NM	170	NS	NS	NM
Methane, ug/L	180 J	NA	34	NM	38	NM	3.3 U	NS	NS	NM
pH, SU	6.51	6.72	5.05	5.87	6.13	6.89	6.2	NS	NS	7.7
ORP, mV	8	82	198	135	128	-34	-18	NS	NS	0.97
Alkalinity, mg/L as CaCO3	77	NA	71	NM	180	NM	100	NS	NS	NM
TOC, mg/L	2.1	NA	2.4 B	NM	1.6 B	NM	1 U	NS	NS	NM
VOCs										
TCE, ug/L	15	10	19 B	12	80	13	83	NS	NS	1 U
cis-1,2-DCE, ug/L	6.4	3	4.5	10	12	7	13	NS	NS	7
trans-1,2-DCE, ug/L	0.5 U	1 U	0.5 U	1 U	0.5 U	5	1 U	NS	NS	1 U
VC, ug/L	0.5 U	1 U	0.5 U	1 U	0.5 U	2	1 U	NS	NS	1 U
Sum of 4 VOC Detections	21.4	13	4.5	22	92	27	96	NS	NS	7

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

NS - Not sampled

U - Not detected at reporting level shown

J - Detected, value estimated

TABLE OT-2 Joint Base McGuire-Fort Dix-Lakehurst OT-16 Pre- and Post-ZVI Treatment Groundwater Concentrations

Well	Average V	Vithin PRB	Average Down	gradient of PRB	Average Upgr	adient of PRB	Average Cross ((South	Gradient of PRB of Wall)	Average Cross ((North	Gradient of PRB of Wall)	Benea	th PRB
Sample Date	Mar-12	Feb-15	Mar-12	Feb-15	Mar-12	Feb-15	May-13	Feb-15	May-13	Feb-15	May-13	Feb-15
DO, mg/L*	4.64	1.37	4.43	1.25	4.25	3.14	5.08	5.55	4.61	4.31	2.74	0.31
Methane, ug/L	6.4	77	NM	103	NM	44	NM	NM	NM	NM	NM	NM
Ethane, ug/L	NM	7	NM	6	NM	5	NM	NM	NM	NM	NM	NM
Ethene, ug/L	NM	ND	NM	ND	NM	ND	NM	NM	NM	NM	NM	NM
pH, SU*	5.31	5.52	4.83	4.73	5.5	4.62	5.49	4.96	7.36	5.17	6.02	4.61
ORP, mV*	19.92	-49.62	9.17	178.54	31.85	333	82	328	57	263	15	111
VOCs												
TCE, ug/L	113	75	28	144	132	112	105	134	44.45	41.65	1.68	3.25
cis-1,2-DCE, ug/L	2.9	1.9	1.2	4.1	3	2.4	2.5	4.9	0.71	0.78	ND	ND
VC, ug/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Sum of 4 VOC Detections	115.9	76.9	29.2	148.1	135	114.4	107.5	138.9	45.16	42.43	1.68	3.25

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

NS - Not sampled

U - Not detected at reporting level shown

J - Detected, value estimated

For MW27SR, geochemical data for November

2013 rather than November 2015 were available.

TABLE SJ-2 St. Julien's Creek Annex Site 21 Pre- and Post-ZVI Treatment Groundwater Concentrations

Well		Eastern ZVI Tr	eatment Area			Western ZVI Treatment Area							
vven	MW27SR	MW27SR	MW16S	MW16S	MW15S	MW12S	MW12S	MW20SR	MW20SR	MW02S	MW02S	MW14S	MW14S
Sample Date	Nov-10	Nov 2015 for VOCs; Nov 2013 for geochem	Nov-10	Nov-15	Nov-15	Nov-10	Nov-15	Nov-10	Nov-15	Nov-10	Nov-15	Nov-10	Nov-15
Parameter													
DO, mg/L	1.25	0.2	1	0	0.2	0.4	NA	1	3	0.96	1	0.4	3
Dissolved Iron, mg/L	2.29	18.7	0.756	0.317	19	4.2	16	5.78	13	1.64	0.050 U	2.19	23
Sulfate, mg/L	22.7	4.5	24.9	11.6	27.7	99.1	76.7	7.2	2.9	39	11.8	51.6	14.7
Sulfide, mg/L	0.6 U	1.5 U	0.6 U	1 U	1 U	0.6 U	0.21 J	0.6 U	1 U	0.6 U	1 U	0.6 U	1 U
Methane, ug/L	30.9	10,800	48.9	27.2	3,560	145	2,460	582	3,490	297	320	246	5,390
Ethane, ug/L	0.32 U	106	0.32 U	5 U	118	1.5	154	2.43	32.9	1.2	9.3 J	0.86 J	50.3
Ethene, ug/L	1.9	5.3	0.83 J	5 U	26.8	0.99 J	73.8	4.02	5 U	1.2	5 U	0.54 J	6.5 J
pH, SU	5.59	6.9	6.74	6.8	6.86	6.32	NA	6.46	8.36	5.97	7.5	5.76	7.56
ORP, mV	128.5	-56	-2.8	98	98	-46.4	NA	14.9	-52	64.2	141	186.9	-72
Alkalinity, mg/L as CaCO3	12.5	196	30.8	136	127	125	230	127	157	70.7	54.6	36.6	397
TOC, mg/L													
VOCs				-	-	-	-	-	-	-	-	-	-
TCE, ug/L	5,440	0.5 U	3,770	2	0.5 U	1,610	1.6 U	152	0.5 U	15.4	0.5 U	27.6	0.5 U
cis-1,2-DCE, ug/L	1,560	0.5 U	598	0.5 U	0.76 J	550	237	906	1.3	2,020	14.7	1,300	13.9
1,1-DCE, ug/L	23	0.5 U	29.6	0.5 U	0.5 U	4.6	1 U	3.4	0.5 U	5.8 U	0.5 U	4.6	0.5 U
VC, ug/L	22	0.5 U	33.8	0.59 J	3	9.1	78.2	33.4	12.2	42.4	3.6	12.8	34.9
Sum of 5 VOC Detections	7,045	ND	4,431	2.59	3.76	2,174	315.2	1094.8	13.5	2,078	18.3	1345	48.8

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation NA - Not analyzed

ND - Not Detected

U - Not detected at reporting level shown J - Detected, value estimated

TABLE WO-2 Naval Surface Warfare Center White Oak, Site 13 Pre- and Post-ZVI Treatment Groundwater Concentrations

Well					Ons	ite Treatment A	Area				
Wen	13DP204-15	13DP205-20	13DP206-20	13DP208-21	13DP218-20	13GW02	13GW02	13GW206	13GW206	13GW300	13GW301
Sample Date	Aug-01	Aug-01	Aug-01	Aug-01	Aug-01	Aug-04	Oct-12	Aug-04	Nov-15	Nov-15	Oct-12
Parameter											
DO, mg/L	NA	NA	NA	NA	NA	4	0.6	7	2.88	2.27	1
Dissolved Iron, ug/L	NA	NA	NA	NA	NA	61.6 B	75.3	14.4 U	6990*	13,500	10,200
Nitrate, mg/L	NA	NA	NA	NA	NA	0.72	0.052U	0.16	0.05 U	0.05 U	0.052 U
Chloride, mg/L	NA	NA	NA	NA	NA	96.4	40	60.2	86.8	53.2	110
Sulfate, mg/L	NA	NA	NA	NA	NA	3.1	0.26 U	28.8	49.9	1.02	0.26 U
Methane, mg/L	NA	NA	NA	NA	NA	0.0042	7.87	NA	0.42	NA	NA
pH, SU	NA	NA	NA	NA	NA	5.74	9.11	5.48	6.12	6.05	6.75
ORP, mV	NA	NA	NA	NA	NA	186	-363	238	-19	-17	-147
Alkalinity, mg/L as CaCO3	NA	NA	NA	NA	NA	9.1 J	7.4	73 J	35.4	32.6	8.7
TOC, mg/L	NA	NA	NA	NA	NA	1	1.3	1	1.41	1.1	4
VOCs											
PCE, ug/L	38.9	28.6	8.92	113	6.89	46 J	0.26 U	17 U	0.2 U	9.9 U	1U
TCE, ug/L	98	135	153	535 D	55	150	1 U	9.5 J	2.5	9.9 U	1 U
cis-1,2-DCE, ug/L	49.9	270	265	558	755	84	1 U	320	270	110	14
trans-1,2-DCE, ug/L	18.4	77.5	79.5	148	83.5	50 U	1 U	19	7.1 J	110	2 J
VC, ug/L	1	9.92	12.1	10.3	11	50 U	1 U	17 U	8.7	24	1.2 J
1,1,2,2 PCA, ug/L	946	664	215	683	490	700	1 U	17 U	0.54 U	180	1 U
Sum of 7 VOC Detections	1152	1185	734	1512	1401	980	ND	348.5	288.3	424	17.2

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

NS - Not Sampled

U - Not detected at reporting level shown

J - Detected, value estimated

* Result is from sample collected in July 2011

** Result is from sample collected in October 2012

*** Result is from sample collected in October 2014

TABLE WO-2 Naval Surface Warfare Center White Oak, Site 13 Pre- and Post-ZVI Treatment Groundwater Concentrations

Well	Offsite Treatment Area					
	13GW202	13GW202	13GW303	13GW303	13GW304	13GW304
Sample Date	Aug-04	Oct-14	May-10	Nov-15	May-10	Nov-15
Parameter						
DO, mg/L	0.59	1	8	2.39	4	2.81
Dissolved Iron, ug/L	24,000	3650**	1550	25.5J**	1460	6640**
Nitrate, mg/L	0.05	0.21 U	0.04	0.21 U	0.022	0.21 U
Chloride, mg/L	100	38	66	41.2	79	34.5
Sulfate, mg/L	4.1	0.1	8.4	0.598	3.1	1.21
Methane, mg/L	0.74	8.7	0.00072	1.4	0.0021	1.1
pH, SU	5.96	6.34	5.72	4.99	5.05	5.15
ORP, mV	-1	-134	131	193	239	135
Alkalinity, mg/L as CaCO3	29 J	7.8	28	5***	20	5
TOC, mg/L	1	0.36	59	1.29	10	202
VOCs						
PCE, ug/L	13 J	1 U	1.3	6.1	8.8	3.4
TCE, ug/L	69	1 U	12	15	44	16
cis-1,2-DCE, ug/L	400	1 U	210	32	80	28
trans-1,2-DCE, ug/L	51	1 U	11	15***	23	13***
VC, ug/L	25 U	1 U	7.1	0.59	1.8	0.73
1,1,2,2 PCA, ug/L	25 U	0.54 U	8.5	19	230	5.9
Sum of 7 VOC Detections	533	ND	250	73	388	54

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

NS - Not Sampled

U - Not detected at reporting level shown

J - Detected, value estimated

* Result is from sample collected in July 2011

** Result is from sample collected in October 2012

*** Result is from sample collected in October 2014
TABLE SV-2 Savannah Air National Guard Base Site 8 Pre- and Post-ZVI Treatment Groundwater Concentrations

Well			Downgradient					
Weii	08MW01S	08MW01S	08MW18	08MW18	08MW17	08MW17	08MW28	08MW28
Sample Date	Dec-08	May-15	Dec-10	Nov-15	Aug-10	Nov-15	Feb-10	Nov-15
Parameter								
DO, mg/L	0.63	0.49**	0.32***	0.51**	0.62	0.22*	0.27	0.65**
pH, SU	4.76	6.17**	4.02	5.64**	4.5	5.03*	3.98	4.61**
ORP, mV	-128	-74.8**	-143	-26.4**	-68.1	-102*	34	117.2**
VOCs								
PCE, ug/L	100 UD	2 U	5 U	1 U	5 U	1 U	5 U	1 U
TCE, ug/L	19 JD	2 U	23.3	1 U	5.7	1 U	5 U	1 U
cis-1,2-DCE, ug/L	1200 D	3.8 D	197 N	2.89 D	1 U	1 U	0.48 J	1 U
trans-1,2-DCE, ug/L	27 JD	3.5 D	10.6	1 U	1.86 J	1 U	5 U	1 U
VC, ug/L	9.2 J*	5 U	5.86	1 UX	0.767 J	1 U	2 U	1 U
Sum of 5 VOC Detections	1,355	7	237	3	8	ND	0.48	ND

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

U - Not detected at reporting level shown

J - Detected, value estimated

*Data collected in December of 2014

** Data collected in May 2015

***Data collected in August 2010

****Data collected in June 2013

TABLE AA-2 Arnold Air Force Base Site 8 Pre- and Post-ZVI Treatment Groundwater Concentrations

Woll		Source Area		Downgradient					
Weii	MW-640	MW-641	PZ-1601	DP-1601	DP-1601	DP-1602	DP-1602		
Sample Date	Apr-03	Apr-03	Aug-11	Apr-03	Aug-11	Apr-03	Aug-11		
Parameter									
DO, mg/L	0.07	0.13*	0.41	3.33	0.34	2.78	0.31		
Nitrate, mg/L	147.9	22	9.69	NA	1,38	NA	0.01		
Chloride, mg/L	8.4	8.1	42.3	NA	9.5	NA	10.6		
Methane, ug/L	3,700	56	1500	NA	1	NA	1100		
pH, SU	3.94*	3.92*	5.73	4.13	4.39	4.59	4.99		
ORP, mV	79*	151*	-23.1	163.4	258	163.3	95.5		
VOCs									
TCE, ug/L	5,616	692	480	3,259	284	853	303		
cis-1,2-DCE, ug/L	64.02	7.71	15,500	14	28.4	2.57	10.1		
VC, ug/L	3.43	1.09	6,600	2	10.9	0	0.6		
Sum of 3 VOC Detections	5,683	701	22,580	3,275	323	856	314		

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

NS - Not Sampled

U - Not detected at reporting level shown

J - Detected, value estimated

*Value is from May 2000 field event because April

2003 result was not available.

TABLE SL-2 **St. Louis Ordnance Depot OU1** *Pre- and Post-ZVI Treatment Groundwater Concentrations*

Well	Source Area		Downgradient								
weii	MW-111	MW-119	MW-107	MW-107	MW-108	MW-108	MW-110	MW-110	MW-116	MW-116	
Sample Date	Dec-11	Apr-15	Dec-11	Apr-15	Aug-10	Apr-15	Dec-11	Apr-15	Aug-10	Apr-15	
Parameter											
DO, mg/L	0.92	0.13	6.77	0.47	0.37	0.08	0.11	0.48	2.24	0.08	
pH, SU	6.17	7.45	6.3	6.26	6.02	6.26	6.3	6.35	5.79	6.38	
ORP, mV	232.2	-65.8	125.6	223.2	141.2	277.7	187.2	329.7	98.7	222.8	
VOCs											
PCE, ug/L	36,100	0.5 U	1.1 U	0.5 U	13,400	0.5 U	9,380	7980	1.1 U	0.5 U	
TCE, ug/L	1,720	0.73 J	0.58	1.1	4.6	0.5 U	208	258	0.5 U	0.5 U	
cis-1,2-DCE, ug/L	324	70.5	0.71	1.2	6.6	0.28 J	156	272	0.5 U	0.5 U	
trans-1,2-DCE, ug/L	50 U	0.5 U	0.5 U	0.5 U	25 U	0.5 U	25 U	50 U	0.5 U	0.5 U	
VC, ug/L	100 U	0.26 J	1 U	0.5 U	0.19 F	0.5 U	50 U	50 U	1 U	0.5 U	
Sum of 5 VOC Detections	38,144	71	1	2	13,411	0.28	9744	8238	ND	ND	

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

NS - Not Sampled

U - Not detected at reporting level shown

J - Detected, value estimated

TABLE CL-2 Camp Lejeune Site 89 Pre- and Post-ZVI Treatment Groundwater Concentrations

Well	ZVI Soil Mixing Areas											
VVen	IR89-MW20/67	IR89-MW20/67	IR89-MW22/63	IR89-MW22/63	IR89-MW23/70	IR89-MW23/70	R89-MW27/65	IR89-MW27/65	IR89-MW28/69	IR89-MW28/69		
Sample Date	Apr-08	Dec-10	Apr-08	Jun-15	Apr-08	Jul-15	Apr-08	Jul-10	Apr-08	Dec-10		
Parameter												
DO, mg/L	0.89*	1.57*	0.85*	0.53*	2.21*	0.11*	1.31	0.25*	0.82*	1.39*		
Ferrous Iron (mg/L)	2.8*	0.4*	1.3*	3*	1.6*	NM	1.2*	0.4*	2.5*	0.4*		
pH, SU	6.5*	9.66*	6.28*	9.25*	6.66*	8.6*	6.47	9.84*	6.37*	9.51*		
ORP, mV	-51*	-25.40*	-71	-271.7*	-62*	-180.4*	-61	-378*	-70*	-153.6*		
Chloride (mg/L)	349	290*	579	3450	257	580*	403	280*	913	520*		
VOCs												
TCE, ug/L	490,000	0.42 J	130,000	1 U	35,000	0.5 U	62,000	0.5 U	960	0.5 U		
cis-1,2-DCE, ug/L	140,000	1.8	150,000	1 U	100,000	0.87	49,000	0.7	34,000	0.3		
trans-1,2-DCE, ug/L	26,000	0.5 U	34,000	1 U	21,000	0.5 U	4,200	0.5 U	2,600	0.5 U		
VC, ug/L	3,400 J	0.35 J	17,000	1 U	7,700	0.5 U	14,000	0.5 U	29,000	1 U		
1,1,2,2-tetrachloroethane	110,000	0.5 U	12,000	1 U	2,500 U	0.5 U	5,100	0.5 U	830 U	0.5 U		
1,1,2-trichloroethane	13,000 U	0.5 U	1,900 J	1 U	2,500 U	0.5 U	2,500 U	0.5 U	830 U	0.5 U		
1,1-dichloroethane	13,000 U	NM	5,000 U	NM	2,500 U	NM	2,500 U	NM	830 U	NM		
1,1-dichloroethene	13,000 U	NM	5,000 U	NM	1,200	NM	2,500 U	NM	200	NM		
Sum of 8 VOC Detections	769,400	2.57	344,900	ND	164,900	0.87	134,300	0.7	66,760	0.3		
	*Field	*Field	*Field	*Field	*Field	*Field	*Field	*Field	*Field	*Field		
	Parameters from	parameters from	Parameters from	parameters from	Parameters from	Parameters from	Parameters from	Parameters from	Parameters from	Parameters from		
	4/15/08	8/6/09	4/15/08	6/15/14	4/14/08	6/9/14	4/14/08	8/6/09	4/15/08	8/6/09		

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

NS - Not Sampled

U - Not detected at reporting level shown

J - Detected, value estimated

Baseline data

Most recent round of post-treatment data

TABLE IH-2 Indian Head Site 17 Pre- and Post-ZVI Treatment Groundwater Concentrations

Woll	Upgra	adient		Source	e Area		Downgradient	Crossgradient	
wen	IS17MW03	IS17MW03	DP27 (4-6 ft)	DP27 (8-10 ft)	IS17MW07	IS17MW08	IS17MW10	IW17MW02	IW17MW02
Sample Date	Feb-05	Sep-15	Feb-05	Feb-05	Sep-15	Sep-15	Sep-15	Feb-05	Sep-15
Parameter									
DO, mg/L	13.11	0.55	NM	NM	0.44	2.07	0.42	10.1	2.45
pH, SU	4.92	5.35	NM	NM	8.57	8.57	6.16	5.87	6.1
ORP, mV	123	-3	NM	NM	-351	-351	-92	-54	-61
Acetate, mg/L	NA	0.2 U	NM	NM	0.2 U	87	0.2 U	NA	0.2 U
alkalinity, mg/L	NA	34	NM	NM	120	140	440	NA	180
Butyrate, mg/L	NA	0.1 U	NM	NM	0.1 U	0.1 U	0.1 U	NA	0.1 U
Chloride, mg/L	NA	20	NM	NM	110D	690 D	360 D	NA	60
Ethane, mg/L	NA	0.00196 U	NM	NM	0.0588	1.33	0.445	NA	2.14
Ethene, mg/L	NA	0.00271 U	NM	NM	0.00271 U	0.166	0.00137 J	NA	0.859
Lactic Acid, mg/L	NA	0.14 U	NM	NM	0.14 U	0.14 U	0.14 U	NA	0.14 U
Methane, ug/L	NA	0.00307	NM	NM	2.75	8.29	11.4	NA	6.88
Nitrate, mg/L	NA	0.21 U	NM	NM	0.21 U	0.21 U	0.21 U	NA	0.21 U
Nitrite, mg/L	NA	0.07 U	NM	NM	0.07 U	0.07 U	0.07	NA	0.07 U
Propionic Acid mg/L	NA	0.1 U	NM	NM	0.1 U	1.3	0.1 U	NA	0.1 U
Pyruvate, mg/L	NA	0.07 U	NM	NM	0.07 U	0.07	0.07 U	NA	0.07 U
Sulfate, mg/L	NA	31	NM	NM	23	1	1.4 J	NA	2.7 J
Sulfide, mg/L	NA	1 U	NM	NM	1 U	3	1 U	NA	0.81 J
VOCs									
TCE, ug/L	1 U	0.5 U	490,000	870,000	24.3	53.4	1 U	1 U	0.658 J
cis-1,2-DCE, ug/L	1 U	0.5 U	170,000	73,000	11.5	17.4	1 U	5500	142
VC, ug/L	1 U	0.5 U	14,000	10,000 U	1.88 J	13.1	1 U	1700	399
Sum of 3 VOC Detections	ND	ND	674,000	943,000	38	84	ND	7200	399.658

Notes:

Shading indicates post-investigation

No Shading indicates pre-investigation

NA - Not analyzed

ND - Not Detected

NS - Not Sampled

U - Not detected at reporting level shown

J - Detected, value estimated

NM - Not measured

Appendix A Cross Sections Allegany Ballistics Laboratory, Site 5

ES120312143449SAC ABL_Site5_CSM_V6.ai 06.26.2013 tdaus

Legend

- Monitoring Well Alluvial
 Monitoring Well Bedrock
- Cross Section
- Site Boundary Installation Boundary

Figure X Site 5 ESTCP ZVI Allegany Ballistics Laboratory Rocket Center, West Virginia

McGuire Air Force Base, Site OT-16

Arnold Air Force Base, SWMU 16

LEGEND

- - Water Table
- ------ Equipotential Line (ft amsl)
- Groundwater Flow Line
- Screened Interval
- ▼ Static Water Level
- Seep or Spring
- Clay with Silt, Sand, and Gravel
- Sandy Clay
- Clayey Gravel
- Limestone
- Shale
- 1045.02 Potentiometric Surface Elevation (ft amsl) 19% TCE Reduction as of October 2010

NOTES

Potentiometric data collected on March 15, 2010 (ft amsl) NM= Not Measured NS= Not Sampled Percent reduction is based upon the change in TCE concentration from before FeroxSM Injection to the October 2010 Sampling Event.

SCALE

Horizontal: 1" = 60' Vertical: 1" = 60'

FIGURE 5-7 Flow Net Diagram and Percent TCE Reduction SWMU 16 Performance Monitoring Amold AFB

E\$022811182928KNV

Summary Report, January 2009 - October 2010

CH2MHILL

Marine Corps Base Camp Lejeune, Site 89

Naval Support Facility Indian Head, Site 17

Figure 2-1 Locations of Groundwater Samples and Geologic Cross Sections Site 17 Groundwater Feasibility Study NSF-IH, Indian Head, Maryland

CH2MHILL

2. DIRECT PUSH TECHNIQUE (DPT) AND MEMBRANE INTERFACE PROBE (MIP) LOCATIONS WERE SURVEYED WITH A GLOBAL POSITIONING SYSTEM (GPS) UNIT BY CH2M HILL AT THE TIME THE WORK WAS DONE.

3. DESCRIPTION OF THE LITHOLOGY IS OBTAINED FROM SOIL BORING AND MONITORING WELL LOGS AND INFERRED BASED ON MIP PROFILES.

4. SEE APPENDICES A AND B IN THE FINAL REMEDIAL INVESTIGATION REPORT (CH2M HILL, 2004) FOR SOIL BORING AND MONITORING WELL LOGS.

5. SEE APPENDICES B AND C IN THE DRAFT FEASIBILITY STUDY REPORT (CH2M HILL, 2006) FOR THE MIP PROFILES.

6. LOCATIONS OF THE UNIT BOUNDARIES SHOWN ON THE CROSS SECTION ARE ESTIMATED AND ARE BASED ON BORING LOGS AND MIP PROFILES.

7. NTCRA - NON TIME CRITICAL REMOVAL ACTION (FSS, 2006 REPORT).

Figure 2-2 Geologic Cross Section A - A' Site 17 Groundwater Feasibility Study NSF-IH, Indian Head, Maryland

<u>LEGEND</u>

10 SCALE IN FEET 25' HORIZONTAL: 1"= 25' VERTICAL: 1"= 10' VERTICAL EXAGGERATION ~ 2.5X

NOTES: 1. MONITORING WELLS WERE SURVEYED BY BALDWIN AND GREGG OF NORFOLK, VA.

2. DIRECT PUSH TECHNIQUE (DPT) AND MEMBRANE INTERFACE PROBE (MIP) LOCATIONS WERE SURVEYED WITH A GLOBAL POSITIONING SYSTEM (GPS) UNIT BY CH2M HILL AT THE TIME THE WORK WAS DONE.

3. DESCRIPTION OF THE LITHOLOGY IS OBTAINED FROM SOIL BORING AND MONITORING WELL LOGS AND INFERRED BASED ON MIP PROFILES.

4. SEE APPENDICES A AND B IN THE FINAL REMEDIAL INVESTIGATION REPORT (CH2M HILL , 2004) FOR SOIL BORING AND MONITORING WELL LOGS.

5. SEE APPENDICES B AND C IN THE DRAFT FEASIBILITY STUDY REPORT (CH2M HILL, 2006) FOR THE MIP PROFILES.

6. LOCATIONS OF THE UNIT BOUNDARIES SHOWN ON THE CROSS SECTION ARE ESTIMATED AND ARE BASED ON BORING LOGS AND MIP PROFILES.

Figure 2-3 Geologic Cross Section B - B' Site 17 Groundwater Feasibility Study NSF-IH, Indian Head, Maryland

CH2MHILL

St. Louis Ordnance Depot

FIGURE 1-4 **GEOLOGIC CROSS - SECTION A-A'**

St. Louis Ordnance Plant **Former Hanley Area** St. Louis, Missouri

St. Juliens Creek Annex, Site 21

CH2MHILL

LEGEND

<u>___</u>

MONITORING WELL SCREENED INTERVAL

STRATIGRAPHY

WATER TABLE

 GROUND SURFACE
 HYDROSTRATIGRAPHIC CONTACT
 INTERPOLATED WATER TABLE

LITHOLOGY/USCS DESCRIPTION

FILL MATERIAL: ASPHALT

WELL GRADED SAND

SILTY CLAY

NOTE:

1. THIS CROSS SECTION IS INTERPRETIVE AND WAS PREPARED BY INTERPOLATION BETWEEN BORING LOCATIONS, ACTUAL CONDITIONS BETWEEN BORINGS MAY DIFFER FROM THOSE SHOWN HERE,

FIGURE 1-5 HYDROSTRATIGRAPHIC CROSS-SECTIONS SITE 21 BASIS OF DESIGN REPORT ST. JULIENS CREEK ANNEX CHESAPEAKE, VA CHESAPEAKE, VA CH2NHILL White Oak, Site 13

File path: v:\18gis\whiteoak\figures\site_13_long_term_monitoring_plan.apr

Savannah Site 8

FIGURE 1-5 Cross-Section A-A' Potential Vertical Extent for AS, SVE, and In-Situ Bioremediation Annual O&M Performance Monitoring Report Sites 8 and 10 Savannah Air National Guard Base Garden City, Georgia

CH2MHILL

ES120409231428ATL

Appendix B Groundwater Contour Maps

July 6, 2010

Shallow Aquifer Potentiometric Surface SWMU 16 Performance Monitoring Summary Report, January 2009 - October 2010

-CH2MHILL.

3-5

File Path: v:\18gis\abl\figures\long-term_monitoring_report.apr

RA NJ\1334 aw Offices - CAD Files\Trenton, Time: May 26, 2015 - 12:13pm bernadette.oconnor 0:\Sh Date/ ed By: File: Plot

LEGEND

		Existing Building
		Stream/Water Body
		Approximate Wetlands Boundary
		Groundwater Flow Direction
T16.MW00	~~~~	Fence Line
116-MW08 116-MW07 116-MW06	==	Sand Roads
	-125	Groundwater Contour (in feet above mean sea level)
	۲	Existing Monitoring Well
	\$	Monitoring Well (2009)
	+	Monitoring Well (2012)
0T16-MW13 0T16-MW12 0T16-MW11	¢	Piezometer (USGS, 2001)
DT16-MW10	+	Sentinel Well (new)
		Primary Peat Zones (SAIC, 2005)
		Secondary Peat Zones (SAIC, 2008)

LEGEND

		Evipting Duilding
		Existing Building
		Stream/Water Body
	<u> </u>	Approximate Wetlands Boundary
		Groundwater Flow Direction
		Fence Line
	==	Sand Roads
	-125	Groundwater Contour (in feet above mean sea level)
	۲	Existing Monitoring Well
	\$	Monitoring Well (2009)
	\$	Monitoring Well (2012)
	\$	Piezometer (USGS, 2001)
)	\$	Sentinel Well (new)
		Primary Peat Zones (SAIC, 2005)
		Secondary Peat Zones (SAIC, 2008)

AIR FORCE CIVIL ENGINEER CENTER ENVIRONMENTAL RESTORATION PROGRAM BOMARC OT-16 GROUNDWATER FLOW JANUARY 2014 JOINT BASE McGUIRE-DIX-LAKEHURST NEW JERSEY (formally Shaw Environmental, Inc.) 111 Howard Blvd., Suite 110 Mt Arlington, NJ 07856 2-4

Figure X-X Site 8 and 10 Potentiometric Surface Map (July 27, 2008) 1st Semiannual Effectiveness Report Site 8 and 10 Savannah Air National Guard Base Garden City, Georgia

File Path: \\boomer\H\projects3\SANG_Reorg\MapFiles\Site-8and10_PotentiometricSurfaceMap-20090119.mxd, Date: February 6, 2009, User: MEdelson

Legend

25 50 100 Feet

0

Figure 2

October 26, 2015, Potentiometric Surface Map 7th Annual Operation and Maintenance Performance Monitoring Report (February 2015 - January 2016) *Site 8, Savannah Air National Guard Garden City, Georgia*

MKE - \Lakefront\Proj\USAirNationalGuard\SANG_Reorg\MapFiles\WW_Requests_011316\Fig02_Site8_Potentiometric_Surface_Map.mxd User Name: AESPEJO Date: 1/29/2016 Time: 1:33:22 PM

SAMPLING LOCATIONS

•158.74 Groundwater Elevation Locations (feet above msl)

Groundwater Contours (feet above msl)

Estimated Groundwater Contours (feet above msl)

Site W Swale Collection Trench

BASE MAP FEATURES

Former NSWC White Oak Property Boundary Army Lab Property Boundary Roads and Paved Areas

- Perennial Stream
- **Intermittent Stream**

Buildings and Other Structures

Note:

200

The contour interval between 230 feet above msl and 250 feet above msl is 2 feet north of Dahlgren Road to provide greater detail around Sites 4 and 7.

Figure 3-11 Water Table Map (April 2000) **Remedial Investigation for OU-1 NSWC - White Oak, Silver Spring, Maryland**

Units = Feet

CH2MHILL

Appendix C McGuire AFB OT-16 Well Layout

NJ\133485 0:\Shaw Offices - CAD Files\Trenton, Date/Time: Aug 19, 2015 - 2:04pm ed By: bernadette.oconnor File: Plot

LEGEND

- Injection Point (IP) 40-ft Vertical Thickness with 7.5-ft ROI
 Injection Point (IP) 55-ft Vertical Thickness with 7.5-ft ROI
 Typ. PRB Monitoring Well Locations (shallow and Intermediate)
 Typ. PRB Piezometer Locations (shallow and Intermediate)
 Crew #1 Injection Point
- Crew #2 Injection Point

Note:

50'

1. The IP prefix for injection points (i.e., IP-01) has been removed from this figure due to spatial limitations.

2. Dates listed below each injection point indicate dates of ZVI injection in 2013.

50

Notes: 1. The + Hornerst ft MSL 2. Iso-a maximul OT-16	top of the town Forma (USGS, 200 concentratio m historica monitoring	clay cont ation occu D3). on contou I TCE cor wells as	fining urring rs ba ncentr of 20	layer is th at approxin sed on the ation detec 11.	e mately 25 ted in
	LE	GEND			
∇	Water Table	è			
	Well Screen				
5 40	Groundwate	r/Surface	Wate	r TCE	
330	Concentrati [,] Groundwate	on (ug/I) r/Surface	(Qua Wate	rter 1—Mar r TCE	ch 2014)
(Concentrati	on (ug/l)	(Qua	rter 3-Sep	t 2014)
20	DO' SC	0 CALE 1"=2	200'	200'	
AIR FORCE CIVIL ENGINEER CENTER ENVIRONMENTAL RESTORATION PROGRAM					
PRB CROSS-SECTIONS WITH TCE GROUNDWATER RESULTS: Q1 - MARCH 2014 AND Q3 - SEPTEMBER 2014 JOINT BASE MCGUIRE-DIX-LAKEHURST NEW JERSEY					
		(formally Sha	w Enviro	CB&I onmental, Inc.)	FIGURE NO.
		111 H	oward B Mt Arling	vd., Suite 110 ton, NJ 07856	8-1

Appendix B Field Notes

ABL

Calibration 116/17 6-10274le 18.718 746.5mm Hig expiration post - cal 10+#1 Parameter pre-cal DO 70 109.0 98.5 66J207 10/18 7.00 7.12 DH7 66E 220 5/18 4.00 PH4 3.74 66E 37 9,98 5/18 DH10 9.89 460/202 12/17 1.059 1,133 1.000 mS/cm A5271/A5355 9/17 -12/17 O.ONTU 5.0 0.0 A 5275 9/17 108.1 100 NTU 100.0 16E100608 6/21 239.2 242.6 239.18 mV Calibration 1/23/17 731.7 mmHg, 20.86°C C - 102746parameter pre-cal Post - call 1 expiration 10th D0% D.D. probe error 6.85 DH7 16/18 6G5707 7.00 3.94 PH 40 6GE270 5/18 H.00 9.76 6GE377 5/18 9,96 Cond. (mS/cm) 1.18B 4601707 12/17 1.086 A5271 ONTU 1499.6 9/17 -qqq,qA5355 12/17 100 NTU 0.3 99.7 A5275 9/17 249.4 237.5 16 E100608 237.5mV 6121 1/23/17 732.5 mmHg, 18.73°C C102009 Calibration pre-callpost-cal 10+# expiration parameter 89.5 96.5 D0% 10/18 6GJ 707 10.95 DHY 7.00 5/18 6GE 220 3.79 4.00 PH4 6GE 377 5/18 10.00 9.95 PHID 4601707 1065 1.080.1 12/17 Cond (mS/cm) A5271/A5305 9/17 and 12/17 6.4 D.O ONTU 45275 100.0 109,1 9117 JOONTU 237.6 6/21 237.5mV 16E100608 235.2

(102009 Calibration 1/24/17 733.9 mmHg 17.940 post-cal parometer pre-cal 10f# Expiration DOMO 04.6 7.00 PHT 7.04 6GJ707 10/18 3.95 pH4 4.00 66E 220 66E 377 5/17 PH10 9.79 9.96 spec 1.058 4601707 Spec 1.114 Cond mycm 12/17 A5271/A5355 0 NTU 9/17-12/17 1.0 0.0 A5275 9/17 100 NTU 97.2 100.0 16E100608 6/21 241.6 DRP(mV) 237.5

		ABL, WY 114/17
	10-14	Site 5 OVI investigation
		Diective clear utilities
		and stage supries for
		drilling this week.
		Weather party cloudy 52/447
		Personnel: J. McCano/ATL
		S. KI-RE/ATL
*		0800 Team arrived onste,
		watched plant safety
		video
		US25 Spoke with Les Mull
		about security clearance,
		cleared of escorted vistors
	· · · · · · · · · · · · · · · · · · ·	Shonid have contractor.
		cientance of Tomorrow
		0821 Social State A Plant
		Accuse with the dogs not
		have a crew comence
		Will or K on schedution
		one for tomorrow morning
		0240 Team releaved contractor
		badares
		08414 Spoke with Saedocho, crew
		will be obsite this afternoon

ABL, WV VAILT ABLINV 14/11 17 16 Site 5 OVI Investigation Site 5 OVI I prestigation 1108 Completed transducer calibra 0849 Spoke with A Blow, utility Locate crew will be onsite 1110 Team to Lunch 1228 Accumark onsite. S.Kline this afternoon and J. Mclann met accumer 0855 Arrived at the ground water at gate to drive to site treatment plant, got boosic site orientation and 1241 Heldsafety Meeting 330 completed at 11th Tocate bearing equipment 1341 Accument offsite 0913 Anthony/Accumark called, Lesvinganother site and 405 Sacdacco Onsite, begin storing equipment at Site B safety meting Will give us an ETA once he gets back to the office 1458 Sciedarco beans delineating PRB to expedite drilling 0925 confinued inspecting 1000 L. Mull came by to say that crossgradient wells Bern on the east side to delineate PRB once utility locators or terminus 1810: Eastern terminus deliverted at fore of drillers arrive we should slupe - Marked with flag let him know so he can 1615: Begin Western terming delirection get the work permit 1030: Western terming Selicited started for the week 1004 S.BIGISdell-showed J. McConn-1635: Les interes porte SAEDACCO & CHEM leave site - sist out at security. where shipments come in, 1645: Sullive dreves in at Wilson storts for Dry-ice tubing has not yet arrived -available fomorow 1005 Ruce red text from A. Lunghi/Acc. 17001 at Walmort lowes for mpphies ETA is 1230-1306 1730 ! Back at Hotal 1/4/17

18 ABL, WV 1/4/17 Site 5 ZVI Investigation Pre-Teisk Scafety Plan Discussed: Weather, shut off for ris, hospital conte. 19 1/5/17 Evening of 1/4: convection with Lawa Code (PM) a Malle sure each when it-full care has undistuded rative moterial for sampling (ICK (ZVI staining can creep into soil) rate erre have rate of the OP was Garding Con on core-note angle of bochile so resources can slice upon lines perpendicular to grand surface J mark Top - Cullect Developmant water during well, stall 0 - send pictures of east side - get promission 1/5/17 0 0745: CH2M (Skline J. Milan) at AGL Security & sign in 5. Kline gets where Fluid From Ghatp. Objective; Collect ZVI cores and shament CHI2M : Sikline SAEDACCO: Brinn J. McCany Satt Chan Weather: p. cludy cold 23°F snow expected in PM. 0800: Drive to Site 5 and Lesin set-up J. M. Con w/ Has briefing - c-11 weather, cushing. weaking DPT is at anylad drilling (hydrauli hores densle)

20 Note ABI Star 5 ESTEP 25°F		1/5/17		ABL	SITE	5	ESTCP	Shine An
() 5/17 Prise steel 2 510		1242 : 600	bl.	5: Kline	. José n	ot a	allow dillos	t. add
by a grow the 1-2 fort to get as a pilot hole for				ntes.	Semplaris	from	~ 20-25 Ft	not passible
horios				DPODI	2nd sur	ple	From 13-17	" 695. at
sites at 66-67 angle 5Ft- From marked out PRB				Abbury	68-			-
Nature scil: Foldish brunn SILT (ML) unaquinal		DPO	01		Pop.u	s.Sf	t (1 m	
Finic provel or sand, rubes, lamp.			Den S		No.		7 60	-
 Dictor Lift run, bacelade has Flattened and to 60°-			_				/	
prove sig up to presse the angle for next run.				2			/	
4-8Ft section 2.9 At receiving - SAA - damp, not saturated	4		-	D		1		
8-12 Fr Sedring ZVI bottom 1 Foot. approx 0.4 ft of bleck				J G		/		
into appredient Action Soft (Eilt)			6		1	1		
(900: statu call & Lack.			1		/	-		
OG 30: more wer 2ft t. the east and probably prote at 70° ande			2		1			
(sampler tending to flatter out during drding)	-		-		1	-		
1030: collect 1st set of samples at DP801					/	-		
Apprex 13-1797 at a 68° anole				1		-		
1125. Status cell w/ Laure Gock /VBO			+ 13'	0 X.	-	-		
- Dyra For lobs to accept strunday delivery				1 in	els liAL			
- meet sample run, add another core run & see if	_			1 594	THREAT			
work collecting the multile of the ZUI	-		110'	112'				
- cure not oriented - lut team know.				1		-		
1200: cullect 2nd set of DD. \$1501 samples	-	1210:	1) 11/03	taking	lunch .	+	DOdda	4.1.
Cure borrod struke in heaving ZVI sando	-	1240:	Julles	brok on	re: Inar	6 13	Vroy I	IUCATION
Dilles age it they can add water to keep 211 down	-		-			-		
					1			

22 VELIZ DOL SITE 5 FSTCP SHIMAR	1/s/17 ABL Site 5 ESTLP 3"F
1315: Vest lade at DPOP2 completed at approx 70.68	1530: Murticke due to slight incorrect location of PRB by utility
center of ZVI met in the 11-15 interval	lande.
2 G0091X. 3	- Beginning tusnum
notice sal languaged int of PRB- 4. soft & saturated	J. Melan buck inste. Sample with For Ghe peak
Such site light bound coloration w/ dr. gra	will call labor to discuss TAT for the sif Gu say
Stringer Firm ZVI well.	can occur tumporour.
1270: set up Fir cure cullent in all at DP002	1630: tullet DPODJ samples
I MEAN & GWTP For sample wit prep.	DP003 collected at 11-13' (EVI enterface) and
- Thing ourses on Friday 6th, overnight to	13-15' (ZVI)
OTISM - L. Curki Fur EPA pres.	netice soil a damp sity CLAY. ZUT interface &
happ: call Y. L. Cark	Zvi saturatal
CKLine cullected 3 sumples / water of DP 002	1710: Dedicate DP0703 cullatal from 9-11'(2VI nota
hole from 2VI myred frace from upgradet scripts	and 11-13'(2US)
5. Klice has adhated 11-13, 13, 15 (interface)	11-13' stored has order through the other
and 15-17' (inde 211)	sile of ZUJ - informal PRB theires
1445 - Judicite sample DP0102 - pour recovery at the	less than 2' at this location
15-17 interval - coprox 0.5 ft	1730. bredens down aquint for the day
1342 : Mueto PPOD3 location	1745: Sish out at Pass office
On initial run - hit the interface at 19 and	CH2M & SAEDACCO OFFS, ic
with the coblef gravel zone Redid Try Cak.	
cal mayor being in 1.5' at 68.70'	
NP0103 6.5 / 5' 1/2	
moved to move the	1/5/17
heabin	Mirc
Wurne cutile zone	
17	

		and the second sec
	24 Notes DOI Stor ESTOP	
		AR Site S ESTOP
	0200: Dikline ensite of base seems office	1230: JAEDALCO sign and at signing - offsite.
	Ciglective: apropheter 2.VI corring, ship samples	F - S.KI.ne to lunch
	Find been grendander sampling	1300: Besin installing Site transduces
	Staff: SKINE CHEM BRINN SAEDACLO	1500 End completel installion of 3 transluss
	J. M.Com Scott	- Met up ul J. McCan for sample shipment
	weather cloudy 23th staying below Freezing all day	1530: sign out of ABL security
X-rolling 1	0815: waiting for Orbital ATK employee to open Site 5	1600 - At Missins' Supply parchase aprox. 100145
	gato	dry ice for core shipment
	Care process thrush gate at last H > meeting	(630 - At Shipping office
	- show & falls, rushing, where growned	tracking At
	OB45: J. Melan to allat bottlesse for sending	- 80446498 4740 - OHSU
	Driker sitting up of pPCO24 location	\$100 8997 8960 - Laure Cook -7 EPA
	\$900 Native soil at DOODLY: raddish brown sandy SILT	1700. S. Klice offsile - work
	(ML), muist at 9'	
	OG45: DPORCH Samples Deled et 58°	
	q'-11 - pratice soil	
	11-P3'-ZVI Interface	
	13-15'- ZVI Interior	
	1110: collatall samples at DPO04	
	1130: Call From Sustin Melan - still waiting for shipment	
	of iron filton From Falter	
	1210: Dalles mab out of site	1/5/12
	I prim of drill infings stoged new billing	
	on world pullate	

27 26 1/10/17 ABL Site 5 ESTLD 1253 Started pumping at 5GW13.DTW=16.85'Dtoc 1400 ASOS-GW13-DIO617) For VOCS, metals (dissolved and total), NH3 phosphate, TOC, anions, alkalinity, sufficte, hardness, gasses and grantarray and NGS 26 quantarray and 1405 ACT GW 12P - DTOLO171 for VOCS and total and dissolved metals H57 Finished collecting scumples, purged about 3 gal 1600 Shipped scumples MJ-8100 3997 8937 Microbac. 8/06899178959 1700 J. McCann offste Final Parameters 200 6.57 9.58 1.486 231.4 1.71 Turb

1/17/17 ABL Site 5 ESTLP been pulling reds and Softing Welt 28 1/17/17 ABL Site 5 Personnels, McCann/CH2M FSTCP S.Smith/SAEDACCO, G.Hilder Enviroprobe, B. Biddy/SEDACO 1635 Well Inplace, mixing S.H UNH/SAEDALLO arout and drumming soil Objective, begin drilling and Setting monitoring welk 1652 Grouted 5GN 27 J-BGW28 and placed monuments Weather: rainy, 35-40% on wells 0750 J. Mccann Onsite 1659 Moved rig to make 08845AEDACCO and enviroprote 17 ZO Heoded to security onsite, waiting for 1735 Team offste for day Skid steer to arrive onsite 0923 Arrived at site 5, fillout Retaine Recommendation work permit and hold 0934 Started Setting up equipment DGEG Rig at 56W27 1642 Stourted drilling 5GW27 7 Hit metusal at 220Abas 15 250 Finished setting well 1314 Team to Lunch 1348 Ret, w, ned from lunch, HILE Started arilling 5GW28 1515 Finished drilling 5GW28

Scanned by CamScanner

1/18/17 ABL SHE 5 ESTCP 30 Objective: Continue installing monitoring wells Personnel: 5. McCann/CH2M, S. SMITH/SAEDACCO, G.H. laar/Enviroprobe, B. Biddy IS AEDACCO, S. Hunt/ SAEDACCO, R. Chavez/SAEDACCO Weather, Partly cloudy, 48/50°F 072+05. Mccannonsite SAEDACCO present 0750 G. Hilgor onsite, drillers move to Site 5 while J. Mccann gets YSI and ambers for development water for OHSU 0812 J. McCann moves to Sites drillers getting set up at 5GW300832 Safety meeting, slips, trips, and fails 0844 Started drilling 5GW30 0930 Started developing 5GW37 0934 Finished drilling 5GW30, started setting well Scanned by CamScanner

31 Site 79,56W30 100 TShed ed PULLI 1035 Frashed developing 56427 1239 -) 7 PONE E H + Ed aleveloping 5GW28 -64 rill'i 31 e 150 Flina 0 PCX Stalling 3 55 Finished developin 45GW28 Trished instal INA 56W31 niq MOV en 3W32 7 1AW 330 lunch, went treatment plant vater 5 MD WATP insk Salls AD ter avillers work on an alternation Returned to ontinued schoon 32 eveloping 56W30 arten ng

Scanned by CamScanner

32 1/18/17 ABLSITES ESI 1458 Refusal in 5GW32 Ming to see if L. Cook wants to set a well fifth 5' screen nished developing 56430 whed developing 55 N31 Fir eccived cor 44 5GW37 From L. Cookto Se 5'screen with 2 abovescreen tonit J51127 1550 Beach setting t developing 561 1630 Frozhed Tillers move equipment 1634 SGW 32cleaning up moving road 1-0 eam to securit Slan OM moffsite for stigendan Scanned by Car

34 1/19/17 ABL SHES ESTOP 1958 Benjinsetup at 5Ghi26 \$241 FINTSH Reveloping 5GW32 1052 Penske called and asked S. Smith to come to the truck parked at the Front gate for repair 110 S. Smith returns to site 1114 started, durilling 5GW26 1129 Started developing 5Gh33 1204 Finished drilling 5GW20, drillers to lunch 1225 Finished developing 5GW33 1245 Drillers return to site 5 1233Started Installing 5GW26 1323 Finished installing 50W26 1338 Rig moves to 5GW 29 begin setup. Completion crew moves to 5GhB3. Completed wells. 5GW27 5GW28, 5GW30, 5GHBI, " 5GN 32' HO3 Started drilling 5GW29 1442 Started developing 56W26 1445 Finished drilling 56W29 Scanned by CamScanner

35 10 bean 2) V Fin develo V iOr andpa 10 C 5 installing bew29 4X leaning C dy beains and 600 M nith allates O 1625 priller O ZNG arume NON 09 CA PAULIDMAN 01 OSELW OLT siar 1810 0 0 M HAR Hecom Kig Scanned by CamScanner
36 1/2017 ABL STEE 5 ESTLA Objective develop and complete 5GW29, demobfrom site Personnel J. McCann/CH2M, S.Smith AEDACCO S. HUNI/SAEDACCO B. Biddy/SAEDACCO, R. Chaver SAEDALIO Weather rain 135-38ºF 0733 J. McCommonsite, SAEDAKO present 0738 Headed over to Site 5 0754 At site 5, begin cleaning 0808 Safety meeting heavy looks 0812 Continued looding equipment 0904 Storted deve oping 55129 1003 Finished developing 5GW29 S. Smith Finishes putting tags on wells and goes to let other drillers know that 5GW29 is read for app for appad 1023 S. Hunt and A. Chavez start 56W29 completion Signith + B. Biddy continue Tooding equipment

Scanned by CamScanner

1/20/17 ABLSITES ESTLP 125 ford complete, loading concrete onto truck. 1Bo Moved up near ferced area drillers loading rig onto trailer J-Miccann completes drum inventorie 27 drums total 3 drums Soil cultings 5 drums drilling Fluid 5 drums drilling/development Fluid 1208 Prillers offsite. J. McCon dropping off equipment at Nater treatment plant 1223 J-McConf to Inch. 1300 J.M. Cann dropping off. OHSU COOLER at FedEx 1407 J. Mccann drops cooler at FedEx ship center Hatine McCastor Scanned by CamScanner

38 1/23/17 ABL SITE 5 ESTUP Objective begin sampling select monitoring wells Personnel: J. McCanny ATI C. Conover/VBO Weather Rainy, 44-48°F 0720 J. Mc Carpin onsite, headed to groundwater treatment plaint to calibrate YSIs and collect equipment 0930 Arrived at sites, waiting for L. Mull to open acte 950 Beath setup on 56633 DTW= 5,34 btoc 1012 Stanted pumping 5GH33 Ganged wells well Itime IFIC 5GWB 14 15 0.0 15, 16 30,00 5GW17/14 ·Q Salal 5GW811 5GW25135610.014. 09 260 Gh2/d Dal 4.61 0.9 K-11271 5GW28 0.13:14 5GW29 408 0.0 7.75 24.63 5GW30 1405 0.012 11 Scanned by C

39 123/17 ABL Sites ESTLA gauging continued DTI Nrell +Tme/PLD GNR) 14020 3 DOB GW32-S-GWBaM4 OR-GW33MSD 148 Stopped pumping 5GW33, total purge volume = 3.3 gallons 1150 C. Connover arrives onsite, S.Mc cann goes to security office to meet him 1220 Went to treatment plant to dump purge water 1230 Team to lunch 12 Returned from Lunch 324 L. Mull opens site 5 gate eversive 345 started Water ed water level BUCOmplet survey, Went back to - treatment acoundrater lant to pack coolers 520 Left site to ship coolers 1610 Shipped coolers

40 ABL Sites EST(P 1/24/17 Objective: continue sampling select wells at sites Personnel J. McCann/ATL, C. Conver/VBO Weather: cloudy, 32-440F 0720 Team onsite 0730 Calibrating YSI C102009 see cal sheet 0800 Started loading equipment into cars 0824 L. Mull getting keys for backage 843 Started Dumping 5GW26 ЛW=2. -GW20-1804 Stopped pumping 5GH26, total -of rolume=4.5gal + 5Gh132, DTN = 1.45 bloc DUMPTOD TGD 1120 Stopped propring, purged 3 gal headed to treatment about to dump purge water 456 Team to Junch 1237 Returned from lunch 1246 Setup at 5GW22 DTN=2.56bta Scanned by CamScanner

41 ESTOP rging, volume=280; W=2.44 5GW28 are ace ourdwater 1512 Headed to pork treatment plant coolers & dump purge forda eam other te 153 the and Scanned by CamScanner

42 1/25/17 ABL SITE 5 ESTEP Objective , Continue scimpling select wells at site 5 Personnel: J. McCann/AT. C. ConsverIVE Weather: Sunny, 41-54°F 0715 Arrived onsite OT23 Arrived at water treatment plant, started calibrating ameter pre-cal/post-cal/lot# 18xp DPM 97,2 \$70 7.00 65707 10/18 7.12 3.84 4.00 66E2 5/18 9-73 19.95 1665375/18 PHIO Lond (m5/cm) 0.627 1.118 4601707 12117 96.8 145272 9/17 16E10068 6/21 58.7 m/ 1235.2 238.1 e. 738.5mm + emp. 18.99°C \$55W T eaded to site 0813 H etup at 5GW29 DTW= 4.11 btor pumping 5GN -04 -07201 0925 Stopped pumping 50W29, total Aurge volume = 3 0 gg/ CamScanner

46 EST(P ABL STEE5 12/0/17 -Gh2I 0940 Stopped pumping 56425 total purce Volume = 2.5m W17 DIW=4.82+1a 1943 SETUP AT 2560 5GW 153 Started Dumping ASS-F N914F 1, 1046 Finished pumping DGWI total purge volume=3.0gal v ecotr Headed to t plant to pick up wast have terization coster dump purge water eantorunc 1117 1153 Returned toom lunch, went to water treatment plant byng wrench > get 214 Refurned to sit 5. Waiting to get gate opened OF DEWIZ DIN=13,32' SICTUP ed pumping BGWB 316 323 Stopped pumping 56W13, total Finge Molume = 2 2 By CamScanner

20 Location ATK Date 2/14/12 Project Client WATEr Levi-1 5.15 LAWOS, 11 0630 Arrive owsite ML OST 26° Clear 0730 CONTRACT LE Marin Sor Access to LANDErII that Tim Ewiz to open 21.50 6:5 13 14.34 0830 56W 30 2.35 03=4 56W31 2.70 0927 560 51 2.70 0541 560 26 3.80 0541 560 27 3.55 05-13 560 28 3.40 08.14 560 32 2.36 05.70 560 33 45 08.40 560 23 3.80 09.17 560 18 3.01 07.15 560 18 3.01 07.15 5 GW 17 5.34 0924

ocation	Date	21
Project / Client		- 📕
1. The same second s		-
		-
		- 1
		- 1

St. Louis

Location_SLOP Project/Client 2UI Perf Manufus 4 0800 6. Rebers 2. Delberre + Review Tasks, HSP AHAS + Sign 0830 Person Stasing your sequences Weather - der tedu 2900 0915 Setting on DP-cob Seeborgby 0930 Spake to Loura regending DRacy. Sent pretones 0830 OP-ocy is beatin down grabient but is adjacent to Ferce al electric abue Driller culd advace of low cloware My LA THE two alt wallad time t cust Completed DP-005. Guin to Set 1150 well @ 20'bys on state DP-cos is set @ 201655 1520 on sky nore they advancin DP-003 Stebsights STUP For day, @ 15'655 in DP-003 530 1630 Scanned by CamScanner

Location ______ SCOP Date 1/10/17 5 Project / Client ______ Date 1/10/17 5 0700 6- Fibers 2 Delbegre + Alla on site Review JISIS PISP Wester-Clarty-Mild 50%F Charle of rain 0734 Calibrate Multime FA01132 Multigas part & 346-41345 MF6 Date: Sep-16 4 MF IAQ-413-18-10 ISO part = 9/16/2015 TSO part = 176-248-100 inFGDate = Dec-16 Lotx: 686-248-100-19 $\begin{array}{c} F_{12} \rho_{12} \rho_{220} \\ h_{1+3} \rho_{2} = \rho_{33} \rho_{33} \rho_{7} \rho_{7} \rho_{12} \rho_{20} \\ C\sigma_{2} = \rho_{33} \rho_{33} \rho_{7} \rho_{7} \rho_{12} \rho_{12} \\ C\sigma_{2} = \rho_{33} \rho_{33} \rho_{33} \rho_{13} \rho_{13} \rho_{13} \\ \rho_{13} \rho_{13$ HJZ Pass LEL: Pass Vals - Pass OFID - Cullet SLUD- PPG03-18-20 at a voit state o 22'by 0446 allowing plaste set in DP-003 marin to DP-006 See boring los Scanned by CamScanner

Location SLOP Date 9/10/17 Project/Client ZVI Pert Munt Location_SLOP 6 1115 Conpleted DP-ceb TD on slile @ 27'bss Set well @ 27'bss 1240 Plus set welt 14r tolzahle 1300 Stop dueto lighting BAL Brink U/ DUSACE on Sile 1400 Work stats bick Dean Ayes 1400 Nork stats bick Dean Ayes 1530 Nove to grat DP-ces 32 005 1645 Field ten Starte 1645 Scanned by CamScanner

Location _____ SCOP Date 9/11/17 7 Project / Client _____ 2UT the Pert han. 0700 Orhort + Hallogs ask bere cusite R tsign prop class dell, 38°F PTSP GR Wealler ater tedes in Deckta Rishing 0730 Calibrate Nultira FAG132 Multio = Pars Fredar: Fredar = Pass CJ= Psss H.S= P43 LEL: fis. UCKS = PASS OSCO CULIET SCOP-SBOOL-1820 SLOP-SBOUL-1618 Seal + place in Carking Cap dry Ice Stell @ 27/655 in DP. aul 0930 Set well @ 20 kgs, Baring las On Seperate form DP-001 100 DP-GO2 Move to Spoke w/L. Could weed Samples for the ana Jsi Jo, Will need Scanned by CamScanner

75 Location_____ ____ Date 1/1/17 Project / Client _ 2UI Perf Monitoring Cellect SLUP - SBOUZ-1618 + SLOP - SBOUZ-1820 aver + drill 2 - brorises to 20' for but DP-al + aur Will also need to so brele to DP-ar3+Callet a 2nd 18-20 Set 09-002 0 251633 305 onshill, B. Brak afforte More to grut AP-colter Field ten affisite 400 -Scanned by CamScanner

Location Shap Date 1/12/17 9 Project / Client 203 Pert Monto 0730 6. Lebers, 2. Dollace + Billes chjite, Rear the PTP HAS MUMET = Mart Weather Weater = Ran Ritatial tury to Dec 074T neve to Dean Any + Ad 3500 Callente Muthiker FA0132 Multi = O2 = Pise Fresher = Rise CU-Pisy HJ-Pass CEC=Pass UCKS fess 0820 Set por DP-004 peeles to nose forces 1200 DP-004 Installed 0 251655 at the top of state, Plus Set alling to topolato 1400 DP-004 Complete Z-Delbreare to Patie to ship Samples Buildes decomins Byzers + penking Decar Paul tob Drum. Scanned by Can

10 Location _____ 512, MQ _____ Date _____17/17 Project / Client SLOP Dectormore monitaring 0800 All present on site: Z. Dolbing (Ham, Glyn Roberts/ellan, we mini / Builles, John Gates / Bulldog wenther: 33/46°F, dunky, west wind 10-15 mph, 75% howity abjective - well developent, sample shippent, drum hunsekeeping soils eyn prent the Rupper (155 quetre # FAD 3038, Hach Die + FAD3014, Hurs merer OBIS PTSP sutity bility; topics = sloges, some, no meshing 0330 Water Levels before development well ID water level (ft bas) time 14.05-DP-001 0838 13.67 -DP-002 0845 2,82 0850 DO-003 1.85 DP-004 0835 2.78 DP-005 0840 2,50 -0843 DP -006 Short developing XO at DR-005, Correct simple 0900 (2) 21 ambers well pumped dry 3LOR - 58009-1020 in gal puzzed -Sel ett Dep tars DO tene 0.77 6.89 144.9 183 8.20 10 -12.2 910 shas developing at DP-005. Collect sample (SLOP-58003-1222) in (2) IL compers well pumper 2mg temp Do Soc ett and gal pursed tuck 14,6 5.25 0.76 6.98 140.2 664 10 0925 start developing At DR-006. collect simple [SLOS- 36006-1727] in (a) I'L combers were proper day Scanned by CamScanner

11 Location ______ 5+6, MO _____ Date __1(17/17 Project / Client SLOP performance maitring dens Do SEC 24 OIR tub god more 13.9 3.47 2.69 7.16 .78.8 424 12 DAYS Short developing at DR-004 concer [SLOR-SBOOY-1525] in (2) 22 mbers. wen small ber timp Do Set et one tuck poleris 14.5 821 0.71 7.00 153.6 297 11 0155 Sture description at DR-001, collect 38 (SLOP-SEDOL-1727) in (2) 21 onlos well pumper bry and the damp and the set of the damp and the 15.2 2.39 0.64 7.16 -103.2 >300 7 1000 stars de-supers at DP-002 collect [SLOP-SB002-1525] in GD IL amber wer proper day. ganace tene DO Sec ett ore turb HUSE 75 15.0 2.90 0.83 7.93 -190.6 830 -1017 Finished well development activities and stand on downs at your area. Drum cont. & sursons, I down god, 12 soil, & empty drums. 100 61yn Auberts att site to reduce eurigment --1140 Eyen and Bullers est site. End to ship 11/17/16 Scanned by CamScanner

38 - Date 2/15/17 Location Tt. Louis, MD Project / Client SLOP ESTUP NOVFAC 0820 Onsite 1. Swierczele CHZM Weither: 36, windy & clear Objective. On site to drill 16 hole in each riser of temp wells DRUDI through Republiper Kyle Kirchner MANFAC. OB22 June Frank Franzier & Tony Bridges of Both REC to unlock main jate. 0825 Lone worker checking u MSKD (eteolog angle) 08:30 Reviewed & Signed 8758. Hozards. 0835 Frank prisice & unlocked gave 0840 Begin dilling the hole on east side of riser Deppo. Dept through 0844 Complexed dilling holes. Pic 1: W. view - 110 hole & DROWZ

Location St. Lovis, MO Date 2/28/17 39 Project / Client SLOP ESTLP NAVFAC 1240 Onsice T. Swierczele CHZM Weather 73° cloudy & win Objective. Orine to cause temp wells & MW-119, collect IDW somples. 1242 Called Frank Frenzier 1800256 250 20 unlock cate. 1248 Fronk unlocked got Equipment etras frost Heron WUI C-103272 1250 Raviewed & signed 8700 1251 Checked in in Worker concert, Glan Roberts 000- y costs 1000 A MW-109. 1430 Collected IDW-01-022017 TUP, TUP VOUS, of reputivity, flushpoint + Jeum libs from all (12) Soil dive aliquores from removed & representative each homogenices in bagine. Sumple for TCLP VOCO Collected from Drum #11. 1450 Collected Dw-12-022017 TCLP TELP VIX. ett remeivior, Flashpaine 10 Comed 4 (J) aqueous Rite in the Rain.

-' 40 Location St. Low's MO Date 2/28/17 Project / Client SLOP ESTUR) NAVFAC collected representative aliques of liquid for TCLP, dt, remaining, & flushpoint. Conjected TCLP VOCS from Drum # 1. 1500 Rean securing all drum lids. 1530 Gold ed comp wells & Mw-119 (setator) Mus 9.68 D69:71 9.87 DEDDS DROU3 8.52 DRADY 6.65 DRADS 9.01 DP036 7.92 MW-119 4.43 Blone worker checkin completed every hour. Offsite @ 1535 1545 Shipped samples via FedEx. Tradein + 1857560011612

42 Location STC A Project / Client SCOP ESTCP / JUNE FAC	$\frac{S + L / L_{Location} - S + L / L_{Locatio$
$\frac{1}{12} = \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac{1}{12} \frac{1}{12} = \frac{1}{12} \frac$	attempts 42 Area revulativistilister to south is trats seed has been pisted to compt w/strue Ris we filled w/strue to seed to intere chips of mil 1/20 Fill term ats to M
1000 Lits file of takenleng 1000 Lits file of the fort 1600 The mail Apple of the fort gbundened, Apple of the forther the forther of the forther of the forther the forther of the f	Ret-order

.

Date DAZS T Location St. Lovis - MO Project / Client SLOP ESTLR | NAVERCE 400 Draite T. Swierczek W. Lonwa Whather . 440, windy, cloudy Ubjective: Onsite to complete groundwater sampling as port of Ester study G20 Reviewed & signed HSR. Discussed cold weather & walking hourds. - Locked gates were open upon arrival. Equipment. Perisoleic pump: C.102741 Kristatic pump C-102654 Heron W21 C-103274 Heron WLI C-103249 Hach 21000 C-103166 Huch 21000 C-103269 Mult: PAE C-102457 YSI 600 C.102287 151 600 C-102995 + All cquipment calibrated @ warehouse prive to arrival. 0930 Opened tepp well's DPOOL - DPOOL AMW. 19. - 112 Strange man 6001 eiver Heine top of casing 08.15 10090 D8002 Ki.20 27.80 2.80

13 Location Schouis, MD Date ON 23/17 Project / Client SLOP ESTER | NAVEAC (te) of DTW DIB (febroc) (ft btoc Tw/MW 3.23 3.00 145.96 25. 28003 2.72 27.7 4.91 DROOM 3.23 23.2 10.10 20095 2.79 29.8 7.01 260000 1.49 29.90 MUD-119 + Will amove PDB from MWD-110 Detace purgin. 1030 Secons up @ DROD3 * Low-flow information recorded on separente form 1050 Bagon low-from @ DROPD3 -Encessive drawbown; use low recover - procedur 1116 Reading except water level, estable Q DROPS. CHEMETS DO: 5mg/1 1120 Collected 5108-TW03-012017 1125 Collected SLUP-TWORR-012017 (FD. Analyses. VOLS 8260, Toral & Dissdued meterly wordbord, Ammonia, TOL, Anions, Alkedinity, Phosphere, Dulficke, Hurdress Nethere, Ethene, Ethene, Acerplene, Opuncaneson, *FD collected for VOC, Juter) & Dissolved 1300 Serve DMW-WG

Date Olistin 14 Location T. Louis MD Project / Client SOP ISTLE NOVFAC 1300 Began low-Flow @ MW-119 * Low-frow data recorded on separate form. -Excessive drawdown; used low recovery procedures 1329 Readings, except water level, stable @ MW-119. 1330 Collected SLOP-MWII9-012017 1330 Collected SLOP-MWIIGMS- 012017 1330 Collected SLOP-MWIMMSD- \$12017 Analytes some as DPOQ3. * MS/MSD another ed for VOCS Toral & Dissolved Metals 1050 Collected SLOP-TBOI- \$1232017 Analyzes. VOC > LTS Preport 12/2016 CIOS Note: Purged 250ml @ DPO 03 Chrough biotiteers. - Purjed 200 m/ @ MW-119 through biofilturs. 1435 Parking sample coolers & completing Color. Muss Quarteray bistitura going to Microbial Insights. All uphers going to Micobou 1500 Transferred 23 callons purper water into labelled drum. 1515 Office to the imples

Location SLUP / SFL Date 1-24-17 15 Project/Client SIDP / VSLUE

ie i in sile \$ + u, i -+5p - 5140 Wathen Celi P. Clu in OU. SAMPLE Malls CLIBRATE YST CLUC 257 ond -> 1.35 -> 1.412-> 1.417 100-279.3 JC 6-43-7-7.00. 214 5 2 V. on TRUCT CLISO Collect SIDE - HWOS- 012017 5-me AS PPCS DUP. TEDI-DIZON = Following into deaned from low frow data seconded on soone form (I-swierizale). 2915 Decon purging @ DRDD5 ONE Readings & Store your invest energy wenter land. «Constants DOField wat & DROUS: 6m;12. 1050 Been pring @ DEODZ collected somple because all other promoters stable. 1125 Collever SLOP-TWOZ-OIZOIZ DO= Congte 1449 Reading Except work bed stabilized. 1445 Collected 508-7006-3020-1200-6mg)

Date 1/25/17 Location St. Louis, MD 16 Project / Client GLUF COTCP / NONFAC OBO Onsize T-Swier czele 0800 Onsite W. Conus. Weindner: 51° & windy Objective. Onside to complete geow sampling activities 0805 Kenned & Sined TTER. Diswood inclements weather howeres & everter contents. * Equipment used today some as that Usel on 1/23/17. - YSI C-10295 has not been used yer, & was calibrated @ warehouse. Calibrate 451 6-102287 Conductance: 1.000 m3/m -> 1.000 m3/m DO'. 100-099 V-025 - V-025 .950 sh. Calibornon Solution information 0H7.0: CARMINUL LOR - 645707 Expires. 10/2018 UR ZODENI. LOCA ILE IDDIOLODO Expires 1/2021 Coduconce. Exca jaco tolen Loc + 101707 Copies. 12/2017 · Transferred collibercion solucions, encere Zdaell to aqueous 1200 drum.

LOUBLOT TE LOUIS MO Date 01 25/17 Project Client ANE ETTLE NOVEAL 0000 Samp & Mobi a low-thew intermetion recorded on game form. 1050 Server @ Droboty · Low-then information recorded an separate form. cons Beion collection of ambient blank to second sample containers filled with discilled water on retaining wall located near temp wells. Uli peristilti pump GIOZTYII connected to car adapter because gump will not churge Tried to use pump on 1/23/17, but with not power on Charles on 1/24/17, but to litital voi sind son planting Seredalow. Obis collected ombinne blank 5-28-5341-412520171 Analyce. VOL: Total & Dissolved Hereals 1 dial of Suind wind a state 1000 Revenue of Ded Freeman C DROOT & water level continuing to dog of frot. 1005 have decision to collect sample become ORP was continuing to flucture

Date 01/25/17 Location St. Lunis, MO 18 Project Client SLOP ESTUP NONFAL heaven 3004-400 mV & Whoir level vers continuing to drep. 1003 Colleber Sur-Twoll- Q12017 Analyzer: See full list in oures recorded on 1/23/17. CHENETS DO Field test resulto DEPA1 10 20212. - Roy and 250 ml through birtilors ta Seppi. 050 Colected # 408-TB- 01252.017 Anolaco Voca 100 Person Questin @ DRUDY 1130 Zendings bereft water level Stado, liced Stoppy 135 Collected GoR. TWWY- 012017 Analyzes. Some as those on 1/23/12. Chesters DO field text realt @ DRODU 15 Jmg/L. zuendinte tudit solucionent with liquines from a distilled when = Ru a) 250 mt through each biofileir 0 70001 100 Sine dem-up 1240 W. Convery diffice

¹ 20 Location <u>St. Lauis, HU</u> Date 01/30/17 Project / Client SOLOP ESTUR | NAVFAC 0700 Orisite T. Swiercreek CHICH Weather: 27° & party claudy, preeze Objective: On site to overse survey of temp wells & conduct Stry test on the temp wells. * Main gove to north end of size is locked texted then I tridges & encided Tony B. & Frank Frazer 832 toc 2705 Frank ansite to unlock main gate 0705 Zeviewed Hop Equipmone Heron WEE C-103274 In-Site Regged Revolar C-102742 Level Troll TOD C-102694 * Per 50P, will conduct (2) visitice she terses (sising head only) on each ter Well ving 15 x 3' solid displacement device. + Will not conduct slug test @ MW-19 because PDB device in well for April 2017 LTM sompling. Distuising worder columns Most ing But to man griterst with frinker resulting per discussion with Army during 1/24/17 meeting. Notified Lawron Cook/CH2A.
21 Date 130/17 Location St. Louis, MO Project / Client SLOP ESTLE NAVFAL Porc 07:55 atio Winston Unizi 0800 SC. Clisc trati 3 econor with Cherlie 0830 213095 SUNZ ripe well locations. 0850 Gruce well l'it bec. fe bca 1stre 1con7 OFFICE Dinda MWS SIS 29.90 2.46 MWDIIG 28 29.98 ماط. فا Depq) 25,5 27.66 13.41 Degra 6.03 25.32 23 DRODZ 25.5 67.60 525 Dead で 3,15 7.92 27.5 6,46 29.74 DEODP \$1 Sources Vier NIR evens (2) valid risin Ker Sol conduct 6 well. head sh estes De e 0115 Be Deda O test P. Sluc NE equilibrate 25/04 state ブセン worker Evel DIV Jack 11025 20 0140 ma 2 2005: 7.7 Rite in the Rain.

22 Location Sc. Louis, MD ____ Date 130117 Project / Client SUCC ESTLE NAVFAL OINS Slugin Drw @ PRODE : 6.80 1000 Panjea officite 1015 Drw & D. 005. 7.50 - Level recovered whin 9070 of courting - will be give riving head @ DPO05. 1016 Dr. 2.55 C 1030 DTW: 8:45 * 1026 Implementing Lone Worker becauve Wyne Conver Koten did not show up. - Texted Chyna Rubertos was 702. 1045 DTW; 8.31 1050 Drur. 3.34 wriging to it of a fur Connector Edigites level of 7.92. Ended Testl. 1052 Motalled slug @ DROOS for -85. Torizole for with 500 1105 DTW: 7.480 1109 - Level win 9070 of original Drw; bear Test Z sising hered & D? \$ \$5! 1107 DTW: 8.55 * Decomed stus 1136 Lone Worker check-1145 JW: 8.32' + Level w/in 90% ; ended Test

Sataria tat 23 Location Sc. Louis MO Date 1/30/17 Project / Client SLOP ESTUP NAVEAL * Decumed Level Tral 1155 Moulled Level Troll & Slug @ DCDD2. DTW betwee inposell: 13.13 1157 Sugin DTW & DROUSE 12.14 1212 DTW - 12.18 Ambienz comp. 470 1722 Drw. 17.18 * DRODZ Cecoured win 9090 & original level. Bezin Fising heard Test 124 Dru & DEP 2. 1330' 1236 Lone Worker check- in 1259 200: 13.19 * Ended Terrel @ JCADZ b/c level whin 9070 of level herbere Trollashing install. 1302 Intolled Slug @ DRODZ for Tes Cure vizare Each 12.12 1328 2700:12.14' "Bagin Tenz Z ble level whin 90% of level betore Test 1 (13.13 * DEADZ recovered whin 90th of level prive to Tene 1: By Tenez 1531 Drw Q 80002' 13.30 · Decomed she 133 1406 DTW: 73.17 Rite in the Rain.

24 Location Scionis MO Date 1/30/17 Project / Client SUDPESTUP NOVFAL 1400 Lone Worker checking + Ended Test 2 EDRODZ b/ level w/in 90% of level before Tesel (13.13) * Deconed Level Troll. 1409 Drw @ DRUPN beture inscall Level Trul & Elux 16.25 1410 50, 10 2700, 15,14 1435 07. 00: 15.44 * Begin Tene 1 @ DOODI ble level is 19041 3 Kostors revel to 0501 -ifw before Troil & slug install. 1440 DTW 0 DRODI 16 58 1515 Drus, 16.32 1515 Lone Worker Sheck-in * Ended Test 1@ DPOR (w/in 9070) 1516 horalled she @ DROOD for Terr Z. Suria DTW: 15.20 1547 Slug-in 2300: 15.43 * Brigh Teste Z & DRODI His level is whin 90% of level recorded @ 1409. 1512 DWC DRODI: 16.52 1617 Jus: 16.29 1600 Lone Worker Sheck-i = Ended Test ZE TRUDI (w/in 9070)

16 25 Location Sc. Louis MO Date 130/17 Project / Client GLOP ESTLE NAVFAL * Decomed Level Troph Pic 1's N. view. Drive befor entrance to N. end of size. Ricz. W. view Drive ON. end of sive Ric 3. MW view Ric trades to orea of ESTCR temp weeks. Picy: Wriew_As above Pic 5. NW view As above Pick. E. view_Portable foncing clons Nend of site. Pict. W view As Dove Ric 8: W. view Slog Dest @ DROD5 Ricq. W. view- Gry Rest @ DRODI. 1630 Ofts: De

26 Location St. Louis MD ____ Date 1/31/17 Project / Client SLOP ESTER | NAVFAC Marino Orive T. Swierczele CHIZA 0702 Lone Worker Check-in Gyn Zoberton Weather: 47° & windy Objective. Orisite to complete - Aug testing a DRADS, DRADY & DRADO. 0705 Opened slug testing wells OTIO Reviewed & Signed Ath. Zeviewed emergency contents & hospital route Equipment Heron WEI COUSTLY In-Sion Rugger Reader C- 102742 Level Tron Too C-102194 + les 50 will conduct (2) which rising hered tests on each well what 3 x 1.5 Ho solid displacement sho 0200 DTW @ DRODY. 5.27 bes 0202 Installed Level Trul @ 25.5 beac 0204 Installed siver wat helpe water table יארגצ ינטדע היה טובי צופט 0313 Love Worker checkin. 0833 Surin DTW: 3.89 0845 Slugtin Diw: 3.94 0913 Lone Worker check-ir

27 ____ Date 131/17_ Location St. Louis, HD Project / Client SOP ESTLA NAVEAC 0915 SIUL-30 DAD'. 4.05 + When Werd @ Dropped soil has not overed to whip goto of ourcie level. 0120 Texced Lawren C ock CHZM C DRODUL. She show re riba ana lin Line- MAVEAL ct h yle thir dizuss. 1002 Louren Cook hans no 120 JUG recei response from the Te Kirchner yet tal LESE @ IR popula movin abandoning prother () selles (1:10 - not of all on more Diran water buch @ ROOM before next Jourtion. 1009 SIVE - DTW: 4.23' * Remover suc & decorred * Removed Pevel troy & dec 1015 Serve E DODB3 1015 DTW & DROD3. 6.99 beve * histerilled Level Truin @ 23 bruc 1020 Josanne 2 shop below where tube 1022 5 DW. 5.42 1024 Lone Worker ch ech-1030 Lewis Curre Called: Kyle Rite in the Rain .

28 Location Sr. Losis MO Date 1/31/17 Project / Client SUP ESTER | NON FAL can an falling head tere & DRADA it entire well sites & sudprise is Subscreen pert. Any this is the case & DPODY will go toute to DRADY Joor to conduct falling head. 1036 510 in Div @ Diqu3: 5.54 + Unable to do fulling head test using Level Troll @ DEWD3 HECONSE Glug was installed before response received from Kyle Kirchner, How Ecovery @ DRAD3. 1058 Juin DW. 5.64' ING DE DE DE DE DING JIII * Frisich on stan recovery @ DRADY & TROODS will conduct fulling band test @ DEDUD. Well suren & sondpuck use encircly enhancinged. If falling head reputes indicate 90% convert to static, & time allowing, will conduce rising hered a Right 1120 Driv @ DRODG 6.55 Equipment for TRAPOL 1.5 dia x 5 solid displacement sive Heron WIII C-103250 Ruged Reader C102720 Level Troll 700 C-102552

Location Schuig MO 29 ____ Date _131/17___ Project / Client SLOF ESTLE NAVFAC 1126 hand level Trol & 27.5' beach 25006 1127 Lone Worker checkers 1130 Level Trollin 570. 6.28 0 Dr QUL 1132 Drw & Drup3: 5,75 (sus-1140 DTW (Lovel Toul) --) = DP006-6-31 1152 Drw Vevel Truitin De DRock 6: 6.33 + Druce Deaple when Prozo of exercit level. 1157 Bagin Fallin; Head Test 10 Debble ing duy we beneach source level governa eic level ich 1200 Dive DRODL. Y.400 (falling head 101 Dru @ 28003 (40, -10) 5.84 1204 Ambiene temp. 402 A wind 1223 Lone Worker Chesteri 1249 Drw & DRAD3 (Slog in). 5.96 1251 Drwo Dobb: 5.21 Boz Someone is talking vicked of the Sidewalk adores Track of ever Adutations into residence accordo a lason formation. show at beggnette · Concorggo / men stal contract but he 1307 Die Drie 5.39 1313 Texeco Lawa Caix about cond ed ling they test a stad

· 30 Location St. Louis MO _____ Date _13117 Project / Client SLOP ESTUP | MANFAC the time lette in the day re agreed, a this opproach-1329 Lone Worker checker; 1335 DTWO DRAD3 (Slug-in), 6.05 1410 Dw @ DROD3 (Slu; in) 6.12 1411 DIW @ DRADG (failing head): 5.80' , 1424 Lone Worker checking A Water kerel @ DRUD3 hars not reached · 90% A surie water level. Made decision to disconcer Rugged Reader from Level I Troll & leave that & slv; in place to allow water level to equilibrate overnight Placed 5 plug on well & covered with bucker. Will gerform sizing head @ DEQU3 comprov. 1432 Drw & Dropple (falling head): 5.90 1450 Drw@ Dripple (Falling heard): 5.97 + When level a stapped whin go to sentic level ended talling Head Terrel. - Removed slug & Level Troll; Decomed. 1500 DIW & DRADH. 5.53 1502 Installed Level Troll @ 25.5 1505 Installed 1.5 dia \$ 5 solid displacement device below static water level * Similar to DROD3, the Level Trail & AVS

Location 2 100 MO Date 1/31/17 31 Project / Client SLOP ESTUR NONFAC will terror in well @ DOPAL until level equilibrates overnight to consuce signing news test tomorrow morning Servis du on well & ploned busiced on top quest potential rain from recin 150 Drw@ Drop4 (4/2, in), 3,19 151B Lone Worker checking OF Picli E. view_ Slug-in @ DRODY Riczi. NE view. Slugin @ DRODOS Pic3. 5 view Secondy up & DRADO Picy'. Sview_ Falling head @ DRADL Pic S. SE view Secured DROOD 3 w/ Level Troll & Aussin. Pick: E. view_ Secured DRODU w/ Level Troll & Slug-in 1530 offy be

32 Date 2/1/17 Location Sz. Louis 10 Project / Client SLOP ESTLE NAVFAC 0710 Onsite T. Swiercrede / CHRM Weather: 39° & cloudy calm Objective: Onsite to complete rising - head tests @ DROD3 & DROD4. - 0715 Removed buckets & :- plugs from DROO3 & JROOM. 0720 Reviewed & signed 9750; corablished contract with Shin Koberts / Lone Worker point of contact 0130 Static water levels on 1/31/17 @ DROD3= 6-99' box + DROD4= 5.21' book. Equipment @ Detory HERON WLI C-103250 Rugged Reader C-102728 Level Troll 700 C-102552 1.5" dia. × 5 solid displacement device Equipment @ DRADS HERON WET C-103274 Evaced Leader C-102742 Level Trol 700 C-102694 1.5" dia. x 3 solid displacement device OT34 Wells, Level Trolls Sucs have not ben tompered with (looked goto) & are still O these pages depths.

Location St. Louis HO 33 ____ Date 2/1/17 Project / Client SLOP ESTER NAVFAC MW THUS (445-1) 7.04 DCQQ3 5.20 DRODY to ot of lance secons such allow the static levels on 1/31/17. Will proceed with circing head tests 0742 Deigh Going head best & DROWS. 0743 000000000003-835 0745 Begin rising head test @ DRUPY 52.7 . 1903 D Burg THO 0820 Lone Worker checking OTIL DIWEDROBS. 9.10 0917 Drw @ D3004. 6.80' 0920 Lone Worker Checking + Bused on my calculations, it may take of second to the well a to to card to New Startic Worter) evens (1345-1415) 1020 Lone Worker checking 1109 Ambient temp' 43° à cloud 115 DTWR DRODS. 7.90 The Drue DRODY. 6.44 Mo Lone Worker Chede-2 the borker chedress

Location Sc. Louis, MO Date 2/1/17 34 Project / Client SLOP ESTCR NAVFAL 1316 Druc DRUD3. 7.72 1317 DIW @ DRODY. 6.16 1320 Lone Worker Checking 1420 Lone Worker Checking 1422 Drw Q DROD 3. 7.66 1423 Drw@ DROD4'. 6.05 1435 Decorred both solid displanement devices. * Water level @ DODB w/in 9090 of south level, but will continue to run test because Die Depler level still not w/in 9000 of static. 1454 Contacted Lawra Cook about length of time to achieve 9070 of static @ DRODA because it will likely be well past darks before 90% of static is achieved. 1510 traver Cook is going to contact tyle Kirchner MANFAC to distuis above issue. 1314 Laura lete message up Kyle that test will end betwee dusk, to stay in compliance w HASP & Size Scuricy Plan. 1517 Lauren received consurrence from tyle rei ending test before it gets Jurk.

35 Location Sz. Lusis, MO Date 2/1/17 Project / Client SLOP ESTLP NAVFAL 1519 Lone Worker check-in 1521 DWC RODS. 7.62 1522 Drug DROBU. 5.96 1525 Ended riging hered test @ DROD3 ble levels win 90% of startic level. 1534 Decomed Level Troil & coble from DEDD. 1600 DTW @ D7004.5.94 * End rissing head terr @ DRODLA ble the deplicht is filding & the traffic on Scrattors & Goodfellow is picking up (creation for erront drivers) (1605 Decorred Level Trull & colole from DROWY. 1610 Lone Worker check-are 1611 OFASize P+ 0

36 Location S. Louis MO Date 2 8/17 Project / Client SUP BATCE NAVEAC 0700 Onnice T. Swiercrele Corry Wenther: 34° classly a wind Objective. Objite to collect a round of water levels from ESTCP temp wells & MW-119. 0705 Reviewed & Signed PT-P. Traffic hazardo & walking hazardo. Will remain & priving and exclusion to swup wolking Equipmode Heron water level indicator C-103274 OTIS Opened temp wells à MW-119 + Will return to site later in the day to gave well's (slow recharge 0723 0763:1 1350 Onsize T.Swienzale (CHZM Wencher: 32° à light sour (begin @ 13415) Mus Div MW-119 3.21 DROD 12,13 DE002 10.25 DR.003 7.69 D.004 5.68 DEDOS B.46

41 Location St. Lovis, HO Date 3/8/17 Project / Client SLOP ESTLP NAVFAC 0000 Onsice T-Swierczele CHZM Weather: 43° & gung Objective. Onsite to gouge & MW-119. 0905 Reviewed & Signed 9758. Implemented Lone Worker; Stym Dans is checking contact. OBIO Lone Worker C 0312 Been opening DRODDI throw? DRODD & Thw. ing Will allow well equilibrate before gowfr Equipment dicods Heron WET C-1632714 wells CAIS Bizon gowing MIL 10.01 DP#41 11.59 DEODZ 8.51 5,403 5.47 Dechona 8.78 DPP\$5 7.39 DSADP 4.40 MUD-14 Ofisit 0930

Rite in the 1

Appendix C Boring Logs

ABL

							Location No.	5GW26
C	121	1.						
		SX.			Sheet 1	of	1	
Project No:	670338		Easting (AMG)	2152101.176	Equipment:	•	Rotosonic Geoprobe 8140LS	
Project:	ABL		Northing (AMG)	385694.6185	Contractor:		SAEDACCO	
Site:	Site 5		Elevation (ft AHD):	675.74	Logged By:		J. McCann	
Date:	1/19/2017		Water Level (ft BTOC):	NM	Project Manag	ger:	Laura Cook	
Weather:	cloudy, 43° F		Final Depth (ft BGL):	22'	Checked By:		Laura Cook	
Depth	Sam	ple		Soil Description			Comments/Well Inst	tallation Details
		Pocovoru						
(ft)	Sample Interval	No./Type	(soil type, plasticity/grain size, co	lour, secondary/minor components)			(fill/natural soil, visual contaminati	on, odour, side collapse, etc.)
-			0-0.9': Gravel from	access road				
5.0	0-7'	3.5' 1/sonic	0.9-7': sandy SILT (N plasticity, cohesive,	/L), brown, moist, med. Stiff, massive	low			
10.0	•		7.0-9.6 - silty coarse	e SAND (SM), brown, wet, loo	se, massive			
15.0	7-17'	5.0' 2/sonic	9.6-17: rounded CO massive	BBLES with sand and silt, wet	, loose,			
20.0	17-22'	3.7' 3/sonic	17-19.2' - same as a 19.2-22' - weathere	bove d SHALE and silt				
				NEPUSAL at 22 Ugs				
<u>Notes</u> NM - not me FT BTOC - fee ABLCS - ABL o FT BGS - feet	asured et below top of a coordinate syste below ground s	casing em, see surve surface	y report					

							Location No.	5GW27
C	21	1.						
		5M			Sheet 1	of	1	
Project No:	670338		Easting (AMG)	2152104.392	Equipment:		Rotosonic Geoprobe 8140LS	
Project:	ABL		Northing (AMG)	385708.9519	Contractor:		SAEDACCO	
Site:	Site 5		Elevation (ft AHD):	674.82	Logged By:		J. McCann	
Date:	1/17/2017		Water Level (ft BTOC):	NM	Project Manag	er:	Laura Cook	
Weather:	rainy, 35°F		Final Depth (ft BGL):	22'	Checked By:		Laura Cook	
Depth	San	nple		Soil Description			Comments/Well Inst	allation Details
(m)	Sample Interval	Recovery No./Type	(soil type, plasticity/grain size, colou	r, secondary/minor components)			(fill/natural soil, visual contamination	on, odour, side collapse, etc.)
5.0	0-7'	4.2' 1/sonic	0-15.0': sandy SILT (ML) plasticity, cohesive, ma:	, damp, brown, medium stiff ssive	, low			
10.0 	7-17'	3.4' 2/sonic	15.0-16.7' - coarse SANI stiff, loose, cohesive, m 16.7-17.0' - SAA w/ cobl	D with silt (SM), very firm, br assive, wet oles, rock stuck at bottom	own, med.			
20.0	17-22'	5.0' 3/sonic	17.0-19.0' - same as abo more frequent 19.0-22.0' - SHALE bedr	ove, rounded cobbles growin ock partially weathered, darl	g larger and			
			ſ	EFUSAL al 22 JgS				
NM - not mea FT BTOC - feet ABLCS - ABL co FT BGS - feet b	sured t below top of o pordinate syste pelow ground s	casing em, see surve surface	y report					

						Location No	5GW28
CA	200	1.				Location No.	
		SV			Sheet 1 of	1	
Project No:	670338		Easting (ABLCS)	2152105.249	Equipment:	Rotosonic Geoprobe 8140LS	
Project:	ABL		Northing (ABLCS)	385714.4654	Contractor:	SAEDACCO	
Site:	Site 5		Elevation (FT AMSL):	674.63	Logged By:	J. McCann	
Date:	1/17/2017		Water Level (FT BTOC):	NM	Project Manager:	Laura Cook	
Weather:	rainy, 35⁰F		Final Depth (FT BGL):	20'	Checked By:	Laura Cook	
Depth	San	nple		Soil Description		Comments/Well Inst	allation Details
(ft)	Sample Interval	Recovery No./Type	(soil type, plasticity/g	grain size, color, secondary/min	or components)	(fill/natural soil, visual contamina	ation, odor, side collapse, etc.)
5.0	0-7'	5.5' 1/sonic	0-7.0': Sandy SILT (ML cohesive, massive), brown, dry to moist, st	iff, low plasticity,		
10.0	7-17'	6.6' 2/sonic	7.0-17.0' - Silty SAND (cobbles at 13' bgs, me	(SW), brown, coarsening ed loose to loose, cohesiv	downward to e to noncohesive,		
15.0			massive				
20.0	17-22'	5.0' 3/sonic	17.0-19.0' - same as al more frequent	bove, rounded cobbles g	rowing larger and		
-			NEFUSAL at 20 bgs				
-							
-							
-							
-							
-							
Notes NM - not measure FT BTOC - feet be ABLCS - ABL coore FT BGS - feet belo	ed low top of cas dinate system wy ground sur	sing 1, see survey r face	eport				

		Turkey				Location No. 5GW29	Location No.	5GW29
C	12/	M.					-	
		5.0			Sheet 1	of 1	1	
Project No:	670338		Easting (ABLCS)	2152167.757	Equipment:	Rotosonic Geoprobe 8140LS	Rotosonic Geoprobe 8140LS	
Project:	ABL		Northing (ABLCS)	385686.6107	Contractor:	SAEDACCO	SAEDACCO	
Site:	SITE 5		Lievation (FT AMSL):	6/7.32	Logged By:	J. McCann	J. Miccann	
Weather	1/1//2017		Final Denth (FT BGL):	22'	Checked By:		Laura Cook	
								·
Depth	Sar	npie		Soli Description		Comments/ well installation Details	Comments/ Well Insta	Ion Details
(ft)	Sample Interval	Recovery No./Type	(soil type, plasticity/grai	n size, color, secondary/minor co	omponents)	(fill/natural soil, visual contamination, odor, side collapse, etc.)	(fill/natural soil, visual contaminat	odor, side collapse, etc.)
	0-7'	No Recovery 1/sonic	Some pieces of gravel fro	m access road, no soil re	covery			
10.0			7.0-14.3' - Sandy SILT (MI plasticity, cohesive, mass	L), brown, moist, med. sti ive, transition	ff, low			
	7-17'	6.3' 2/sonic	14.3-15.7' - Silty SAND (S massive	M), brown, loose, wet, co	hesive,			
15.0			15.7-17.0' - Gravel (GW) massive	with sand and silt, brown	, wet, loose,			
20.0	17-22'	5.0' 3/sonic	17.0-20.6' - same as abov 20.6-22' - Weathere	re d SHALE bedrock, dark gr	ay to black			
-			RF	FUSAL at 22' bgs				
				105/124122 065				
I —	-							
-	-							
-								
	-							
_								
	-							
	-							
I _								
_	-							
	-							
_								
	-							
_	1							
_								
	-							
-	-							
Notes	1		1					
NM - not mea	asured							
FT BTOC - fee	et below top o	f casing	×					
ABLCS - ABL o	coordinate sys	tem, see surv	vey report					
FT BGS - feet	below ground	l surface						

	12020					Location No. 5	GW30
C	1211	1.					
		SN SN			Sheet 1	of 1	
Project No:	670338		Easting (ABLCS)	2152169.008	Equipment:	Rotosonic Geoprobe 8140LS	
Project:	ABL		Northing (ABLCS)	385700.516	Contractor:	SAEDACCO	
Site:	Site 5		Elevation (FT AMSL):	674.98	Logged By:	J. McCann	
Date:	1/18/2017		Water Level (FT BTOC):	NM	Project Manage	r: Laura Cook	
Weather:			Final Depth (FT BGL):	19'	Checked By:	Laura Cook	
Depth	5	Sample		Soil Description		Comments/Well Installation De	tails
(ft)	Sample Interval	Recovery No./Type	(soil type, plasticity/grain size, color	ur, secondary/minor components)		(fill/natural soil, visual contamination, odour, si	de collapse, etc.)
 5.0	0-7'	3.9' 1/sonic	0-7.0' - Sandy SILT (ML) plasticity, cohesive, ma	, brown, moist, med st ssive	iff, low		
10.0	7-17'	4.4' 2/sonic	7.0-16.6' - Same as abo more abundant silty SA	ve, sand coarsening an ND (SM)	d becoming		
			16.6-17.0' - COBBLE zor	ne			
-	17-19'	3.4' 3/sonic	17.0-18.6' - Silty GRAVE brown 18.6-19.0' - SHALE bedr	EL (GM), rounded cobb rock, weathered, dark g	les, well sorted, gray		
<u>Notes</u> NM - not mea FT BTOC - fee ABLCS - ABL c	asured It below top of ca coordinate syster	ising n, see survey report					
FT BGS - feet	below ground su	irface					

		-					Location No.	5GW31
C	12/	M.						
		SM			Sheet 1	of	1	
Project No:	670338		Easting (ABLCS)	2152170.237	Equipment:		Rotosonic Geoprobe 8140LS	
Project:	ABL		Northing (ABLCS)	385705.9236	Contractor:	-	SAEDACCO	
Site:	Site 5		Elevation (FT AMSL):	674.82	Logged By:	<u>-</u>	J. McCann	
Date:	1/18/2017	F	Water Level (FT BTOC):	NM	Project Manage	er:	Laura Cook	
weather:	Cloudy 48	r	Final Depth (FT BGL):	19	Спескей ву:	-	Laura Cook	
Depth	S	ample	Soil D	Description			Comments/Well	Installation Details
(ft)	Sample Interval	Recovery No./Type	(soil type, plasticity/grain size, o	colour, secondary/minor co	omponents)		(fill/natural soil, visual contar	nination, odor, side collapse, etc.)
- 5.0	0-7'	4.4' 1/sonic	0-7.0' - Sandy SILT (ML), brown plasticity, cohesive, massive	n, moist to wet, med	stiff, low			
10.0	7-17'	7.0' 2/conic	7.0-14.0' - Same as above, trar at 13' bgs	nsitioning to coarse s	ilty SAND (SM)			
15.0	+	2/501110	14.0-17.0' - COBBLE zone with	increasing cobbles d	ownward			
-	17-19'	1.9' 3/sonic	17.0-19.0' - Same silty COBBLE weathered SHALE bedrock at 1	S as above, transition 18.3' bgs	ning to			
1 -			REFUSA	AL at 19' bgs				
-	4							
_	1							
_	1							
-	1							
_]							
_	4							
-	4							
_	1							
_	4							
_	1							
-	4							
_	1							
-	4							
_	1							
-	4							
	1							
-	+							
_	1							
-	4							
_	1							
-	4							
Notes	acurad							
FT BTOC - fee	asured	of casing						
ABLCS - ABL	coordinate s	ystem, see surve	y report					
FT BGS - feet	below grou	nd surface						

						Location No.	5GW32
СИ	21	1:					
					Sheet 1 of	1	
Project No:	670338		Easting (ABLCS)	2152233.727	Equipment:	Rotosonic Geoprobe 8140LS	
Project:	ABL Site 5		Northing (ABLCS)	676.49	Logged By:		
Date:	1/18/2017		Water Level (FT BTOC):	NM	Project Manager:	Laura Cook	
Weather:	Cloudy 48° F		Final Depth (FT BGL):	11'	Checked By:	Laura Cook	
Donth	- Sar	mnlo	- Soi	Description		Commonts/Wo	Il Installation Details
Depth	Sar	npie	301	Description		comments/ we	in installation Details
(ft)	Sample Interval	Recovery No./Type	(soil type, plasticity/grain size	e, colour, secondary/minor cor	nponents)	(fill/natural soil, visual conta	mination, odor, side collapse, etc.)
5.0	0-8'	4.0' 1/sonic	0-8.0' - Sandy SILT (ML) with stiff to very stiff, low plasticit	cobbles, brown, moist t y, cohesive, massive	o wet, med		
10.0	8-11'	3.7' 2/sonic	8.0-10.0' - silty GRAVEL (GW)	, brown, wet, loose, ma	ssive		
10.0		2/30110	10.0-11.0' - Weathered SHAL REFU	E bedrock SAL at 11' bgs			
	-						
_	-						
	-						
	-						
=	-						
_							
	-						
_	-						
	-						
_	-						
_	-						
_							
_							
_							
_	-						
_							
=	-						
NM - not meas	sured	asing					
ABLCS - ABL co FT BGS - feet b	pordinate systemelow ground su	m, see survey r urface	eport				

						Location No.	5GW33
C	12M	1:				_	
					Sheet 1 o	of 1	
Project No:	670338		Easting (ABLCS)	2152049.125	Equipment:	Rotosonic Geoprobe 8140LS	
Site:	Site 5		Elevation (ft amsl):	676.07	Logged By:	L McCann	
Date:	1/19/2017		Water Level (FT BTOC):	NM	Project Manager	: Laura Cook	
Weather:	Cloudy 43 °F		Final Depth (FT BGL):	21.5'	Checked By:	Laura Cook	
Depth	Sam	ple		Soil Description	_	Comments/	Well Installation Details
(ft)	Sample Interval	Recovery No./Type	(soil type, plasticity/grain	n size, colour, secondary/minor o	components)	(fill/natural soil, visual co	ontamination, odor, side collapse, etc.)
5.0	0-7'	1.3' 1/sonic	0-7.0' - sandy SILT (ML), plasticity, cohesive, ma	brown, dry to moist, me ssive	d stiff, low		
10.0	8-12.3'	6.8'	8.0-12.3' - Same as abov	<i>v</i> e			
15.0	12.3-17'	2/sonic	12.3-17.0' - silty GRAVE	L (GW), brown, wet, loos	e, massive		
20.0	17-21.5'	4.9' 3/sonic	17.0-18.9' - Same as abo 18.9-21.5' - Weathered	ove dark gray SHALE, massive	2		
-	f		REF	USAL at 21.5' bgs			
_							
-	-						
-	1						
-	-						
-							
	+						
]						
	4						
-	4						
	1						
-	-						
	1						
1 -	1						
	-						
	1						
-	4						
	4						
-	+						
-	-						
<u>Notes</u> NM - not me	asured						
FT BTOC - fee	et below top of cas	ing					
ABLCS - ABL (FT BGS - feet	coordinate system below ground sur	, see survey rep face	port				

St. Louis

	-							Location No.	DP-001
СИ	21							_	
		SV				Sheet 1	of	1	
Project No:	670338			Easting (SPCS)	886653.23	Equipment:		HSA 4" ID; CME SSO Truck	
Project:	ESTCP Long Terr	m ZVI Performance		Northing (SPCS)	1042976.9	Contractor:		Bulldog Drilling	
Site:	St. Louis Ordnar	nce Depot OU1		Elevation (ft amsl):	548.81	Logged By:		G. Roberts	
Date:	1/11/2017			Water Level (ft BTOC):	NM	Project Manage	er:	Laura Cook	<u>.</u>
Weather:	Clear and cold 3	8° F		Final Depth (ft BGL):	30.0'	Checked By:		Laura Cook	
Denth	S	mnle	PID	-	Soil Description	-		Comments/Well Inst	allation Details
Deptil	Comula	Deservery			Son Description				
(ft)	Interval	No./Type	(ppm)	(soil type, plasticity/grain size,	colour, secondary/minor components	;)	(fill/n	atural soil, visual contaminatic	n, odour, side collapse, etc.)
			0 ppm						
		4.0'		0-1.0" - Dark Brown	lean CLAY (CL) with slit, m	ioist, soft			
-	0-5'	No. 1		1.0-4.0' - Brown lear	CLAY (CL) with silt, mois	it, firm, iron			
5.0				nakes, mixeu, non si	lanning				
			0 ppm						
-	5.10'	4.5'							
-	5-10	No. 2							
10.0				4.0-16.0' - Gray lean	CLAY (CL) with silt, moist	t, firm, iron			
-	_		0 ppm	flakes, mixed, iron st	taining		10-1	5' - tree material in shoe	2
-	10-15'	1'							
-		No. 3							
15.0									
-	-		0 ppm				Sami	ple collected from 16-18	' and 18-20'
-	15-20'	5' No 4							
	_								
20.0			0 ppm	16.0-24.0' - same as	above, less iron staining				
-									
-		5'							
-	20-25'	No. 5							
25.0				24.0-26.0' - Light bro	own lean CLAY (CL). less s	ilt. more			
				moisture, more firm		-,			
_			0 ppm		,				
-	25-30'	5'		26.0-27.0' - same as	above, yellow/gray				
-		No. 6		27.0-30.0' - Yellow/g	gray SHALE				
30.0					REFLISAL at 30' bos		الم/w/	set from 17-23'	
-							wein	301101117 25	
_									
-	-								
-	_								
-	-								
_									
-	_								
-	-								
-									
	-								
-	-								
_									
-	_								
-	-								
-									
-	_								
-									
L									
<u>Notes</u>									
NM - not meas	ured								
FT BTOC - feet	below top of casin	g	•						
ABLCS - ABL co	ordinate system, s	ee survey report							
FT BGS - feet be	elow ground surfa	ce							

								Location No.	DP-002
CA	211	1.						_	
		SV				Sheet 1	of	1	
Project No:	670229			Easting (SBCS)	896622 75	Equipment:	01	HSA 4" ID: CME SSO Truck	
Project:	ESTCP Long Te	erm ZVI Performan	ce	- Northing (SPCS)	1042958 69	Contractor:		Bulldog Drilling	
Site:	St. Louis Ordn	ance Depot			546.7	Logged By:		G. Roberts	
Date:	1/11/2017			- Water Level (ft BTOC):	5.10.7	Project Manage	er.	Laura Cook	
Weather:	Clear and cold	38° F		- Final Depth (ft BGL):	26.0'	Checked By:		Laura Cook	
Depth	S	ample	PID		Soil Description			Comments/Well Inst	allation Details
(ft)	Sample	Recovery	(ppm)	(soil type, plasticity/grain size	ze, colour, secondary/minor compon	ents)	(fill/n	atural soil, visual contamination	on, odour, side collapse, etc.)
	Interval	No./Type							
-	-		0 ppm	0-0.5' - (CL) dark b	rown lean CLAY with silt	, moist, soft			
-	0.51	4.0'							
-	0-5	No. 1		0.5-4.0' - Brown le	an CLAY (CL) with silt, m	oist, firm, mixed,			
5.0				iron staining, abun	ndant iron shavings from	soil mixing			
-			0 ppm						
-									
-	5-10'	1.0' No. 2		4.0-10.0' - same as	s above, gray				
10.0	-								
			0 ppm				Push	ed twice with little reco	overy; possibly
-	10.15	1'					wood	dy make	
-	10-15	No. 3							
15.0				10.0.20.01					
			0 ppm	10.0-20.0 - same a	as above, less slit, more s	staining	_		
-	15 20'	2.5'					Samp	ble collected from 16-1	8' and 18-20'
-	13-20	No. 4							
20.0									
-	_		0 ppm						
-	20-25'	15' No 5		20.0-25.0' - same :	as above increasing brow	wn component			
-	20 25	1.5 110.5		20.0 25.0 30110 0	as above, mereasing brot	wireomponent	Auge	rs to 25'	
25.0							Ŭ		
26.0	25-26'	1' No 6	0 ppm	25.0-26.0' - Brown	SHALE				
26.0		110.0			REFUSAL at 26'		Well	set at 25'	
	1								
-									
-	-								
-	-								
-									
-									
-	_								
-									
-	1								
	1								
-	-								
-									
-	-								
-	-								
	1								
-	4								
-									
-	1								
_							ļ		
Notes									
NM - not measu	red								
FT BTOC - feet be	elow top of casir	ng							
ABLCS - ABL coo	rdinate system,	see survey report							
FT BGS - feet bel	low ground surfa	ace							

							Location No.	DP-003
CN ₂							_	
						Sheet 1 o	of 1	
Project No: Project:	670338 ESTCP Long Term 7\	/I Performance		Easting (SPCS)	886611.11	Equipment:	HSA 4" ID; CME SSO Truck	
Site:	St. Louis Ordnance [Depot		Elevation (ft amsl):	546.09	Logged By:	G. Roberts	
Date:	1/9/2017	Jepot		Water Level (ft BTOC):	NM	Project Manager	: Laura Cook	
Weather:	Clear and Cold 29° F	:		Final Depth (ft BGL):	25.0'	Checked By:	Laura Cook	
Denth	San	nnle	PID	_	Soil Description		Comments/Well Insta	llation Details
		Recovery						
(ft)	Sample Interval	No./Type	(ppm)	(soil type, plasticity/grain size,	colour, secondary/minor co	imponents)	(fill/natural soil, visual contamination	n, odour, side collapse, etc.)
			0 ppm	0-1.0' - (ML) Dark Br	own SILT, moist, fi	rm		
	0-5'	4.0' No. 1		1.0-2.0' - Brown SILT staining	(ML), moist, firm	moderate iron		
5.0				4.0-6.0' - same as ab	ove, less iron stair	ning		
			0 ppm	6.0-8.0' - Grey/yellov	w SILT (ML), moist			
	5-10'	5.0' No. 2		staining				
10.0				8.0-9.0' - same as ab	ove, less iron stair	ning (minimal)		
			0 ppm	9.0-12.5' - same as a	bove, iron staining	g		
	10-15'	5' No 3		12 5-14 0' - same as	above less iron st	aining		
15.0				12.5 14.0 Sume us				
			0 ppm					
	15-20'	5'		14.0-20.0' - Brown S	ILT (ML), moist, fir	m, iron staining	Sample collected from 18-20	
		No. 4						
20.0			0 ppm	20.0-22.0' - Brown le	an CLAY (CL) with	abundant silt, moist.		
		5'		firm		,		
	20-25'	No. 4		22.0-25.0' - brown S	HALE			
25.0					REFLISAL at 25'			
						N	Well screen from 12-22' bgs	
_	1							
-	1		1					
			1					
-	1		1					
Notes			1	1				
NM - not measured	I							
FT BTOC - feet belo	w top of casing							
ABLCS - ABL coordi	nate system, see surv	ey report						
FT BGS - feet below	r ground surface							

ch	ch2m:						Location No.	DP-004	
	2 1 1 1 1 1 1					Sheet 1	of	1	
Project No:	670338			Easting (SPCS)	886670.26	Equipment:		HSA 4" ID; CME SSO Truck	
Project:	ESTCP Long Term	ZVI Performance		Northing (SPCS)	1942981.91	Contractor:		Bulldog Drilling	
Site:	St. Louis Ordnand	e Depot		Elevation (ft amsl):	540.63	Logged By: Project Manag	or:	G. Roberts	
Weather:	Clear and cold 38	° F		Final Depth (ft BGL):	25.0'	Checked By:	er.	Laura Cook	
Depth	s	ample	PID		Soil Description			Comments/Well Insta	llation Details
(ft)	Sample	Recovery	(ppm)	(soil type, plasticity/g	rain size, color, secondary/minor o	components)	(fill/n	atural soil, visual contamination	n, odor, side collapse, etc.)
	interval	110.7 1990	0 ppm	0.0.5' Dark Prown l	oon CLAY (CL) with silt mo	ist soft	0.5' a	at top of mixing tube	
-	0-5'	3.5'							
5.0	7	NO. 1				ning			
-	-		0 ppm	3.5-6.0° - Gray/yellov	v SILT (IVIL), moist, firm, irc	on staining			
-	5-10'	5' No. 2		6.0-8.0' - same as ab	ove, less iron staining				
10.0	+			8.0-10.0' - same as a	bove, more iron staining				
-			0 ppm						
	10-15'	5' No. 3							
15.0									
-	-		0 ppm	10.0-23.0' - Brown SI	LT (ML) with clay, moist, fi	rm,	Samr	ble collected from 18-20'	
-	15-20'	5' No. 4			чв				
20.0									
_			0 ppm						
-	20-25'	5' No. 5		23.0-25.0' - Grav/vel	low lean CLAY (CL) with sil	t. moist. stiff.	hard	drilling at 23'	
25.0	4			brown shale at 25'		.,,,			
-	+								
-	4								
-	+								
-	-								
-	1								
-									
-									
-	4								
-									
-	-								
	4								
-									
-									
-	1								
-	4								
_	-								
-									
-	+								
		1	1						
Notes									
NM - not measured	d								
FI BIOC - feet belo	ow top of casing	Irvev report	•						
FT BGS - feet below	v ground surface	- 1							

Daac							Location No.	DP-005
ZM	SM				Chaot	1 of	1	
670338			Easting (SPCS)	886614.64	Fauinm	ent:	HSA 4" ID: CMF SSO Truck	<u> </u>
ESTCP Long Term ZVI Performance			Northing (SPCS)	1042974.66	Contrac	or:	Bulldog Drilling	·
			Elevation (FT AMSL):	545.87	Logged	By:	G. Roberts	
1/9/2017			Water Level (ft BTOC):	NM	Project	Manager:	Laura Cook	
Clear and Cold 29° F			Final Depth (FT BGL): 30.0' Checked By:			By:		
Sample PID Sample Interval Recovery No./Type (ppm)				Soil Descriptio	on		Comments/Well Ir	stallation Details
			(soil type, plasticity/grain size, color, secondary/minor components)				(fill/natural soil, visual contamination, odor, side collapse, etc	
0-5'	5' No. 1	0 ppm 0 ppm	0-0.5' - Hard concre underneath 0.5-2.0' - Brown lea 2.0-3.0' - White gra 3.0-4.0' - Dark brow 4.0-9.0' - Brown lea	ete (3") with approxi an CLAY (CL), moist, f welly fill vn lean CLAY (CL), m an CLAY (CL), moist, f	imately 3" of coarse g firm oist, firm stiff, iron staining	ravel 0.5	' at top of mixing tube	
10-15'	5' No. 3	0 ppm	9.0-13.0' - yellow/g 13.0-14.0' - same as	ray SILT (ML), moist s above, less iron sta	;, firm			
15-20'	5' No. 4	0 ppm	14.0-18.0' - same a: 18.0-20.0' - Brown	s above, more iron s lean CLAY (CL), mois	taining t, stiff, iron staining	Sar	mple collected from 18-	20'
20-25'	5' No. 5	0 ppm	20.0-24.0' - redish S	SHALE, moist		hai	rd drilling around 20' (1	000psi)
25-30'	5' No. 6		24.0-30.0' - yellow/	/brown SHALE, mois	t			
d ow top of casing inate system, see	survey report							
	Provase ESTCP Long Term St. Louis Ordnam 1/9/2017 Clear and Cold 2 Sample Interval 0.5' 10-15' 10-15' 20-25' 20-25' 225-30'	670338 ESTCP Long Term ZVI Performance St. Louis Ordnance Depot 1/9/2017 Clear and Cold 29' F Sample Interval Recovery No./Type 0.5' S' 10-15' S' 10-15' S' 10-15' S' 10-25' S' 10-15' S' 20-25' S' No. 3 S' 25-30' S' No. 6 S' No. 6 S' No. 7 S' 10-15' S' No. 4 S' 10-15' S' No. 5 No. 6 20-25' S' No. 6 S' 25-30' S' No. 6 S'	FO338 STCP Long Term ZVI Performance St. Louis Ordnance Depot 1/9/2017 Clear and Cold 29' F Totample Interval Recovery No./Type Oppm 0.5' 5' No. 1 0 ppm 0.5' 5' No. 1 0 ppm 10-15' 5' No. 3 0 ppm 10-15' 5' No. 4 0 ppm 10-15' 5' No. 5 0 ppm 12-20' 5' No. 5 0 ppm 22-25' 5' No. 6 0 ppm 25-30' 5' No. 6 0 ppm 10-15 5' No. 6 0 ppm 25-30' 5' No. 6 0 ppm 10-15 10 10-15 10	Status Easting (SPCS) STCPL long Term 201 Performance Northing (SPCS) SLouis Orthance Depot Elevation (FT ASK): 1/9/2017 Water Level (ft BTOC): Terr and Cold 29' F Final Depth (FT BGL) Sample Interval Recovery No.7type (ppm) 0.5' 5' 0 ppm 0.5' 5' 0 ppm 10-15' 5' 0 ppm 10-20' 5' 0 ppm 10-15' 5' 0 ppm 10-20' 5' 0 ppm 12-20' 5' 0 ppm 12-30' 5' 0 ppm 12-30' 5' 0 ppm	Second Status Status (SPCS) BB6614.64 (D42974.66 (D42974.66 (D42974.66 (D42974.66 (D42974.66 (D42974.66 (D42974.66 (D42974.66 (D42974.66) (D42974.66 (D42974.67) (D42974.66 (D42974.67) (D42974.66 (D42974.67) (D42974.66 (D42974.67) (D42974.66 (D42974.67) (D42974.66 (D42974.67) (D42974.66 (D42974.67) (D42974.66 (D42974.67) (D42974.66 (D42974.67) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.66) (D42974.67) (D42974.66)	21000 Imperiation 2019 Performance Existing (SPCS) BBE014.64 Cuptore 21000 Optimized Papet Exercised (SPCS) 1049974.66 Contract 21000 Optimized Papet Exercised (SPCS) 1049974.66 Contract 21000 Optimized Papet Exercised (TMSS) 30.07 Centract 21000 Optimized Papet P10 Soil Description Project 21000 Optimized Papet P10 Soil Description Soil Description 2100 Optimized Papet Soil Description Soil Description Soil Description 210 Optimized Papet Soil Description So	2010 Stating (SPC) Stating (SPC)	Street 1 of 1 20234 Easing (2K3) 86611.64 reprinted reprinted 30.027.6.6 Constructor: Constructor Constructor Constructor </td

							Location No.	DP-006
CN	ZM	2					_	
						Sheet 1	of 1	
Project No:	670338			Easting (SPCS)	886662.02	Equipment:	HSA 4" ID; CME SSO Truck	
Project:	ESTCP Long Term ZVI Performance			Northing (SPCS) 1092942.28		Contractor:	Buildog Drilling	
Date:	1/10/2017	ce Depot		Elevation (FT AINSE): 543.81 Logged By: Water Level (ft RTOC): NM Project Manac			er: Laura Cook	
Weather:	Cloudy and Mild 50° F			Final Depth (ft BGL):	28.3'	Checked By:	Laura Cook	
Death	Comple DID				Soil Description	·	Commonts /Wall Inc	tallation Datails
Deptil	Sample						comments/ weirins	tallation Details
(ft)	Sample Interval	Recovery No./Type	(ppm)	(soil type, plastici	ty/grain size, color, secon	dary/minor components)	(fill/natural soil, visual contaminat	ion, odor, side collapse, etc.)
			0 ppm	0.0-0.5' - 6 inches o	of concrete			
	0-5'	4' No. 1		0.5-1.0' - Brown lea	an CLAY (CL) with irc	on staining, moist, firm		
5.0				1.0-1.5' - Coarse gr	avel fill	. .		
-			0 ppm	1.5-6.0' - Gray SILT	(ML) with clay, moi	st, firm, no iron staining		
	5-10'	5'		,				
		No. 2		6.0-9.0' - Same as a	above, abundant iro	n staining		
10.0	_		0 ppm	9 0-12 0' - Same as	above iron staining	less clay, moist		
		5'	o ppin	5.0 12.0 Sume us		, iess eldy, inoise		
	10-15'	No. 3		12.0-13.0' - Same a	as above, moderate i	ron staining		
15.0								
			0 ppm					
	15-20'	5'						
		NO. 4		13.0-24.0' - Brown	SILT (ML). moist. fir	m. iron staining		
20.0			0 ppm					
		5'						
	20-25'	No. 5						
25.0								
-		2.21	0 ppm	24.0-27.0' - Brown	lean CLAY (CL), mois	st, very stiff	Well screen at 17-27'	
	25-28.3'	3.3 No. 6		27.0-28.0' - Brown	SHALE		hard drilling around 27'	
				28.0-28.3' - Yellow,	/brown SHALE			
-	4							
-								
-								
-								
-								
Notes								
NM - not measure	ea							
ABLCS - ABL coord	dinate system cos	SURVEY report	•					
FT BGS - feet held	ow ground surface	. survey report						

Appendix D Well Construction Diagrams
ABL

	PROJECT NUMBER	WELL NUMBE	R
	670338		5GW26 SHEET 1 OF 1
Ch2 _M :	WELL CO	MPLETIC	ON DIAGRAM
PROJECT : ABL Site 5	LOCATION : Rocke	et Center, WV	
DRILLING CONTRACTOR : SAEDACCO			
DRILLING METHOD AND EQUIPMENT US	ED : Rotosonic Geoprobe 8140LS	END: 1323 1/	
	01/101 1200 1/10/17	2102 1020 1/	
3	2 1 1- Ground el	evation at well	####
	A A 2- Top of cas	ing elevation	####
	a) vent ho	le?	No
3b			
	3- Wellhead	protection cover typ	Pe Stickup
8	8' b) concret	e pad dimensions	2' x 2'
	10' 4- Dia./type 6	of well casing	2" Schedule 40 PVC
7	12' 5- Type/slot	size of screen	0.010" PVC
22	6- Typo soro	on filtor	Filter Modia #2 Sand
↑	a) Quantit	y used	5 - 0.5 cubic ft bags
	7- Type of se a) Quantit	eal y used	Pel-plug Bentonite 1 Bucket
	5 8- Grout		
	a) Grout n b) Method	nix used of placement	Dry Bag Type I Portland Poured from Top
	c) Vol. of	vell casing grout	N/A
10'	6 Developm	ent method	Pump until stable with Hurrican Pump
	Developm	ent time	55 minutes
	Estimated	purge volume	110 gallons
	Comment	s <u>Final Field Para</u> Turbidity	ameters during well development: 36.1
		рН	6.62
		Conductivity	0.77
<u> </u>	J	Temperature	NM
<u>6"</u>			

	PROJECT NUMBER	WELL NUMBER
	670338	5GW27 SHEET 1 OF 1
Ch2m:	WELL CON	MPLETION DIAGRAM
PROJECT : ABL Site 5 DRILLING CONTRACTOR : SAEDACCO	LOCATION : Rocket C	Center, WV
DRILLING METHOD AND EQUIPMENT US	ED : Rotosonic Geoprobe 8140LS	
WATER LEVELS :	START : 1228 1/17/17	END : 1250 1/17/17 LOGGER : J. McCann
3	2 1 1- Ground eleva	vation at well
	2- Top of casing	ng elevation ####
	a) vent hole?	? <u>No</u>
30'	3- Wellhead pro a) weep hole	rotection cover type <u>Stickup</u> e? No
8	8' b) concrete p	pad dimensions 2' x 2'
	10' 4- Dia./type of w	well casing 2" Schedule 40 PVC
7	12' 5- Type/slot size	ze of screen 0.010" PVC
	6- Type screen	n filter Filter Media #2 Sand
	a) Quantity u	used 5 - 0.5 cubic ft bags
	7- Type of seal a) Quantity u:	l Pel-plug Bentonite used 1 Bucket
	5	
	a) Grout mix b) Method of	x used 1.5 - 94lb. Dry Bag Type I Portland, 4.25 gal water, ~40 gal of placement Tremie
	c) Vol. of well	ell casing grout 20 gal
10'	6 Development	nt method Pump until stable with Hurrican Pump
	Development	nt time 57 minutes
	Estimated pu	burge volume 115 gal
	Comments	Final Field Parameters during well development:
		pH 7.17
		Conductivity 0.53
<u>+</u>]	Temperature 12.9
< } [<u>6"</u>]		

	PROJECT NUMBER	WELL NUMBER	
	670338	5GW28 s	HEET 1 OF 1
Ch2 _M :	WELL CON	IPLETION DIAGRA	M
PROJECT : ABL Site 5 DRILLING CONTRACTOR : SAEDACCO	LOCATION : Rocket C	Center, WV	
DRILLING METHOD AND EQUIPMENT US	SED : Rotosonic Geoprobe 8140LS		Magaza
WATER LEVELS :	START: 1600 1/17/17	END: 1635 1/17/17 LOGGER : J	
3 2a 3a	2 1 1- Ground eleva	ation at well	
	2- Top of casing	g elevation ####	
	a) vent hole?	No	
30'	3- Wellbead pro	atection cover type Stickup	
	a) weep hole	e? No	
8	5' b) concrete p	bad dimensions 2' x 2'	
	7' 4- Dia./type of w	well casing <u>2" Schedule 40 PVC</u>	
7	9' 5- Type/slot size	e of screen 0.010" PVC	
20'			
4	← 6- Type screen	filter Filter Media #2 Sand	
	a) Quantity us	8.5 - 0.5 Cubic it bag	>
	7- Type of seal	Pel-plug Bentonite	
	a) Quantity us	ised 3/4 Bucket	
	5		
	8- Grout a) Grout mix	used 1.5 - 94lb. Dry Bag Type I	Portland, 4.25 gal water, ~40 gal
	b) Method of	placement Tremie	
	c) Vol. of well	Il casing grout 10 gal	
10'	6 Development	t method Pump until stable wit	h Hurrican Pump
	Development	t time 54 minutes	
	Estimated pu	urge volume <u>125 gal</u>	
	Comments	Final Field Parameters during well dev Turbidity 3.4	elopment:
		рН 7.16	
		Conductivity 0.54	
<u> </u>	J	Temperature NM	
6"	•		

	PROJECT NUMBER	WELL NUMBER	
	670338	5GW29 SHEET 1 0	OF 1
CH2M:	WELL CON	MPLETION DIAGRAM	
PROJECT : ABL Site 5	LOCATION : Rocket C	t Center, WV	
DRILLING CONTRACTOR : SAEDACCO			
WATER LEVELS :	START : 1508 1/19/17	END : 1540 1/19/17 LOGGER : J. McCann	
WATER LEVELS :	2 1 1 1 2 1 1 1 1 1 1 1 2 1 1 2 1 2 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	END: 1540 1/19/17 LOGGER : J. McCann evation at well #### ing elevation #### e? No orotection cover type Stickup ble? No e pad dimensions 2' x 2' f well casing 2" Schedule 40 PVC ize of screen 0.010" PVC ize of screen 5 - 0.5 cubic ft bags al Pel-plug Bentonite	
10'	5 8- Grout a) Quantity u b) Method of c) Vol. of wel 6 Development	Image Deficition Pused 1 Bucket ix used 0.5 - 94lb. Dry Bag Type I Portland Cement of placement Poured from top rell casing grout N/A ent method Pump until stable with Hurrican Pump	
	Development	ent time 59 minutes	
	Estimated pu	purge volume <u>110 gal</u>	
	Comments	Final Field Parameters during well development: Turbidity 294 pH 6.35 Conductivity 1.08 Temperature NM	
[[6" [

	PROJECT NUMBER	WELL NUMBER		
	670338		5GW30 SHEET 1 OF 1	
CN2M:	WELL COMPLETION DIAGRAM			
PROJECT : ABL Site 5	LOCATION	: Rocket Center, WV		
DRILLING METHOD AND EQUIPMENT US	SED : Rotosonic Geoprobe 8140LS			
WATER LEVELS :	START: 0934 1/18/17	END : 1007 1/1	8/17 LOGGER : J. McCann	
DRILLING METHOD AND EQUIPMENT US WATER LEVELS :	2 1 1 1 1 2 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 3 W a) b) 4 Di 5 5 5 5 5 5 5 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 7 4 Di 6 7 1 8 6 7 1 8 6 1 0 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1	END : 1007 1/1 round elevation at well op of casing elevation vent hole? fellhead protection cover type weep hole? concrete pad dimensions fa./type of well casing upe/slot size of screen upe screen filter Quantity used upe of seal Quantity used rout Grout mix used Method of placement Vol. of well casing grout evelopment method evelopment time stimated purge volume omments <u>Final Field Parar Turbidity pH </u>	8/17 LOGGER : J. McCann #### #### No	
			NM	
	」 <u> </u>	iciliperature		
6 "	-1			

	PROJECT NUMBER 670338	WELL NUMBER	5GW31 SHEET 1 OF 1
CH2M:	WEL	L COMPLETIO	N DIAGRAM
PROJECT : ABL Site 5	LOCATI	ON : Rocket Center, WV	
DRILLING CONTRACTOR : SAEDACCO	SED : Rotosonic Geoprobe 81401 S		
WATER LEVELS :	START : 1148 1/18/17	END: 1213 1/1	8/17 LOGGER : J. McCann
3 2a 3a 3b 8 8	2 1 1 2 - - - - - - - - - - - - - - - -	Ground elevation at well Top of casing elevation a) vent hole? Wellhead protection cover type a) weep hole? b) concrete pad dimensions Dia./type of well casing	#### No Stickup No 2' x 2' 2" Schedule 40 PVC 0.010" PVC
19' 4	6- 7- 5 8-	Type screen filter a) Quantity used Type of seal a) Quantity used Grout a) Grout mix used b) Method of placement c) Vol. of well casing grout	Filter Media #2 Sand 5 - 0.5 cubic ft bags Pel-plug Bentonite 1 Bucket 0.5 - 94lb. Dry Bag Type I Portland mixed w/ GW Poured from top N/A
10'	6	Development method	Pump until stable with Hurrican Pump
		Development time	52 minutes
		Estimated purge volume	110 gal
		Comments Final Field Parar	neters during well development:
		Turbidity	25.6 6.67
		Conductivity	0.68
		Temperature	NM
∢			

	PROJECT NUMBER 670338	WELL NUMBER	5GW32 SHEET 1 OF 1
Ch2 _M :	WEL	L COMPLETIO	N DIAGRAM
PROJECT : ABL Site 5	LOCATIO	ON : Rocket Center, WV	
DRILLING CONTRACTOR : SAEDACCO			
WATER LEVELS	SED : Rotosonic Geoprobe 8140LS START : 1556 1/18/17	END : 1622 1/1	8/17 LOGGER J. McCann
		2.001.022	
3	- 2 1 1-	Ground elevation at well	####
	↑ ↑ ↑ ²⁻	Top of casing elevation a) vent hole?	#### No
3b	3- 1' 3' 4-	Wellhead protection cover type a) weep hole? b) concrete pad dimensions Dia./type of well casing	e Stickup No 2' x 2' 2" Schedule 40 PVC
7	5' 5'	Type/slot size of screen	0.010" PVC
4	€-	Type screen filter a) Quantity used	Filter Media #2 Sand 2.5 - 0.5 cubic ft bags
	7-	Type of seal a) Quantity used	Pel-plug Bentonite 1 Bucket
	8-	Grout a) Grout mix used	Quikrete Concrete Mix from pad
		b) Method of placementc) Vol. of well casing grout	Poured from top N/A
5'	6	Development method	Pump until stable with Hurrican Pump
		Development time	2 hours 8 minutes
		Estimated purge volume	108 gal
		Comments Final Field Parar	neters during well development:
		Turbidity	<u>28.7</u> 6.73
		Conductivity	0.92
		Temperature	NM
∢	•		

	PROJECT NUMBER	WELL NUMBER	R
CADAAA.	670338		5GW33 SHEET 1 OF
	w	ELL COMPLETIO	N DIAGRAM
OJECT : ABL Site 5	LOO	CATION : Rocket Center, WV	
RILLING CONTRACTOR : SAEDACCO RILLING METHOD AND EQUIPMENT US	ED : Rotosonic Geoprobe 814	OLS	
ATER LEVELS :	START: 0923 1/1	9/17 END: 0952 1/1	9/17 LOGGER : J. McCann
3	2		
2a	1	1- Ground elevation at well	####
3a	•		пппп
		2- Top of casing elevation	####
3b		a) vent hole?	NO
		3- Wellhead protection cover typ	€ Stickup
		a) weep hole?	No
8		b) concrete pad dimensions	2 X 2
	7'	4- Dia./type of well casing	2" Schedule 40 PVC
	11.5		
		5- Type/slot size of screen	0.010" PVC
7	<u> </u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
21.5'		0 - - -	
4	<u>↓</u>	6- Type screen filter	Filter Media #2 Sand
		a) Quantity used	
		7- Type of seal	Pel-plug Bentonite
	5	a) Quantity used	1 Bucket
	3	8- Grout	
		a) Grout mix used	0.5 bags dry portland mixed w/ GW
		b) Method of placement	Poured from top
		c) vol. of well casing grout	<u>N/A</u>
10'	6	Development method	Pump until stable with Hurrican Pump
		Development time	56 minutes
			<u></u>
		Estimated purge volume	115 gal
		Comments Final Field Parar	meters during well development.
		Turbidity	41.8
		рН	6.25
			0.61
*		Temperature	NM
	1		
6"			

St. Louis

	PROJECT NUMBER	WELL NUMBE	R
000000		680338	DP-001 SHEET 1 OF 1
CHZM:	WE	LL COMPLETIO	N DIAGRAM
PROJECT : St. Louis Ordnance Depot OU1	LOC	CATION : St. Louis, MO	
DRILLING CONTRACTOR : Buildog Drilling			
WATER LEVELS : 14.05' bgs	START : 1/11/17	END : 1/11/17	LOGGER : Z. Dolbeare/G. Roberts
3 3b 3a		 Ground elevation at well Top of casing elevation Wellhead protection cover type and basis of the cover	<u>540.59</u> 543.81
		b) concrete pad dimensions	N/A
	15'	4- Dia./type of well casing	2" PVC Stickup
7	17'	5- Type/slot size of screen	0.010" slot
30'	<u> </u>	6- Type screen filter	#2 Quartz filter sand
4	\	a) Quantity used	6 - 50 lb bags
	5	7- Type of seal a) Quantity used	3/8" sodium bentonite chips 2 - 50 lb bags, 10 gallons water
		Development method	Surge and Purge
		Development time	1/17/17 0955
10'	6	Estimated purge volume	7 gallons
		Comments High solids, ber	ntonite grains above seal to surface
<u>+</u>]		
⊲ →	-]		
0.20	1		

PROJECT : St. Louis Ordnance Depot OU1

 PROJECT NUMBER
 WELL NUMBER

 680338
 DP-002 SHEET 1

 WELL COMPLETION DIAGRAM

 LOCATION : St. Louis, MO

DRILLING CONTRACTOR : Bulldog Drilling DRILLING METHOD AND EQUIPMENT USED : HAS 4" ID; CME SSO END:1410 1/11/17 LOGGER: Z. Dolbeare/G. Roberts WATER LEVELS : 18.62' bgs START : 1/11/17 3 3b 2 1 1- Ground elevation at well 543.8 2- Top of casing elevation 546.7 11 3- Wellhead protection cover type N/A 3a a) drain tube? N/A b) concrete pad dimensions N/A 4- Dia./type of well casing 2" PVC Stickup 13' 15' 5- Type/slot size of screen 0.010" slot 7 6- Type screen filter #2 Quartz filter sand 26' a) Quantity used 6 - 50 lb bags 7- Type of seal 3/8" sodium bentonite chips a) Quantity used 2 - 50 lb bags, 10 gallons water 5 Development method Surge and Purge Development time 1/17/17 0955 10' 6 Estimated purge volume Comments High solids, bentonite grout above seal to surface 8.25"

OF 1

680338

LOGGER : Z. Dolbeare/G. Roberts

OF 1

WELL COMPLETION DIAGRAM

END:1410 1/9/17

WELL NUMBER

PROJECT : St. Louis Ordnance Depot OU1 LOCATION : St. Louis, MO

DRILLING CONTRACTOR : Bulldog Drilling

DRILLING METHOD AND EQUIPMENT USED : HAS 4" ID; CME SSO WATER LEVELS : 2.82' bgs START : 1/9/17

3 3b 2 1 1- Ground elevation at well 543.13 2- Top of casing elevation 546.09 8 3- Wellhead protection cover type N/A 3a a) drain tube? N/A b) concrete pad dimensions N/A 4- Dia./type of well casing 2" PVC Stickup 10' 12' 5- Type/slot size of screen 0.010" slot 7 6- Type screen filter #2 Quartz filter sand 25' a) Quantity used 7 - 50 lb bags 7- Type of seal 3/8" sodium bentonite chips a) Quantity used 1 - 50 lb bag, 10 gallons water 5 Development method Surge and Purge Development time 1/17/17 1000 10' 6 Estimated purge volume 12 gallons Comments High solids, bentonite grout above seal to surface 8.25"

PROJECT : St. Louis Ordnance Depot OU1

DRILLING CONTRACTOR : Bulldog Drilling

WATER LEVELS : 1.85' bgs

PROJECT NUMBER WELL NUMBER 680338 **DP-004** SHEET 1 OF 1 WELL COMPLETION DIAGRAM LOCATION : St. Louis, MO DRILLING METHOD AND EQUIPMENT USED : HAS 4" ID; CME SSO END :1400 1/12/17 LOGGER : Z. Dolbeare/G. Roberts START : 1200 1/12/17

680338

OF 1

WELL COMPLETION DIAGRAM

WELL NUMBER

PROJECT : St. Louis Ordnance Depot OU1 LOCATION : St. Louis, MO DRILLING CONTRACTOR : Bulldog Drilling DRILLING METHOD AND EQUIPMENT USED : HAS 4" ID; CME SSO LOGGER : Z. Dolbeare/G. Roberts WATER LEVELS : 2.78' bgs START : 1/9/17 END:1520 1/9/17 3 3b 2 1 1- Ground elevation at well 542.52 2- Top of casing elevation 545.87 6 3- Wellhead protection cover type N/A 3a a) drain tube? N/A b) concrete pad dimensions N/A 4- Dia./type of well casing 2" PVC Stickup 8' 10' 5- Type/slot size of screen 0.010" slot 7 6- Type screen filter #2 Quartz filter sand 25' a) Quantity used 9 - 50 lb bags 7- Type of seal 3/8" sodium bentonite chips a) Quantity used 1 - 50 lb bag, 10 gallons water 5 Development method Surge and Purge Development time 1/17/17 0900 10' 6 Estimated purge volume 10 gallons Comments High solids, bentonite grout above seal to surface 8.25"

3

3a

7

10'

28.3'

WATER LEVELS : 2.50' bgs

3b

PROJECT NUMBER WELL NUMBER 680338 **DP-006** SHEET 1 OF 1 WELL COMPLETION DIAGRAM PROJECT : St. Louis Ordnance Depot OU1 LOCATION : St. Louis, MO DRILLING CONTRACTOR : Bulldog Drilling DRILLING METHOD AND EQUIPMENT USED : HAS 4" ID; CME SSO LOGGER : Z. Dolbeare/G. Roberts START : 1/10/17 END 1240 1/10/17 2 1 1- Ground elevation at well 540.99 2- Top of casing elevation 543.81 ٨ 13' 3- Wellhead protection cover type N/A a) drain tube? N/A b) concrete pad dimensions N/A 4- Dia./type of well casing 2" PVC Stickup 15' 17' 5- Type/slot size of screen 0.010" slot 6- Type screen filter #2 Quartz filter sand a) Quantity used 7 - 50 lb bags 7- Type of seal 3/8" sodium bentonite chips a) Quantity used 2 - 50 lb bags 5 Development method Surge and Purge Development time 1/17/17 0925 6 Estimated purge volume 12 gallons Comments High solids, bentonite grout above seal to surface 8.25"

Appendix E IDW Disposal Paperwork

ABL

Clearfield MMG Post Office Box 1444 Chesapeake, VA 23327 (757) 549-8448 FAX: (757) 549-6668	NON-HAZARDOUS SHIPPING MANIFEST
GEN	IERATOR
NAME Dept. of the Navy - Allegany Balli	stics Lab TELEPHONE 304-726-5218
ADDRESS 210 State Route 956	CITY Rocket Center STATE WV
SHIPMENT ORIGIN ABL, Site 5	CITY Rocket Center STATE WV
AUTHORIZED AGENT C/O CH2M Hill, Inc.	FIRM
ADDRESS	• • OTHER PO# 10006-7-107053
MATERIAL OU	
MATERIAL CH	ARACIERIZATION
ACTIVITY GENERATING THIS MATERIAL: UST/AST REA	AOVAL OTHER Derived waste
PETROLEUM TYPE (S): None VIRGIN PROE	DUCTNON-VIRGIN PRODUCT
PHYSICAL STATE: STOCKPILED EXC,	AVATING DRUMS OTHER (Dev, Purge, & Decon Water)
HANDLING INSTRUCTIONS: Transport To Facili	ty Designated Below
FIRE OR SPILL INSTRCUTIONS: Non-Flammable /	Non-Hazardous
DESTINATION: Chesapeake Facility, 416 Dominic I hereby certify, to the best of my knowledge, the materia characterized above is non-hazardous as defined by the Virginia Hazardous Waste Management Regulations, Federa Regulations under Subtitle C – RCRA, U.S. Department of Transportation, or local / state of origin regulations.	Bivd. North Signature of Generator / Agent for VE Dept: of the Navy Leslie H. Mill # / 3/23/17 Printed Name / Date
TRAN	SPORTER
TRANSPORTER NAME Clearfield MMG, Inc.	TELEPHONETELEPHONETELEPHONETELEPHONE
I certity that the materials described above were received by me for shipment and delivered to the designated facility.	Transporter Signature / Date
FA	CILTIY
I certify that the materials described above were delivered to the facility and received by me.	Gross Weight
ACCEPTED BY DATE	Tare Weight
REASONS FOR REJECTION	Net Weight
	Tons
GEN	ERATOR

Clearfield MMG Post Office Box 1444 Chesapeake, VA 23327 (757) 549-8448 FAX: (757) 549-6668	NON-HAZARDOUS SHIPPING MANIFEST MANIFEST NO
GEN	ERATOR
NAME Dept. of the Navy - Allegany Ballis	tics Lab TELEPHONE 304-726-5218
ADDRESS 210 State Route 956	CITY Rocket Center STATE WV
SHIPMENT ORIGIN ABL, Site 5	CITY Rocket Center STATE WV
AUTHORIZED AGENT C/O CH2M Hill, Inc.	FIRM
ADDRESS	' · OTHER PO# 10006-7-107053
MATERIAL CHA	ARACTERIZATION
ACTIVITY GENERATING THIS MATERIAL: UST/AST REM	OVAL OTHER Investigation Derived Waste
PETROLEUM TYPE (S): None VIRGIN PROD	UCTNON-VIRGIN PRODUCT
PHYSICAL STATE: STOCKPILED EXCA	VATING DRUMS OTHER
HANDLING INSTRUCTIONS: Transport To Facility	<i>(Soil Cuttings)</i> y Designated Below
FIRE OR SPILL INSTRCUTIONS: Non-Flammable / I	Non-Hazardous
DESTINATION: Chesapeake Facility, 416 Dominio I hereby certify, to the best of my knowledge, the material characterized above is non-hazardous as defined by the Virginia Hazardous Waste Management Regulations, Federal Regulations under Subtitle C – RCRA, U.S. Department of Transportation, or local / state of origin regulations.	Blvd. North Signature of Generator / Agent for VS DERt of Norvy Listic H MULT / 3/23/17 Printed Name / Date
TRANS	SPORTER
IRANSPORTER NAME Clearing described above were received by the	TELEPHONE
for shipment and delivered to the designated facility.	Transporter Signature / Date
FAC	
I certify that the materials described above were delivered to the facility and received by me.	Gross Weight
ACCEPTED BY DATE	Tare Weight
REASONS FOR REJECTION	Net Weight
	Tons
GE	IERATOR

St. Louis

WASTE MATERIAL PROFILE SHEET Clean Harbors Profile No. CH1413235

A. GENERAL INFORMATION MO8 210 490 084 GENERATOR EPA ID #/REGISTRATION # MO ID# 002823 St Louis Ordanance Plant GENERATOR NAME: STATE/PROVINCE GENERATOR CODE (Assigned by Clean Harbors) ST41755 CITY St. Louis мо **ZIP/POSTAL CODE** 63137 ADDRESS 4301 Goodfellow Blvd PHONE: (703) 376-5304 CUSTOMER CODE (Assigned by Clean Harbors) CH20618 CUSTOMER NAME: CH2M Hill 6600 Peachtree Dunwoody Road Embassy Row -STATE/PROVINCE ADDRESS CITY **ZIP/POSTAL CODE** GA 30328 Atlanta Duilding Ann Cuito 600 **B. WASTE DESCRIPTION**

WASTE DESCRIPTION: Nonhazardous soil Investigation Derived Waste

PROCESS GENERATING WASTE: Drill cuttings from investigation of organic contamination. Source unknown, waste is not listed haz. IS THIS WASTE CONTAINED IN SMALL PACKAGING CONTAINED WITHIN A LARGER SHIPPING CONTAINER ? No

C. PHYSICAL PROPERTI	ES (at 25C or 77F)				
PHYSICAL STATE		NUMBER OF PHASES/LAYERS		VISCOSITY (If liquid present)	COLOR
SOLID WITHOUT FR	EE LIQUID	1 2 3 TOF	0.00	1 - 100 (e.g. Water)	brown
MONOLITHIC SOLID	1	% BY VOLUME (Approx.) MID	DLE 0.00	101 - 500 (e.g. Motor Oil)	brown
LIQUID WITH NO SC	LIDS	BOT	том 0.00	501 - 10,000 (e.g. Molasses)	
LIQUID/SOLID MIXT	JRE			> 10,000	
% SETTLED SOLID		ODOR			
% TOTAL SUSPENDE	D SOLID	NONE	= 95 (-35)	MELTING POINT OF (°C)	CARBON
SLUDGE		MILD	(= 00 ((=00)	< 140 (<60)	<= 1%
GAS/AEROSOL		STRONG	95 - 100 (35-38)	140-200 (60-93)	1 0%
		Describe:	101 - 129 (38-54)	> 200 (>93)	1-9 /6
			>= 130 (>54)		>= 10%
FLASH POINT °F (°C)	рН	SPECIFIC GRAVITY	ASH	BTU/LB (MJ/kg)	
< 73 (<23)	<= 2	< 0.8 (e.g. Gasoline)		< 2,000 (<4	1.6)
73 - 100 (23-38)	21-69	0.8-1.0 (e.g. Ethanol)	< 0.1 >	20	0 (4.6-11.6)
101 -140 (38-60)	Z (Neutral)	1.0 (e.g. Water)	0.1 - 1.0 🖌 L	Jnknown 5 000-10 0	00 (11 6-23 2)
141 -200 (60-93)			1.1 - 5.0	5,000 10,0	22.2)
. 200 (. 02)	▼ 7.1 - 12.4	1.0-1.2 (e.g. Antilreeze)	5.1 - 20.0	> 10,000 (>	>23.2)
> 200 (>93)	>= 12.5	> 1.2 (e.g. Methylene Chloride)		Actual:	
D. COMPOSITION (List the complete composition of the waste, include any inert components and/or debris. Ranges for individual components are acceptable. If a trade name is used, please supply an MSDS. Please do not use abbreviations.)					
CHEMICAL		,		MIN -	- MAX UOM
BARIUM				0.3710000 -	- 0.3710000 PPM
CHLOROFORM				3.0000000 -	- 3.0000000 PPB
DEBRIS (PPE, LINE	R, SAMPLE EQUIPM	IENT)		0.0000000 -	- 2.0000000 %

DEDRIG (FFE, LINER, SAMFLE EQUIFMENT)	0.0000000		2.00000	00	7
SOIL	98.0000000		100.00000	00	%
DOES THIS WASTE CONTAIN ANY HEAVY GAUGE METAL DEBRIS OR OTHER LARGE OBJECTS (EX., METAL PLATE OR PIPING >12" LONG, METAL REINFORCED HOSE >12" LONG, METAL WIRE >12" LONG, METAL VALVES, PIPE FITTINGS, CONCRETE REIN PIECES OF CONCRETE >3")?	>1/4" THICK OR IFORCING BAR C	ЭR	YES	✓	NO
If yes, describe, including dimensions:					
DOES THIS WASTE CONTAIN ANY METALS IN POWDERED OR OTHER FINELY DIVIDED FORM?			YES	✓	NO

DOES THIS WASTE CONTAIN OR HAS IT CONTACTED ANY OF THE FOLLOWING; ANIMAL WASTES, HUMAN BLOOD, BLOOD PRODUCTS, BODY NO NO YES FLUIDS, MICROBIOLOGICAL WASTE, PATHOLOGICAL WASTE, HUMAN OR ANIMAL DERIVED SERUMS OR PROTEINS OR ANY OTHER POTENTIALLY INFECTIOUS MATERIAL? I acknowledge that this waste material is neither infectious nor does it contain any organism known to be a threat to human health. This certification is based on my knowledge of the material. Select the answer below that applies:

The waste was never exposed to potentially infectious material.

YES Chemical disinfection or some other form of sterilization has been applied to the waste. I ACKNOWLEDGE THAT THIS PROFILE MEETS THE CLEAN HARBORS BATTERY PACKAGING REQUIREMENTS. YES I ACKNOWLEDGE THAT MY FRIABLE ASBESTOS WASTE IS DOUBLE BAGGED AND WETTED. YES

SPECIFY THE SOURCE CODE ASSOCIATED WITH THE	G49	SPECIFY THE FORM CODE ASSOCIATED WITH THE WASTE. W301
SPECIFY THE SOURCE CODE ASSOCIATED WITH THE WASTE.	G49	SPECIFY THE FORM CODE ASSOCIATED WITH THE WASTE. W301

NO

NO

NO

NO

YES

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited

E. CONSTITUENTS

Are these values based on testing or knowledge? Knowledge V Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers. RCRA **REGULATED METALS** REGULATORY TCLP TOTAL UOM NOT APPLICABLE LEVEL (mg/l) mg/l ~ D004 ARSENIC 5.0 ~ BARIUM 100.0 D005 ~ D006 CADMIUM 1.0 D007 CHROMIUM 5.0 ~ ~ D008 LEAD 5.0 ~ D009 MERCURY 0.2 v D010 SELENIUM 1.0 ~ SILVER D011 5.0 VOLATILE COMPOUNDS OTHER CONSTITUEN MAX UOM NOT D018 BENZENE 0.5 APPLICABLE BROMINE ~ D019 CARBON TETRACHLORIDE 0.5 CHLORINE Ŷ D021 CHLOROBENZENE 100.0 v FLUORINE D022 CHLOROFORM 6.0 IODINE v D028 1,2-DICHLOROETHANE 0.5 SULFUR ÷ D029 1,1-DICHLOROETHYLENE 0.7 ÷ POTASSIUM METHYL ETHYL KETONE D035 200.0 Ŷ D039 TETRACHLOROETHYLENE 0.7 SODIUM Ŷ AMMONIA D040 TRICHLOROETHYLENE 0.5 Ŷ CYANIDE AMENABLE D043 VINYL CHLORIDE 0.2 CYANIDE REACTIVE Ŷ SEMI-VOLATILE COMPOUNDS v CYANIDE TOTAL o-CRESOL D023 200.0 ~ SULFIDE REACTIVE D024 m-CRESOL 200.0 D025 p-CRESOL 200.0 HOCs PCBs CRESOL (TOTAL) D026 200.0 ~ NONE ✓ NONE 7.5 D027 1,4-DICHLOROBENZENE < 50 PPM < 1000 PPM D030 2,4-DINITROTOLUENE 0.13 >=50 PPM >= 1000 PPM HEXACHLOROBENZENE D032 0.13 IF PCBS ARE PRESENT, IS THE 0.5 D033 HEXACHLOROBUTADIENE WASTE REGULATED BY TSCA 40 CFR 761? HEXACHLOROETHANE D034 3.0 D036 NITROBENZENE 2.0 YES NO ~ 100.0 PENTACHLOROPHENOL D037 5.0 D038 PYRIDINE D041 2,4,5-TRICHLOROPHENOL 400.0 2,4,6-TRICHLOROPHENOL D042 2.0 PESTICIDES AND HERBICIDES ENDRIN D012 0.02 LINDANE 0.4 D013 10.0 D014 METHOXYCHLOR 0.5 D015 TOXAPHENE D016 2,4-D 10.0 D017 2,4,5-TP (SILVEX) 1.0 0.03 D020 CHLORDANE D031 HEPTACHLOR (AND ITS EPOXIDE) 0.008 ADDITIONAL HAZARDS DOES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED? NO (If yes, explain) YES CHOOSE ALL THAT APPLY DEA REGULATED SUBSTANCES **EXPLOSIVE** FUMING OSHA REGULATED CARCINOGENS

POLYMERIZABLE

REACTIVE MATERIAL

~

NONE OF THE ABOVE

RADIOACTIVE

F. REGULATORY STATUS

YES	V N	10	USEPA HAZARDOUS WASTE?									
YES	V N	10	DO ANY STATE WASTE CODES A	PPLY?								
			Toxas Wasta Codo									
YES	V N	10	DO ANY CANADIAN PROVINCIAL	WASTE CODES APPLY?								
	YES VO IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?											
YES		10	IS THIS WASTE PROHIBITED FRO	M LAND DISPOSAL WITHOUT FURTHER TRE	EATMENT PE	R 40 CFR PART 268?						
			VARIANCE INFO:	ect to LDR								
YES	N	10	IS THIS A UNIVERSAL WASTE?									
YES	✓ N	10	IS THE GENERATOR OF THE WAS	TE CLASSIFIED AS CONDITIONALLY EXEMP	PT SMALL QU	JANTITY GENERATOR (CESQG)?						
YES	N	10	IS THIS MATERIAL GOING TO BE	MANAGED AS A RCRA EXEMPT COMMERCIA	AL PRODUCT	Г, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?						
YES	✓ N	10	DOES TREATMENT OF THIS WAS	TE GENERATE A F006 OR F019 SLUDGE?								
YES	N	10	IS THIS WASTE STREAM SUBJEC	T TO THE INORGANIC METAL BEARING WAS	STE PROHIBI	TION FOUND AT 40 CFR 268.3(C)?						
YES		10	DOES THIS WASTE CONTAIN VOC	"S IN CONCENTRATIONS >=500 PPM?								
YES		10	DOES THE WASTE CONTAIN GRE			VAPOR PRESSURE >= .3KPA (.044 PSIA)?						
TES VEC		10	DUES THIS WASTE CONTAIN AND			SA VAPOR PRESSURE > 11 KPA (11.2 PSIA)?						
TES VES		10	IS THIS CERCLA REGULATED (SU	PERFUND) WASTE ?								
TLO		NO.	Hazardous Organic NESHAP (HON) rule (subpart G) Pharmac	euticals produ	uction (subpart GGG)						
YES	Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)											
. 20	YES		NO Does the waste stream cor	ne from a facility with one of the SIC codes liste	d under benzi	ene NESHAP or is this waste regulated under the benzene						
	120		NESHAP rules because the	e original source of the waste is from a chemica	l manufacturir	ng, coke by-product recovery, or petroleum refinery process?						
	YES	a 4h a	NO Is the generating source of	this waste stream a facility with Total Annual Be	enzene (TAB)	>10 Mg/year?						
	The ba	s me asis f	or this determination is: Knowledge of	Megagram/year (1 Mg =	= 2,200 IDS)	Knowledge VTesting						
	Descril	be th	e knowledge : Microbac Lab Rep	ort # L17030114, 13 Mar 2017 confirms waste	is non-hazaro	dous.:						
G. DOT/	TDG INF	ORM	IATION									
DOT/TDG I	PROPER	SHI	PPING NAME:									
NO	N HAZA	RD	OUS, NON D.O.T. REGULATED	, (SOIL)								
H. TRANS	PORTATI D SHIPMI	ION ENT	REQUIREMENTS FREQUENCY ONE TIME WEEI	KLY MONTHLY QUARTERLY YEARL	Y 🔽 OTHE	ER as needed						
		со	NTAINERIZED			BULK SOLID						
<u>1-25</u>	CONTA	INEF	S/SHIPMENT	GALLONS/SHIPMENT: 0 Min -0 May	GAI	SHIPMENT LIOM YARD						
STORAGE		ΓY:			G/IL.	TONS/YARDS/SHIPMENT: 0 Min - 0 Max						
POF	RTABLE TOT	TE TAI	K BOX CARTON CASE			<u> </u>						
CUE	BIC YARD BO	ОХ	DRUM									
OIF	HER:		DRUM SIZE: 55									
I. SPECIA		EST										
COMME	L REQUE											
	L REQUE	EQU	ESTS:									
	L REQUE	EQU	ISTS:									
GENERATO	L REQUE NTS OR R R'S CERTI	EQUI	STS:									
GENERATO	L REQUE NTS OR R R'S CERTI I am author mitted are	EQUI	TION o execute this document as an authorized a sentative of the actual waste. If Clean Harbo	agent. I hereby certify that all information submitted in th	his and attached	documents is correct to the best of my knowledge. I also certify that any ts Clean Harbors the authority to amend the profile, as Clean Harbors						
GENERATO I certify that I samples sub deems neces "On	L REQUE NTS OR R R'S CERTI I am author mitted are ssary, to re n Behalf o	IFICA	TION o execute this document as an authorized a sentative of the actual waste.If Clean Harbo he discrepancy. 2 88th RSC"	agent. I hereby certify that all information submitted in th rs discovers a discrepancy during the approval process	nis and attached , Generator grad	documents is correct to the best of my knowledge.I also certify that any nts Clean Harbors the authority to amend the profile, as Clean Harbors						
GENERATO I certify that I samples sub deems neces "On AU	L REQUE NTS OR R R'S CERTI I am author mitted are ssary, to re n Behalf o ITHORIZE	IFICA rized repre of the ED S	TION o execute this document as an authorized a sentative of the actual waste.If Clean Harbor he discrepancy. 2 88th RSC" IGNATURE NAM	agent. I hereby certify that all information submitted in th rs discovers a discrepancy during the approval process /IE (PRINT)	iis and attached , Generator grai TITLE	documents is correct to the best of my knowledge.I also certify that any nts Clean Harbors the authority to amend the profile, as Clean Harbors DATE						
GENERATO I certify that I samples sub deems neces "Or AU	R'S CERTI I am author mitted are ssary, to re n Behalf o THORIZE	IFICA rized repre effect to of the ED S	TION o execute this document as an authorized a sentative of the actual waste.If Clean Harbor he discrepancy. e 88th RSC" IGNATURE NAI To	agent. I hereby certify that all information submitted in th rs discovers a discrepancy during the approval process //E (PRINT) .ny L. Bridges Env Pro	nis and attached , Generator grai TITLE t Specialist	documents is correct to the best of my knowledge.I also certify that any nts Clean Harbors the authority to amend the profile, as Clean Harbors DATE 7 April 2017						
GENERATO I certify that I samples sub deems neces "On AU	L REQUE NTS OR R R'S CERTI I am authou mitted are ssary, to re n Behalf o THORIZE	IFICA rized repre of the ED S	TION o execute this document as an authorized a sentative of the actual waste.If Clean Harbone he discrepancy. 2 88th RSC" IGNATURE To	agent. I hereby certify that all information submitted in th rs discovers a discrepancy during the approval process //E (PRINT) ny L. Bridges	iis and attached , Generator grai TITLE t Specialist	documents is correct to the best of my knowledge.I also certify that any nts Clean Harbors the authority to amend the profile, as Clean Harbors DATE 7 April 2017						

WASTE MATERIAL PROFILE SHEET Clean Harbors Profile No. CH1414492

A. GENERAL INFORMAT GENERATOR EPA ID #/R GENERATOR CODE (Ass ADDRESS 4301 Good CUSTOMER CODE (Assig ADDRESS 6600 Pea Duilding	TION MC EEGISTRATION # MC bigned by Clean Harbor Ifellow Blvd gned by Clean Harbors achtree Dunwoody	D8 210 490 084 D ID# 002823 (s) ST) CH Road Embass	741755 H20618 y Row -	GENER, CITY CUSTOI CITY	ATOR NAME: St. Louis MER NAME: Atlanta	St Louis State/F CH2M H State/P	s Ordanance PROVINCE PHONE: (70 <i>iiil</i> PROVINCE	Plant MO ZIP/POS 03) 376-5304 GA ZIP/POS	STAL CODE	631: 3032	37 28
B. WASTE DESCRIPTION WASTE DESCRIPTION:	Nonhazardous de	ebris									
PROCESS GENERATING	WASTE: Debr	is from decont	amination/i	nvestig	ation of organic c	ontamina	ation. Sourc	e unknown, wa	aste is not		
IS THIS WASTE CONTAIN	listed ED IN SMALL PACKAC	d haz. GING CONTAINEE	D WITHIN A L	ARGER	SHIPPING CONTAINE	ER? No					
C. PHYSICAL PROPERTI	ES (at 25C or 77F)										
PHYSICAL STATE SOLID WITHOUT FR POWDER MONOLITHIC SOLID LIQUID WITH NO SOO	EE LIQUID LIDS	NUMBER OF 1 2 % BY VOLUM	PHASES/LA 2 3 /IE (Approx.)	YERS TOF MID BOT	DLE 0.00 TOM 0.00		VISCOSITY (1 - 100 (e 101 - 500 501 - 10,1	(If liquid present) e.g. Water) 0 (e.g. Motor Oil) 0000 (e.g. Molasses	s)	COLOR <u>varies</u>	
GUID/SOLID MIXIC % FREE LIQUID % SETTLED SOLID % TOTAL SUSPENDE SLUDGE GAS/AEROSOL	JRE D SOLID	ODOR NON MILE STR Describe:	ie D ONG		BOILING POINT <= 95 (<= 95 - 100 (101 - 129 >= 130 (>	= (°C) =35) (35-38) 9 (38-54) >54)	> 10,000 MELTING PC < 14 140- V > 20	DINT °F (°C) 0 (<60) 200 (60-93) 0 (>93)		PRGANIC <= 1% 1-9% >= 10%	;
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) > 200 (>93)	<pre>pH <= 2 2.1 - 6.9 7 (Neutral) 7.1 - 12.4 >= 12.5</pre>	SPECIFIC GRA < 0.8 (e.g. 0.8-1.0 (e. ✓ 1.0 (e.g. W 1.0-1.2 (e. > 1.2 (e.g.	.VITY . Gasoline) .g. Ethanol) Vater) .g. Antifreeze) . Methylene Ch	hloride)	ASH < 0.1 0.1 - 1.0 1.1 - 5.0 5.1 - 20.0		> 20 Jnknown	BTU/LB (MJ/kg) (<4.6) 000 (4.6-11.6),000 (11.6-2) (>23.2)	3) 3.2)	
D. COMPOSITION (LIST t please	ne complete compositione supply an MSDS_Ple	on of the waste, in ase do not use ab	clude any lner	t compor	ients and/or debris. R	anges for in	ndividual comp	onents are accept	able. If a trac	ae name	is used,
CHEMICAL BARIUM CHLOROFORM DEBRIS (PPE, LINEI SOIL	R, SAMPLE EQUIP!	MENT)						MIN 0.3710000 3.0000000 98.0000000 0.0000000	0.37 3.00 100.00 2.00	MAX 10000 00000 00000 00000	UOM PPM PPB %
DOES THIS WASTE CON >12" LONG, METAL REINI PIECES OF CONCRETE >	TAIN ANY HEAVY GAU FORCED HOSE >12" L -3")?	JGE METAL DEBI ONG, METAL WII	RIS OR OTHE RE >12" LONG	ER LARG G, META	E OBJECTS (EX., ME L VALVES, PIPE FITT	ETAL PLAT TINGS, CO	E OR PIPING NCRETE REIN	>1/4" THICK OR NFORCING BAR (YES DR	✓	NO
If yes, describe, inclu	iding dimensions:										
DOES THIS WASTE COM	NTAIN ANY METALS IN	N POWDERED OF	R OTHER FINI	ELY DIV	IDED FORM?				YES		NO
DOES THIS WASTE CO FLUIDS, MICROBIOLOG POTENTIALLY INFECTIO	NTAIN OR HAS IT COI NCAL WASTE, PATHO DUS MATERIAL?	NTACTED ANY O	F THE FOLLC E, HUMAN OR	owing; A R Animal	ANIMAL WASTES, HU DERIVED SERUMS	JMAN BLO OR PROT	OD, BLOOD P EINS OR ANY	RODUCTS, BODY OTHER	YES	~	NO
I acknowledge that the based on my knowle	nis waste material is ne dge of the material. Se	ither infectious nor elect the answer be	r does it conta elow that appli	in any or ies:	ganism known to be a	a threat to h	uman health.	This certification is	\$		
The waste was neve	r exposed to potentially	infectious materia	al.						YES	i	NO
Chemical disinfection	n or some other form of	sterilization has b	een applied to	the was	te.				YES		NO
I ACKNOWLEDGE THAT	THIS PROFILE MEETS	S THE CLEAN HA	RBORS BATT	TERY PA	CKAGING REQUIRE	MENTS.			YES	5	NO
I ACKNOWLEDGE THAT	MY FRIABLE ASBEST	OS WASTE IS DO	OUBLE BAGG	ED AND	WETTED.				YES	6	NO
SPECIFY THE SOURCE	CODE ASSOCIATED V	VITH THE	G49		SPECIFY THE I	FORM COL	DE ASSOCIAT	ED WITH THE WA	ASTE. WO	02	

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited

E. CONSTITUENTS

Are these values based on testing or knowledge? Knowledge V Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers. RCRA **REGULATED METALS** REGULATORY TCLP TOTAL UOM NOT APPLICABLE LEVEL (mg/l) mg/l ~ D004 ARSENIC 5.0 ~ BARIUM 100.0 D005 ~ D006 CADMIUM 1.0 v D007 CHROMIUM 5.0 ~ D008 LEAD 5.0 ~ 0.2 D009 MERCURY v D010 SELENIUM 1.0 ~ SILVER D011 5.0 VOLATILE COMPOUNDS OTHER CONSTITUEN MAX UOM NOT D018 BENZENE 0.5 APPLICABLE BROMINE ~ D019 CARBON TETRACHLORIDE 0.5 CHLORINE Ŷ D021 CHLOROBENZENE 100.0 Ŷ FLUORINE CHLOROFORM D022 6.0 IODINE v D028 1,2-DICHLOROETHANE 0.5 ÷ SULFUR D029 1,1-DICHLOROETHYLENE 0.7 ÷ POTASSIUM METHYL ETHYL KETONE D035 200.0 Ŷ D039 TETRACHLOROETHYLENE 0.7 SODIUM Ŷ AMMONIA D040 TRICHLOROETHYLENE 0.5 Ŷ CYANIDE AMENABLE D043 VINYL CHLORIDE 0.2 CYANIDE REACTIVE Ŷ SEMI-VOLATILE COMPOUNDS v CYANIDE TOTAL o-CRESOL D023 200.0 ~ SULFIDE REACTIVE D024 m-CRESOL 200.0 p-CRESOL D025 200.0 HOCs PCBs CRESOL (TOTAL) D026 200.0 NONE ~ NONE ✓ 7.5 D027 1,4-DICHLOROBENZENE < 50 PPM < 1000 PPM D030 2,4-DINITROTOLUENE 0.13 >= 1000 PPM >=50 PPM HEXACHLOROBENZENE D032 0.13 IF PCBS ARE PRESENT, IS THE 0.5 HEXACHLOROBUTADIENE D033 WASTE REGULATED BY TSCA 40 CFR 761? D034 HEXACHLOROETHANE 3.0 NITROBENZENE D036 2.0 YES NO ~ 100.0 PENTACHLOROPHENOL D037 5.0 D038 PYRIDINE D041 2,4,5-TRICHLOROPHENOL 400.0 2,4,6-TRICHLOROPHENOL D042 2.0 PESTICIDES AND HERBICIDES ENDRIN D012 0.02 LINDANE 0.4 D013 10.0 D014 METHOXYCHLOR 0.5 D015 TOXAPHENE D016 2,4-D 10.0 D017 2,4,5-TP (SILVEX) 1.0 0.03 D020 CHLORDANE D031 HEPTACHLOR (AND ITS EPOXIDE) 0.008 ADDITIONAL HAZARDS DOES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED? NO (If yes, explain) YES CHOOSE ALL THAT APPLY EXPLOSIVE DEA REGULATED SUBSTANCES FUMING OSHA REGULATED CARCINOGENS

Report Printe	ed On :	Thursday	, April 06,	2017

POLYMERIZABLE

REACTIVE MATERIAL

~

NONE OF THE ABOVE

RADIOACTIVE

F. REGULATORY STATUS

YES	✓ NO	USEPA HAZARDOUS WASTE?										
YES	✓ NO	DO ANY STATE WASTE CODES A	PPLY?									
		Texas Waste Code										
YES	NO	DO ANY CANADIAN PROVINCIAL WASTE CODES APPLY?										
YES	NO NO	IS THIS WASTE PROHIBITED FRO	M LAND DISPOSAL WITHOU	FURTHER TREATMENT PE	ER 40 CFR PART 268?							
		VARIANCE INFO:	ject to LDR									
YES	NO	IS THIS A UNIVERSAL WASTE?										
YES	NO	IS THE GENERATOR OF THE WAS	STE CLASSIFIED AS CONDIT	ONALLY EXEMPT SMALL QI	UANTITY GENERATOR (CESQG)?							
YES	NO	IS THIS MATERIAL GOING TO BE	MANAGED AS A RCRA EXEM	PT COMMERCIAL PRODUC	T, WHICH IS FUEL (40 CFR 261.2 (C)(2)(II))?							
YES	V NO	DOES TREATMENT OF THIS WAS	TE GENERATE A F006 OR F0	19 SLUDGE?								
YES	NO	IS THIS WASTE STREAM SUBJEC	T TO THE INORGANIC META	BEARING WASTE PROHIB	ITION FOUND AT 40 CFR 268.3(C)?							
YES	V NO	DOES THIS WASTE CONTAIN VO	C'S IN CONCENTRATIONS >=	500 PPM?								
YES	NO	DOES THE WASTE CONTAIN GRE	ATER THAN 20% OF ORGAN	IC CONSTITUENTS WITH A	VAPOR PRESSURE >= .3KPA (.044 PSIA)?							
YES	V NO	DOES THIS WASTE CONTAIN AN	ORGANIC CONSTITUENT WH	ICH IN ITS PURE FORM HAS	S A VAPOR PRESSURE > 77 KPA (11.2 PSIA)?							
YES	V NO	IS THIS CERCLA REGULATED (SU	IPERFUND) WASTE ?									
YES	✓ NO	IS THE WASTE SUBJECT TO ONE	OF THE FOLLOWING NESH	P RULES?								
	Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)											
YES	YES NO IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?											
	YES NO Does the waste stream come from a facility with one of the SIC codes listed under benzene NESHAP or is this waste regulated under the benzene											
	YES	NO Is the generating source of	this waste stream a facility wit	n Total Annual Benzene (TAB)	ng, coke by-product recovery, or petroleum relinery process?							
	What is th	e TAB quantity for your facility?	Megag	ram/year (1 Mg = 2,200 lbs)	, , , , , , , , , , , , , , , , , , ,							
	The basis	for this determination is: Knowledge of	f the Waste Or Test Data		Knowledge X Testing							
	Describe t	he knowledge : Microbac Lab Rep	ort # L17030114, 13 Mar 2017	confirms waste is non-hazar	dous.:							
G. DOT/	TDG INFOR	MATION										
DOT/TDG I	PROPER SH	IPPING NAME:										
NO	N HAZARI	OUS, NON D.O.T. REGULATED), (DEBRIS)									
H. TRANSP ESTIMATED	PORTATION	REQUIREMENTS FREQUENCY ONE TIME WEE	KLY MONTHLY QUARTE	RLY YEARLY 🔽 OTHI	ER as needed							
<u>1-25</u>	CONTAINE	RS/SHIPMENT										
STORAGE	CAPACITY:		GALLONS/SHIPMENT: 01	TIIN -O MAX GAL.	SHIPMENT UOM: TON YARD							
	R TYPE: RTABLE TOTE TA	NK BOXICARTONICASE			TONS/YARDS/SHIPMENT: <u>0 Min - 0 Max</u>							
CUE	BIC YARD BOX	DRUM										
OTH	HER:	DRUM SIZE: 55										
			-		·							
COMME	NTS OR REOL	IESTS [.]										
COMME												
GENERATO	R'S CERTIFIC	ATION										
I certify that I samples sub	l am authorized mitted are repr	to execute this document as an authorized esentative of the actual waste. If Clean Harbo	agent. I hereby certify that all inform ors discovers a discrepancy during th	ation submitted in this and attached e approval process, Generator gra	d documents is correct to the best of my knowledge. I also certify that any ints Clean Harbors the authority to amend the profile, as Clean Harbors							
deems neces	ssary, to reflect Behalf of the	the discrepancy. 88th RSC"										
AU	THORIZED	SIGNATURE NA	ME (PRINT)	TITLE	DATE							
		То	ny L. Bridges	Env Prot Specialis	t 7 April 2017							

WASTE MATERIAL PROFILE SHEET Clean Harbors Profile No. CH1414499

A. GENERAL INFORMAT GENERATOR EPA ID #/R GENERATOR CODE (Ass ADDRESS 4301 Good CUSTOMER CODE (Assis ADDRESS 6600 Per Building	TON MO EGISTRATION # MO signed by Clean Harbors Ifellow Blvd gned by Clean Harbors) achtree Dunwoody I 400 Switz 600	08 210 490 084 0 ID# 002823 s) ST41755 0 CH20618 Road Embassy Row -	GENER CITY CUSTOI CITY	ATOR NAME: St. Louis MER NAME: Atlanta	St Louis State/P F CH2M H State/Pf	s Ordanance ROVINCE PHONE: (70 iili ROVINCE	Plant MO ZIP/POST 3) 376-5304 GA ZIP/POST	TAL CODE	63137 30328
B. WASTE DESCRIPTION WASTE DESCRIPTION: PROCESS GENERATING IS THIS WASTE CONTAIN	Nonhazardous wa NASTE: Deve waste ED IN SMALL PACKAG	ater lopment and sampling of e not listed hazardous SING CONTAINED WITHIN A	of monito	ring wells from org SHIPPING CONTAINE	ganic con ER? No	taminated a	irea; source unk	nown,	
C. PHYSICAL PROPERTI	ES (at 25C or 77F)								
PHYSICAL STATE SOLID WITHOUT FR POWDER MONOLITHIC SOLID LIQUID WITH NO SOO LIQUID/SOLID MIXTU % FREE LIQUID % SETTLED SOLID	EE LIQUID LIDS JRE	NUMBER OF PHASES/I 1 2 3 % BY VOLUME (Approx.	LAYERS TOF .) MID BOT	ром 100.00 DLE 0.00 ТОМ 0.00	(10)	VISCOSITY ((✓ 1 - 100 (€ 101 - 500 501 - 10,0 > 10,000	if liquid present) .g. Water) (e.g. Motor Oil) 000 (e.g. Molasses))LOR : <u>lear</u>
% TOTAL SUSPENDE SLUDGE GAS/AEROSOL	D SOLID	NONE MILD STRONG Describe:		BOILING POINT ⁰F <= 95 (<=: 95 - 100 (: 101 - 129 ✓ >= 130 (>:	(° C) 35) 35-38) (38-54) 54)	MELTING PC < 14(140-2 > 20(IINT ºF (ºC) 0 (<60) 200 (60-93) 0 (>93)	TOTAL OR CARBON	GANIC = 1% -9% = 10%
FLASH POINT °F (°C) < 73 (<23) 73 - 100 (23-38) 101 -140 (38-60) 141 -200 (60-93) ✓ > 200 (>93)	pH <= 2 2.1 - 6.9 7 (Neutral) ✓ 7.1 - 12.4 >= 12.5	SPECIFIC GRAVITY < 0.8 (e.g. Gasoline)	ze) • Chloride)	ASH < 0.1 0.1 - 1.0 1.1 - 5.0 5.1 - 20.0	> V U	• 20 Jnknown	BTU/LB (MJ/kg) ✓ < 2,000 (< 2,000-5,00 5,000-10,0 > 10,000 (Actual:	4.6))0 (4.6-11.6))00 (11.6-23.2 >23.2)	2)
D. COMPOSITION (List t	he complete compositio	on of the waste, include any in	nert compor	nents and/or debris. Ra	anges for in	idividual comp	onents are acceptal	ble. If a trade	name is used,
CHEMICAL WATER							MIN 100.0000000	N 100.0000	/IAX UOM
DOES THIS WASTE CON >12" LONG, METAL REIN PIECES OF CONCRETE > If ves. describe. inclu	TAIN ANY HEAVY GAU FORCED HOSE >12" Lo •3")? Idina dimensions:	JGE METAL DEBRIS OR OT ONG, METAL WIRE >12" LC	HER LARG NG, META	E OBJECTS (EX., ME L VALVES, PIPE FITT	TAL PLATE INGS, COM	e or piping : Ncrete rein	>1/4" THICK OR IFORCING BAR OF	YES	NO
DOES THIS WASTE CON DOES THIS WASTE CO FLUIDS, MICROBIOLOG POTENTIALLY INFECTION	NTAIN ANY METALS IN NTAIN OR HAS IT CON ICAL WASTE, PATHOI DUS MATERIAL?	N POWDERED OR OTHER F NTACTED ANY OF THE FOL LOGICAL WASTE, HUMAN (INELY DIV LOWING; A OR ANIMAL	IDED FORM? ANIMAL WASTES, HU L DERIVED SERUMS (MAN BLOO OR PROTE	DD, BLOOD PI EINS OR ANY	RODUCTS, BODY OTHER	YES YES	NO NO
I acknowledge that th based on my knowle The waste was neve	his waste material is nei dge of the material. Sel r exposed to potentially	ther infectious nor does it con lect the answer below that ap infectious material.	ntain any or oplies:	ganism known to be a	threat to hu	uman health.	This certification is	YES	NO
Chemical disinfection	or some other form of	sterilization has been applied	d to the was	te.				YES	NO
I ACKNOWLEDGE THAT	THIS PROFILE MEETS	S THE CLEAN HARBORS BA	ATTERY PA		MENTS.			YES	NO
I ACKNOWLEDGE THAT	MY FRIABLE ASBEST	OS WASTE IS DOUBLE BA	GGED AND	WETTED.				YES	NO
SPECIFY THE SOURCE	CODE ASSOCIATED W	VITH THE G49		SPECIFY THE F	FORM COD	E ASSOCIAT	ED WITH THE WAS	STE. W101	

Please indicate which constituents below apply. Concentrations must be entered when applicable to assist in accurate review and expedited

E. CONSTITUENTS

Are these values based on testing or knowledge? Knowledge V Testing

If constituent concentrations are based on analytical testing, analysis must be provided. Please attach document(s) using the link on the Submit tab.

approval of your waste profile. Please note that the total regulated metals and other constituents sections require answers. RCRA **REGULATED METALS** REGULATORY TCLP TOTAL UOM NOT APPLICABLE LEVEL (mg/l) mg/l ~ D004 ARSENIC 5.0 ~ 100.0 D005 BARIUM ~ D006 CADMIUM 1.0 v D007 CHROMIUM 5.0 ~ D008 LEAD 5.0 ~ 0.2 D009 MERCURY v D010 SELENIUM 1.0 ~ SILVER D011 5.0 VOLATILE COMPOUNDS OTHER CONSTITUENT MAX UOM NOT D018 BENZENE 0.5 APPLICABLE BROMINE ~ D019 CARBON TETRACHLORIDE 0.5 CHLORINE Ŷ D021 CHLOROBENZENE 100.0 Ŷ FLUORINE D022 CHLOROFORM 6.0 IODINE v D028 1,2-DICHLOROETHANE 0.5 ÷ SULFUR 0.7 D029 1,1-DICHLOROETHYLENE ÷ POTASSIUM METHYL ETHYL KETONE D035 200.0 Ŷ D039 TETRACHLOROETHYLENE 0.7 SODIUM Ŷ AMMONIA D040 TRICHLOROETHYLENE 0.5 Ŷ CYANIDE AMENABLE D043 VINYL CHLORIDE 0.2 CYANIDE REACTIVE Ŷ SEMI-VOLATILE COMPOUNDS v CYANIDE TOTAL o-CRESOL D023 200.0 ~ SULFIDE REACTIVE D024 m-CRESOL 200.0 p-CRESOL D025 200.0 HOCs PCBs CRESOL (TOTAL) D026 200.0 NONE NONE ~ ✓ 7.5 D027 1,4-DICHLOROBENZENE < 50 PPM < 1000 PPM D030 2,4-DINITROTOLUENE 0.13 >= 1000 PPM >=50 PPM HEXACHLOROBENZENE D032 0.13 IF PCBS ARE PRESENT, IS THE 0.5 HEXACHLOROBUTADIENE D033 WASTE REGULATED BY TSCA 40 CFR 761? D034 HEXACHLOROETHANE 3.0 NITROBENZENE D036 2.0 YES NO ~ 100.0 PENTACHLOROPHENOL D037 5.0 D038 PYRIDINE D041 2,4,5-TRICHLOROPHENOL 400.0 2,4,6-TRICHLOROPHENOL D042 2.0 PESTICIDES AND HERBICIDES ENDRIN D012 0.02 LINDANE 0.4 D013 10.0 D014 METHOXYCHLOR 0.5 D015 TOXAPHENE D016 2,4-D 10.0 D017 2,4,5-TP (SILVEX) 1.0 0.03 D020 CHLORDANE D031 HEPTACHLOR (AND ITS EPOXIDE) 0.008 ADDITIONAL HAZARDS DOES THIS WASTE HAVE ANY UNDISCLOSED HAZARDS OR PRIOR INCIDENTS ASSOCIATED WITH IT, WHICH COULD AFFECT THE WAY IT SHOULD BE HANDLED? NO (If yes, explain) YES CHOOSE ALL THAT APPLY

DEA REGULATED SUBSTANCES	EXPLOSIVE	FUMING	OSHA REGULATED CARCINOGENS
POLYMERIZABLE	RADIOACTIVE	REACTIVE MATERIAL	NONE OF THE ABOVE

F. REGULATORY STATUS

YES	✓	NO	USEPA HAZARDOUS WASTE?											
YES	✓	NO	DO ANY STATE WASTE CODES A	PPLY?										
			Texas Waste Code	exas Waste Code										
YES	✓	NO	O ANY CANADIAN PROVINCIAL WASTE CODES APPLY?											
YES	YES NO IS THIS WASTE PROHIBITED FROM LAND DISPOSAL WITHOUT FURTHER TREATMENT PER 40 CFR PART 268?													
	LDR CATEGORY: Not subject to LDR VARIANCE INFO:													
2/50														
YES	•	NO	IS THE CENERATOR OF THE WAY											
VES	•	NO	IS THIS MATERIAL COING TO BE	MANAGED AS A RCRA EXE										
VES		NO	DOES TREATMENT OF THIS WAS			1, WHICH IS FOLE (40 CFR 201.2 (C)(2)(ii)):								
YES	•	NO	IS THIS WASTE STREAM SUBJEC	T TO THE INORGANIC MET	AL BEARING WASTE PROHIB	ITION FOUND AT 40 CER 268 3(C)?								
YES	~	NO	DOES THIS WASTE CONTAIN VO	C'S IN CONCENTRATIONS >	=500 PPM?									
YES		NO	DOES THE WASTE CONTAIN GRE	ATER THAN 20% OF ORGA	NIC CONSTITUENTS WITH A	VAPOR PRESSURE >= .3KPA (.044 PSIA)?								
YES	YES NO DOES THE WASTE CONTAIN GREATER THAN 20% OF ORGANIC CONSTITUENTS WITH A VAPOR PRESSURE >= .3KPA (.044 PSIA)?													
YES		NO												
YES		NO	IS THE WASTE SUBJECT TO ONE		AP RUI ES?									
120	YES INO IS THE WASTE SUBJECT TO ONE OF THE FOLLOWING NESHAP RULES? Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)													
VES	Hazardous Organic NESHAP (HON) rule (subpart G) Pharmaceuticals production (subpart GGG)													
TLO	YES NO IF THIS IS A US EPA HAZARDOUS WASTE, DOES THIS WASTE STREAM CONTAIN BENZENE?													
	TES		NO Does the waste stream co NESHAP rules because th	e original source of the waste	is from a chemical manufacturi	ng, coke by-product recovery, or petroleum refinery process?								
	YES		NO Is the generating source of	this waste stream a facility w	ith Total Annual Benzene (TAB)) >10 Mg/year?								
	What	is the	TAB quantity for your facility?	Mega	gram/year (1 Mg = 2,200 lbs)									
	The b Desc	oasis f ribe th	or this determination is: Knowledge c e knowledge : Microbac Lab Rep	f the Waste Or Test Data ort # L17030114, 13 Mar 201	7 confirms waste is non-hazaro	Knowledge X Testing dous.:								
G. DOT/	TDG IN	FORM	IATION											
DOT/TDG I	PROPE	R SHI	PPING NAME:											
NO	N HAZ	ARD	OUS, NON D.O.T. REGULATED	D, (WATER)										
H. TRANSP		TION MENT	REQUIREMENTS FREQUENCY ONE TIME WEE	KLY MONTHLY QUAR	TERLY YEARLY 🔽 OTH	ER as needed								
<u>1-25</u>	CONT	AINEF	S/SHIPMENT											
STORAGE	CAPAC	ITY:		GALLONS/SHIPMENT: 0	MIN -O MAX GAL.	SHIPMENT UOM: TON YARD								
CONTAINE	R TYPE RTABLE TO	:: OTE TAI	IK BOXICARTONICASE			TONS/YARDS/SHIPMENT: <u>0 Min - 0 Max</u>								
CUE	BIC YARD	BOX	DRUM											
OTH	IER:		DRUM SIZE: 55											
		IFOT												
COMME	NTS OR	REQU	ESTS:											
GENERATO	R'S CER	TIFICA	TION											
I certify that I samples sub	am auth	orized e repre	o execute this document as an authorized sentative of the actual waste.lf Clean Harbo	agent. I hereby certify that all infor ors discovers a discrepancy during	nation submitted in this and attached the approval process, Generator gra	I documents is correct to the best of my knowledge. I also certify that any nts Clean Harbors the authority to amend the profile, as Clean Harbors								
"On	Behalf o	of the	88th RSC:											
AU	THORIZ	ZED S	IGNATURE NA	ME (PRINT)	TITLE	DATE								
			То	ny L. Bridges	Env Prot Spec	7 April 2017								

		techne (Ferry desig	and for use on elite	o (12 pitch) typowritor)	75 17019	41377		SC PPN	1/4/2	017	Form		OMB No 2	2050-0039
Piea ↑			1. Generator ID Nun	nber EQUIRED	<u>.</u>	2. Page 1 of	i 3. Emer (P3C	rgency Response (전) 4 63-2	Phone	4. Manifest	Fracking N	^{imber} 302	38 F	LE
	5. Gen	erator's Name and Mailin	g Address			<u>, I</u>	Generat	or's Site Address	(if different t	han mailing addres	s)		· ·	
		301 Ganetellex	ı Bivel				SAA	框						
	1.3 y	日間的關於相望。	137 170 0364				I	1	l,					
	Gener 6. Trar	ator's Phone: 17 9991	e e				<u> </u>		-A	U.S. EPA ID N	lumber			
	C	lean Harbors Er	wironmental	Service, Inc.				4,		MAC	039	322:	250	
	7. Trar	nsporter 2 Company Nam	e							U.S. EPA ID N	lumber			
		•						<u> </u>						
	°8, Des Co	signated Facility Name an	d Site Address	ang lain						U.S. EPAIDIN		a	* ** 75	
	司	379 Spring Gro	As yAssums	JAR & REARY			-		71N	13 M L)	000	9.204	323	
	्र) Facilit	nainnaid. OH 41 v's Phone:	1232 1914 31 4 8 1 - 9	738			•			*		-		
	9a. HM	9b. U.S. DOT Description and Packing Group (if a	on (including Proper S any))	Shipping Name, Hazard Cla	ass, iD Number,			10. Conta No.	iners Type	11. Total Quantity	12. Unit Wt./Vol.	13.	Waste Code	្លាំ ដែរទ ទ _{្ធព្រ} ុកភ្នំ
		1. NON HAZARI	DOUS, NON I	D.O.T. REGULATI	ED, (DFBF	115)				X		1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
VTO								001	BIY)	60250	P			
JER/		2									<u> </u>			
Ш Ш		² NON HAZARI	dous, non t	D.D.T. REGULATI	ed, (3011)	}		Ala -	N AA	1.64an	6			
								OF CH	1314	and the second second	5	9 . 9		1. A.
		3. NON HAZAR	DOWS, NON I	D.O.T. REGULATI	ED, (WAT	ER)								
								607		03352	Y.			
	<u> </u>	4.		·····										
	<u> </u>		1 A 1 Htt											
	14. Sp	CITIAL ALAGE	is and Additional Info	mation Tayestige	tion	Der 17	d b	Viste	1	adding the	for Carlo	1024 30	t e 🕴	
	1.1	CH1414238	7.X55	d'	• • •	, .	1.17		•			-		
	<u>ن</u> .		7855									è.	ŕ	
	15. (GENERATOR'S/OFFERC	R'S CERTIFICATIO	N: I hereby declare that th espects in proper condition	e contents of th for transport ac	is consignmen cording to app	it are fully a licable inte	and accurately demational and na	escribed abor tional govern	ve by the proper sh mental regulations	ipping nam . If export sl	e, and are cla ipment and	assified, pack I am the Prim	aged, ary
		Exporter, I certify that the	contents of this consi imization statement i	ignment conform to the ten identified in 40 CFR 262.27	ms of the attach 7(a) (if I am a la	ed EPA Ackno roe quantity ge	wledgmen enerator) o	t of Consent. r (b) (if I am a sm	all quantity q	enerator) is true.	Ĩ.a,			n de c
	Gener	rator's/Offeror's Printed/Ty	/ped Name	relative a state	an a	p s	Ignature	- and the second second		KA		M	onth Day	Year
↓	×,	On Ro.	1. K at	XXXSL_	tisti 1	Brak	<u>(</u>)	<u>_/</u>	1.7 1	Dates			056	5 17
E	16. In	ternational Shipments"	import t	o U.S.	~ / E	Export from	n U.S.	Port of e	ntry/exit:					
1	Trans	sporter signature (for expo ansporter Acknowledgmer	orts only): at of Receipt of Materi	ials				Date lea	ving U.S.:					·····
RTEI	Trans	porter 1 Printed/Typed Na	me	. 1		S	ignature	,				Mo	onth Day	Year
PO 042	Ţ,	Aato be	1 . 7	· · · ·			Dan	17	IA P PA	\$.0 1			<u>~ 5</u>	4 17
AN	Trans	porter 2 Printed/Typed Na	ime	1977) 1		5 	Ignature		577 1			1	Janu ≱ Day	
E	18 D	iscrenaricy		· · · · · ·			· .			· ·				5 - 1 - 1 - 1
١Î	18a, [Discrepancy Indication Sp		łh.]	Residue		Partial Re	iection		- Full Rei	ection
				ury.			L				,			
	401-	Alternate Facility (or Cono	rator				N	lanifest Referen	ce Number:	U.S. EPAID	Number			
E	180. 4	Alternate Facility (or Gene	alator)							OIOT EI THID				
FAC	Facili	tv's Phone:		an an Arristo. Ar						1	5		-	
圓	18c. 8	Signature of Alternate Fac	ility (or Generator)		·	A.						N	Ionth Da	y Year
N.										· · ·				
ESIC	19. H	azardous Waste Report N	nanagement Method	2.	ardous waste tre	aunent, dispo:	sai, and fê	cycling systems)	*	4.				د: د
ľ.		村主牛主		1141	÷ .		1914	·**						
11		esignated Facility Owner	or Operator: Certifica	ation of receipt of hazardou	s materials cove	ered by the ma	nifest exce	ent as noted in It	em 18a					
	20. D	oliginated i delitij - met	or operator, cortanda										lonth D-	Ver-
	Printe	ed/Typed Name					Signature				į	• • • • • • • • • • • • • • • • • • •	lonth Day	y Year
- DESIGNATED FACILITY	18b. / Facilii 18c. 3 19. H	Alternate Facility (or Gene ty's Phone: Signature of Alternate Fac azardous Waste Report M 하고,우리. esignated Facility Owner	rator) ility (or Generator) Management Method	Codes (i.e., codes for haze 2. 1;14:1	ardous waste tré s materials cove	eatment, dispos 3. ered by the ma	sal, and re	cycling systems)	em 18a	U.S. EPA ID	s	N	Ionth Da	y Yea

÷ş

Appendix F Reactivity SOP

Handling Frozen Samples from SERDP ER2621

This procedure is used for handling cryogenic core samples, or otherwise frozen-preserved soil samples. The preparation stages should be performed quickly to avoid thawing samples. Batches of 3 to 6 samples at a time worked well for handling and transfer into an Anoxic Chamber, wherein most of the analysis occurred.

Sites processed to date:

- SLOP (4 wells 6 samples per well, although select analysis performed for some sample only)
- 1. Sample preparation.
 - a. Cut 1 (1" think) puck from each frozen core (cylinder)
 - b. Re-label cylinders and consolidate into bags (2 to a bag), sealed for long term storage I foodsaver bags, frozen in chest freezer.
 - i. Leave 2 inches extra per bag for 2nd access
 - c. Pucks are labeled on foil covering, bagged, sealed (5,6 or 7 per bag) for short term storage
 - i. Leave 2-3 inches extra per bag for 2nd and 3rd access
 - d. When sampling from a bag of pucks
 - i. Prepare new labels on foil,
 - ii. Cut into one bag at a time, minimizing exposure and melting time.
 - iii. Chisel used to section puck
 - iv. Re-foil, bag and seal pucks asap after sampling.
- 2. ZVI Content analysis by acidification
 - a. Pre-weight and label 40 mL VOA vials
 - b. Weight ~2.5 g of puck materials in VOA vials.
 - c. Transfer to glove box ($O_2 < 1.0 \text{ mg/L}$, No H_2)
 - d. Acidify using 10 mL of 1M HCl.
 - e. Vortex mix samples twice daily
 - f. After 24 hrs of digestion
 - i. Measure pressure,
 - ii. Pre-load 2 mL in syringe,
 - iii. Puncture septa, inject 2mL of gas
 - iv. Flush syringe 3 times, withdraw 2 mL sample on 4th
 - v. Transfer syringe out of glove box.
 - vi. Hydrogen analysis on GC (SRI 8610C, equipped with a carboxen 1010 plot column, injector, oven isothermal at 30 degrees C, and TCD at 170 C, Nitrogen carrier gas with elution peak at ~1.3 mins.
 - vii. GC externally calibrated using hydrogen and foil coated Tedlar bags (SKC Flexfoil).

- g. Cap removed from 40 mL VOA vial to relieve pressure and purge headspace (about 10 mins), mix open sample gentle and re-seal (same Teflon coated silicon septa)
- Repeat sampling at 48 hrs, or until Hydrogen is no longer produced (reaction in vial considered complete if <5% of hydrogen is added to total, or sample peak at detection limit).
- i. Transfer vial to oven at 100 deg C for 24 hrs
- j. Weight 40 mL VOA vials calculate water content
- 3. pH ORP
 - a. Pre-weight and Label 40 VOA vials
 - b. Weight ~ 5 g of puck material in VOA vials
 - c. Transfer to glove box ($O_2 < 1mg/L$, No H_2)
 - d. Add 10 mL deoxygenated deionized water
 - e. Rotate on test tube mixer for 30 mins to thaw and mix
 - f. Measure pH and ORP using needle probes (ORP Microelectrodes MI800-411B, pH Vernier pH)
 - g. Transfer vial to oven at 80 deg C for 24 hrs
 - h. Weight sample Gravimetric analysis
- 4. Magnetic and Gravimetric Analysis
 - a. Follows from Sample in Step 3
 - b. Sample pulverized using mortar & pestle
 - c. Pour sample onto weighing dish 1 (thin plastic), weighed
 - d. Magnet placed in another weighing dish 2, stacked on top of sample in dish 1
 - e. Dish 3 pre-weighed,
 - f. Magnet and dish 2 transferred to top of dish 3, magnet removed allowing magnetic particles to fall into dish 3
 - g. Sample in dish 1 mixed before magnet and dish 2 stacked on top of sample again.
 - h. Repeat d and e (10-15x) or until no more particles are removed
 - i. Magnet placed under dish 3
 - j. Dish 3 rinsed with DI water until silt and clay removed (carefully separating magnetic fraction)
 - k. Sonication bath used to remove clay
 - I. Dish 3 dried overnight and reweighed for gravimetric determination of Magnetically separable fraction.
- 5. Chemical Reactive Dyes Resazurin (Rzn)
 - Prepare Stainless Steel column with 1" Swage-Lok fittings and custom end caps. Seal 1/8th " union end of column
 - b. Weight Column with all fittings and labels
 - c. Place ½ Puck (for SLOP cores) into SS Column, Weigh
 - d. Seal 1/16th " union end of column, leaving the plug un-sealed

- e. Pass unsealed column into anoxic chamber (glove box < 1ppm O₂), Vacuum purging and replacing transfer chamber with ultra-high purity nitrogen 3x to remove oxygen.
- f. Un-plug both ends, attach Luer to 1/8th and 1/16th swage-lok fittings on respective ends of the column.
- g. Flush column bottom-upwards with 6.4 mM bicarbonate buffer solution adjusted to pH7.2. Leaving no headspace, seal plugs on both ends
- h. Pass column out of anoxic chamber
- i. Weight and place on rotary mixer for 1 hour to thaw and mix.
- j. Inject 1mM Resazurin Dye into bottom of the column, Volume = 1/20th of the liquid volume that was added in "g" (determined gravimetrically from "i" and "c") allowing excess to flow out of the top of the column, maintaining zero headspace.
- k. Place column on roller for 1 hour
- I. Place column upright on retort stand for 5 mins, allowing sediment to settle. Attach Luer to 1/8th and 1/16th swage-lok fittings on respective ends of the column.
- m. Deliver 2.5 mL of deionized water into the bottom of the column (1/16th" fitting) while collecting the same volume "sample from the top of the column (via 1/16th " fitting)
- n. Filter sample, wasting first 10 drops (less for turbid samples) before collecting 1 mL in a micro-cuvette. 0.45 μm Fisherbrand PVDA syringe filters.
- o. Analysis using UV/Vis Spectrophotometer Resazurin peak = 604nm (blue, Oxidized form of dye), Resorufin peak = 560 nm (pink, reduced for of dye)

Appendix G Complete Analytical Results

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web:www.microbe.com

SITE LOGIC Report

Next Generation Sequencing (NGS) Report

MI Iden	tifier:	052OA		Repo	ort Date:	03/01/2017
Address:	CH2M HILL 5701 Cleveland Street Suite 200 Virginia Beach, VA 23462		Email: anita.dodson@ch2m.		on@ch2m.com	
Contact:	Anita Dodso	n	Pho	one:		

Project: SLOP ESTCP Study Comments:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Sample Overview

Table 1: Sample information for 052OA.

MI Identifier	Sample Name	Sample Date	Reads Passing Quality Filtering	% Reads Classified to Genus
052OA-1	SLOP-TW03-012017	01/23/2017	478,745	94.0%
052OA-2	SLOP-MW119-012017	01/23/2017	389,203	91.9%
052OA-3	SLOP-TW05-012017	01/24/2017	1,713	53.0%
052OA-4	SLOP-TW06-012017	01/24/2017	477,859	96.4%
052OA-5	SLOP-TW02-012017	01/24/2017	338,337	95.3%
052OA-6	SLOP-TW01-012017	01/25/2017	583,516	90.8%
052OA-7	SLOP-TW04-012017	01/25/2017	530,469	98.0%

Table 2: Genus diversity indices for 052OA. Please refer to the Interpretation section for more information on what these diversity indices mean.

MI Identifier	Sample Name	Shannon	Simpson	Chao1 Predicted Genera	Total Genera Observed	Total Eubacteria (cells/mL)
052OA-1	SLOP-TW03-012017	2.1	0.63	480	459	1.19e+04
052OA-2	SLOP-MW119- 012017	2.5	0.67	700	592	7.25e+06
052OA-3	SLOP-TW05-012017	3.8	0.92	280	148	3.56e+03
052OA-4	SLOP-TW06-012017	2.3	0.84	480	411	1.46e+04
052OA-5	SLOP-TW02-012017	2	0.73	530	433	7.76e+05
052OA-6	SLOP-TW01-012017	3	0.86	630	548	6.56e+05
052OA-7	SLOP-TW04-012017	1.1	0.41	540	467	1.60e+05

Figure 1: Principal Coordinate Analysis. This scatterplot shows a Principal Coordinate Analysis (PCoA) of the normalized relative abundance of all samples at the genus-level classifications. Increasing distance between sample points on this plot indicate increasing dissimilarity between bacterial populations in the samples.

Figure 2: Hierachical Clustering Dendrogram. This dendrogram shows a hierarchical clustering of samples based on genus-level classifications. Branch length is representative of relatedness between samples. The barchart beneath each sample show the relative abundance of the top 8 genus-level classifications, along with all other classified and unclassified genera. See the following detailed analysis by sample to identify the dominant genera in each sample.

Results for SLOP-TW03-012017

Table 3: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
478,745	438,178	91.5%

Table 4: Classification Rate Summary

Taxonomic Level				Reads Classified to Taxonomic Level			Total Reads C Taxonomic	lassified to Level
King Phyl Class Orde Fam Genu Spec	gdom um s er ily us ies			430 428 426 423 421 411 242	,354 ,628 ,659 ,146 ,110 ,980 ,549		98.2% 97.8% 97.4% 96.6% 96.1% 94.0% 55.4%	
% Total Reads Classified	100% - 90% - 80% - 70% - 60% - 50% - 40% - 30% - 20% - 10% -							
	0%]	Kingdom	Phylum	Class	Order	Family	Genus	Species

Figure 3: Classification Rate by Taxonomic Level

SLOP-TW03-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 5: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	375,539	85.7%
Bacteroidetes	43,936	10.0%
Unclassified at Phylum level	9,550	2.2%
Firmicutes	5,059	1.1%
Actinobacteria	878	0.2%
Caldithrix	820	0.2%
Cyanobacteria	347	0.1%
Verrucomicrobia	253	0.1%

Total Phylum-level Taxonomic Categories Identified: 25. This table shows the top 8 of 25 classifications. The 8 phyla shown in this table account for 99.6% of all observed classifications.

Figure 4: Top Phylum Classification Results

Table 6: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Blastomonas	11,289	2.6%	This genus includes strictly aerobic, photosynthetic bacte- ria. Organisms are chemoorganotrophic and facultatively photoorganoheterotrophic.
Flavobacterium	35,007	8.0%	Flavobacterium degrades biopolymers such as chitin and cellulose. This genus is aerobic and is widely distributed in soil and water.
Marinospirillum	6,000	1.4%	This genus of halophilic, Gram-negative, hetertrophic bac- teria are aerobic and can live in saline conditions.
Novosphingobium	9,043	2.1%	This is a genus that can degrade aromatic compounds such as phenol, aniline, nitrobenzene, and phenanthrene.
Oxalobacter	5,728	1.3%	These anaerobic bacteria are found in the gastrointestinal tracts of vertebrates and can degrade oxalic acid.
Pseudomonas	244,068	55.7%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Rhodoferax	29,855	6.8%	This genus is typically found in well-lit stagnant water and can thrive in aerobic or anaerobic environments using many substrates as carbon sources.
Unclassified at Genus level	26,198	6.0%	

Total Genus-level Taxonomic Categories Identified: 460. This table shows the top 8 of 460 classifications. The 8 genera shown in this table account for 83.8% of all observed classifications.

Figure 5: Top Genus Classification Results

Results for SLOP-MW119-012017

Table 7: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
389,203	359,178	92.3%

Table 8: Classification Rate Summary

Terror orașie Lorral				Reads Classified to Taxonomic			% Total Reads C	lassified to
Taxo	Domic Lev	vei		Level			Taxonomic Level	
King	gdom			358	,962		99.9%)
Phyl	um			352,749			98.2%)
Clas	s			348	,366		97.0%)
Orde	er			345	,388		96.2%)
Fam	ily			339	,723		94.6%)
Gen	us			330	,107		91.9%)
Spec	cies			242	,543		67.5%)
	ן 100%			_				
	90% -							
ied	80% -							
ssif	70% -							
Cla	60% -							
ads	50% -							
Rea	40% -							
tal	30% -							
Ř	0070							
%	20% -							
	10% -							
	0% J							
		Kingdom	Phylum	Class	Order	Family	Genus	Species

Figure 6: Classification Rate by Taxonomic Level

SLOP-MW119-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 9: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Firmicutes	215,516	60.0%
Proteobacteria	104,184	29.0%
Bacteroidetes	8,323	2.3%
Euryarchaeota	6,618	1.8%
Unclassified at Phylum level	6,429	1.8%
Actinobacteria	5,294	1.5%
Tenericutes	3,796	1.1%
Cyanobacteria	2,209	0.6%

Total Phylum-level Taxonomic Categories Identified: 30. This table shows the top 8 of 30 classifications. The 8 phyla shown in this table account for 98.1% of all observed classifications.

Figure 7: Top Phylum Classification Results

Table 10: Top Genus Classification Results

Classification	Number of	% Total	Description
Allealizabileza		E1 00/	These alleslightline form on tors and he formed in soil. Alles
Aikaiipniius	186,025	31.8%	liphilus metalliredigens is capable of reducing Fe (III).
Crenothrix	9,397	2.6%	Crenothrix is a filamentous methane oxidizer.
Desulfobulbus	6,423	1.8%	This genus contains strictly anaerobic sulfate reducers com- monly isolated in anaerobic parts of freshwater, brackish water, marine habitats, rumen contents, animal dung, and sewage sludge.
Hydrogenophaga	17,581	4.9%	Some species can degrade methyl-tert-butyl ether, and some can oxidize carbon monoxide.
Methylomonas	15,037	4.2%	Methane, methanol and formaldehyde are the only known sources of energy and carbon for this organism.
Methylosinus	6,235	1.7%	Methylosinus is a methanotroph which oxidatively de- grades chlorinated ethenes.
Paenibacillus	8,146	2.3%	This is a genus of facultative anaerobic, endospore-forming bacteria commonly isolated from a variety of environments, such as soil, water, rhizosphere, insect larvae, and clinical samples.
Unclassified at Genus level	29,071	8.1%	-

Total Genus-level Taxonomic Categories Identified: 593. This table shows the top 8 of 593 classifications. The 8 genera shown in this table account for 77.4% of all observed classifications.

Figure 8: Top Genus Classification Results

Results for SLOP-TW05-012017

Table 11: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
1,713	1,059	61.8%

Table 12: Classification Rate Summary

Taxonomic Level	Reads Classified to Taxonomic Level	% Total Reads Classified to Taxonomic Level
Kingdom	654	61.8%
Phylum	636	60.1%
Class	617	58.3%
Order	610	57.6%
Family	590	55.7%
Genus	561	53.0%
Species	352	33.2%

Figure 9: Classification Rate by Taxonomic Level

SLOP-TW05-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 13: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Unclassified at Phylum level	423	39.9%
Proteobacteria	422	39.9%
Firmicutes	57	5.4%
Synergistetes	42	4.0%
Bacteroidetes	31	2.9%
Actinobacteria	28	2.6%
Euryarchaeota	16	1.5%
Thermotogae	11	1.0%

Total Phylum-level Taxonomic Categories Identified: 22. This table shows the top 8 of 22 classifications. The 8 phyla shown in this table account for 97.3% of all observed classifications.

Figure 10: Top Phylum Classification Results

Table 14: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Candidatus Tammella	21	2.0%	These rod-shaped ectosymbionts has been isolated from ter- mite guts.
Desulfovibrio	150	14.2%	These halophilic sulfate-reducers are found in sediment of lakes, brackish water and marine environments. Desul- fovibrio is also commonly found in industrial water sys- tems resulting in biofouling biocorrosion. Desulfovibrio has been implicated in the corrosion of various metals, in- cluding carbon steel, stainless steel, galvanized steel, and copper alloys.
Dethiosulfovibrio	14	1.3%	Members of this genus are anaerobic, slightly halophilic, and capable of reducing sulfur and thiosulfate.
Methanosaeta	13	1.2%	These organisms are thermophilic, obligately-aceticlastic, methane-producing archaea.
Pseudomonas	15	1.4%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Sphingomonas	20	1.9%	These aerobic chemoorganotrophs have been shown to degrade toluene, naphthalene, and other aromatic com- pounds. This non-spore forming, chemoheterotrophic genus is found in many different environments.
Sulfuricurvum	19	1.8%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Unclassified at Genus level	498	47.0%	

Total Genus-level Taxonomic Categories Identified: 149. This table shows the top 8 of 149 classifications. The 8 genera shown in this table account for 70.8% of all observed classifications.

Figure 11: Top Genus Classification Results

Results for SLOP-TW06-012017

Table 15: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
477,859	438,413	91.8%

Table 16: Classification Rate Summary

Tayon omia I aval			Reads Classified to Taxonomic			6 Total Reads C	lassified to	
				Le	evel		Taxonomic	Level
King	gdom			435	5,979		99.4%	1
Phyl	um			434	4,591		99.1%	
Class	s			433	3,714		98.9%	
Orde	er			431	1,643		98.5%	
Fam	ily			430),602		98.2%	
Gen	us			422	2,771		96.4%	
Spec	ries			235	5,356		53.7%	
	ר 100% ו					_		
	000/							
	90% 1							
fied	80% -							
assi	70% -							
ö	60% -							
ads	50% -							
ПР	40% -							
Fota	30% -							
%	20% -							
	10% -							
	0% J							
		Kingdom	Phylum	Class	Order	Family	Genus	Species

Figure 12: Classification Rate by Taxonomic Level

SLOP-TW06-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 17: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	421,459	96.1%
Bacteroidetes	6,812	1.6%
Unclassified at Phylum level	3,822	0.9%
Firmicutes	3,037	0.7%
Actinobacteria	1,020	0.2%
Chloroflexi	325	0.1%
Fusobacteria	284	0.1%
Thermodesulfobacteria	182	0.0%

Total Phylum-level Taxonomic Categories Identified: 26. This table shows the top 8 of 26 classifications. The 8 phyla shown in this table account for 99.6% of all observed classifications.

Figure 13: Top Phylum Classification Results

Table 18: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Acinetobacter	68,322	15.6%	These strictly aerobic microorganisms are strictly aerobic, and contibute to mineralization of multiple compounds, in- cluding aromatics.
Alkanindiges	11,566	2.6%	This genus includes aerobic, alkane-degrading microorgan- isms isolated from oilfield soils.
Janthinobacterium	91,160	20.8%	This genus of bacteria can tolerate a variety of environmen- tal stressors and demonstrates diverse metabolic abilities.
Limnohabitans	18,775	4.3%	These freshwater bacteria are free-living, globally dis- tributed, and have an important role in carbon flow to higher trophic levels. Members are generally Gram- negative, aerobic, and catalase- and oxidase-positive.
Methylotenera	57,005	13.0%	Members of this genus can utilize methylamine as a single source of energy, carbon, and nitrogen.
Pseudomonas	110,423	25.2%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Rhodoferax	15,880	3.6%	This genus is typically found in well-lit stagnant water and can thrive in aerobic or anaerobic environments using many substrates as carbon sources.
Unclassified at Genus level	15,642	3.6%	

Total Genus-level Taxonomic Categories Identified: 412. This table shows the top 8 of 412 classifications. The 8 genera shown in this table account for 88.7% of all observed classifications.

Figure 14: Top Genus Classification Results

Results for SLOP-TW02-012017

Table 19: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
338,337	311,924	92.2%

Table 20: Classification Rate Summary

Tavanamia Laval			Reads Classified to Taxonomic			% Total Reads Classified to		
			Level			Taxonomic	Level	
King	gdom			311	,765		100.0%	D
Phyl	um			310	,154		99.4%	
Clas	s			308	,641		99.0%	
Orde	er			306	,547		98.3%	
Fam	ily			301	,272		96.6%	
Gen	us			297	,341		95.3%	
Spec	cies			215	,847		69.2%	
	100% -							
	100 /0							
	90% -							
fied	80% -							
issi	70% -							
ü	60% -							
ads	50% -							
Re	40% -							
otal	30% -							
% T	20% -							
	10% -							
	_{0%}]							
		Kingdom	Phylum	Class	Order	Family	Genus	Species

Figure 15: Classification Rate by Taxonomic Level

SLOP-TW02-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 21: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	193,495	62.0%
Firmicutes	108,086	34.6%
Bacteroidetes	6,508	2.1%
Unclassified at Phylum level	1,770	0.6%
Actinobacteria	750	0.2%
Acidobacteria	424	0.1%
Spirochaetes	218	0.1%
Euryarchaeota	168	0.0%

Total Phylum-level Taxonomic Categories Identified: 25. This table shows the top 8 of 25 classifications. The 8 phyla shown in this table account for 99.8% of all observed classifications.

Figure 16: Top Phylum Classification Results

Table 22: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Alkaliphilus	86,410	27.7%	These alkaliphilic fermenters can be found in soil. Alka- liphilus metalliredigens is capable of reducing Fe (III)
Dechloromonas	14,025	4.5%	Some species, present in aquatic and sediment habitats, can oxidize aromatic compounds such as toluene, benzoate, and chlorobenzoate. They can also reduce perchlorate and oxidize iron and H2S.
Magnetospirillum	7,527	2.4%	This gram-negative, microaerophilic genus of magnetotac- tic bacteria grow in the oxic-anoxic interface.
Oxalobacter	13,916	4.5%	These anaerobic bacteria are found in the gastrointestinal tracts of vertebrates and can degrade oxalic acid.
Pseudomonas	125,535	40.2%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Sporotomaculum	8,995	2.9%	These strict anaerobes possess fermentative metabolism without using inorganic electron acceptors.
Sulfuricurvum	6,990	2.2%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Unclassified at Genus level	14,583	4.7%	. 0

Total Genus-level Taxonomic Categories Identified: 434. This table shows the top 8 of 434 classifications. The 8 genera shown in this table account for 89.1% of all observed classifications.

Figure 17: Top Genus Classification Results

Results for SLOP-TW01-012017

Table 23: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
583,516	536,873	92.0%

Table 24: Classification Rate Summary

Taxonomic Level			Reads Classif	ied to Taxonomi	c	% Total Reads Classified to			
			Level			Taxonomic Level			
Kingdom			53	36,653		100.0%			
Phylum			52	25,767		97.9%			
Class	S			51	4,293		95.8%		
Orde	er			50	18,096		94.6%		
Fam	ily			50	04,105		93.9%		
Gen	us			48	37,736		90.8%		
Spec	ies			32	25,236		60.6%		
	1000/								
	<u>[</u> %001								
	90% -								
ied	80% -								
ssif	70% -								
Cla	60% -								
ads	50% -								
Total Rea	40% -								
	30% -								
%	20% -								
	10% -								
	0% J								
	0,0	Kingdom	Phylum	Class	Order	Family	Genus	Species	

Figure 18: Classification Rate by Taxonomic Level

SLOP-TW01-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 25: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads		
Proteobacteria	412,295	76.8%		
Firmicutes	68,816	12.8%		
Bacteroidetes	39,517	7.4%		
Unclassified at Phylum level	11,106	2.1%		
Actinobacteria	1,187	0.2%		
Acidobacteria	1,176	0.2%		
Tenericutes	914	0.2%		
Verrucomicrobia	298	0.1%		

Total Phylum-level Taxonomic Categories Identified: 28. This table shows the top 8 of 28 classifications. The 8 phyla shown in this table account for 99.7% of all observed classifications.

Figure 19: Top Phylum Classification Results

Table 26: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Alkaliphilus	15,653	2.9%	These alkaliphilic fermenters can be found in soil. Alka- liphilus metalliredigens is capable of reducing Fe (III).
Dechloromonas	25,626	4.8%	Some species, present in aquatic and sediment habitats, can oxidize aromatic compounds such as toluene, benzoate, and chlorobenzoate. They can also reduce perchlorate and oxidize iron and H2S.
Magnetospirillum	27,874	5.2%	This gram-negative, microaerophilic genus of magnetotac- tic bacteria grow in the oxic-anoxic interface.
Pedobacter	35,115	6.5%	Pedobacter is a facultative psychrophile isolated from a variety of environments.
Pseudomonas	48,259	9.0%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Sulfuricurvum	163,126	30.4%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Sulfurospirillum	19,456	3.6%	These microaerophilic sulfur-reducing bacteria can respire PCE to cis-1,2-DCE.
Unclassified at Genus level	49,137	9.2%	

Total Genus-level Taxonomic Categories Identified: 549. This table shows the top 8 of 549 classifications. The 8 genera shown in this table account for 71.6% of all observed classifications.

Figure 20: Top Genus Classification Results

Results for SLOP-TW04-012017

Table 27: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
530,469	483,273	91.1%

Table 28: Classification Rate Summary

Tavonomia Lovol			Reads Classified to Taxonomic			% Total Reads Classified to			
			Level			Taxonomic Level			
Kingdom			483,145			100.0%			
Phylum			482	2,386		99.8%			
Clas	s			481	,208		99.6%		
Orde	er			477	7,824		98.9%		
Fam	ily			477	7,232		98.8%		
Gen	us			473	3,569		98.0%		
Spec	ries			131	,357		27.2%		
% Total Reads Classified	100% - 90% - 80% - 70% - 60% - 50% - 40% - 30% - 20% -								
	001								
	ر %0	Kingdom	Phylum	Class	Order	Family	Genus	Species	

Figure 21: Classification Rate by Taxonomic Level

SLOP-TW04-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 29: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	474,061	98.1%
Actinobacteria	4,793	1.0%
Firmicutes	1,255	0.3%
Bacteroidetes	997	0.2%
Unclassified at Phylum level	887	0.2%
Thermi	305	0.1%
Acidobacteria	229	0.0%
Nitrospirae	220	0.0%

Total Phylum-level Taxonomic Categories Identified: 27. This table shows the top 8 of 27 classifications. The 8 phyla shown in this table account for 99.9% of all observed classifications.

Figure 22: Top Phylum Classification Results

Table 30: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Acidovorax	7,241	1.5%	There is evidence that Acidovorax can anaerobically de- grade both benzene and nitrobenzene.
Arthrobacter	3,423	0.7%	Arthrobacter species are obligately aerobic, chemoorgan- otrophic soil bacteria that have been found to reduce hex- avalent chromium in contaminated soil and to degrade agricultural pesticides. Their metabolism is strictly respi- ratory, never fermentative.
Cupriavidus	3,851	0.8%	These aerobic chemolithoautotrophs often inhabit oxic- anoxic interfaces in nature to take advantage of the hydro- gen produced by anaerobic organisms while still maintain- ing a supply of oxygen.
Methylobacillus	11,065	2.3%	This is a methylotrophic genus of obligate methanol- and methylamine-utilizers.
Methylotenera	356,711	73.8%	Members of this genus can utilize methylamine as a single source of energy, carbon, and nitrogen.
Pseudomonas	67,149	13.9%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Unclassified at Genus level Variovorax	9,704 3,230	2.0% 0.7%	Members of this genus are 2, 4-dichlorophenoxyacetic acid-
			degrading bacteria.

Total Genus-level Taxonomic Categories Identified: 468. This table shows the top 8 of 468 classifications. The 8 genera shown in this table account for 95.7% of all observed classifications.

Figure 23: Top Genus Classification Results

Interpretation

Diversity Indices

The Shannon diversity index is a quantitative measurement that characterizes how many different genera are present in the sample and takes into account the distribution of the number of organisms classified to each genus present in the sample (commonly referred to as species eveness) [1, 2]. Shannon's diversity index increases in value as the number of genera increases and as the number of organisms present per genera becomes even. Simpson's index measures the probability that two individuals selected randomly from the sample would belong to different genera: the greater the value, the greater the sample diversity. The Chao1 index is an excellent indicator of species richness and is based on the number of reads when one (singleton) or two (doubleton) operational taxonomic units (OTUs) are observed. This value is the predicted number of genera based on the number of singletons and doubletons. The total genera observed is presented here, but does not include reads unclassified at genus species.

Principal Coordinate Analysis

Principal coordinate analysis (PCoA) is an excellent tool for visualizing differences in microbial communities between samples [3]. Unlike more traditional methods such as principal component analysis (PCA), PCoA calculates complex functions for the axes rather than dimensional scaling used in PCA. Therefore, PCoA is able to better demonstrate dissimilarities that may be nuanced in PCA tests. PCoA accomplishes this by using a dissimilarity matrix to assign each sample a location in dimensional space, then changes the coordinate system to display the data in two dimensions.

Hierarchical Clustering Dendrogram

Hierarchical clustering is accomplished by comparing dissimilarities between the samples using complete agglomeration of the Bray-Curtis dissimilarity. This groups samples which are the least dissimilar together. The length of the branches indicate the amount of dissimilarity between samples. Therefore, shorter branches are more similar. The stacked bar chart below each leaf of the tree represents the relative abundance of genus-level classifications.

References

- 1. Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. *Ecology letters* **4**, 379–391 (2001).
- 2. Hill, M. O. Diversity and evenness: a unifying notation and its consequences. *Ecology* **54**, 427–432 (1973).
- 3. Buttigieg, P. L. & Ramette, A. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. *FEMS Microbiology Ecology* **90**, 543–550. ISSN: 1574-6941 (2014).

10515 Research Drive Knoxville, TN 37932 Phone: 865.573.8188 Fax: 865.573.8133 Web:www.microbe.com

SITE LOGIC Report

Next Generation Sequencing (NGS) Report

MI Iden	tifier:	008OA		Repo	ort Date:	03/01/2017
Address:	CH2M HILL 5701 Cleveland Street Suite 200 Virginia Beach, VA 23462		Em	ail:	anita.dodso	n@ch2m.com
Contact:	Anita Dodson		Pho	one:		

Project: ABL Site 5 ESTCP Comments:

NOTICE: This report is intended only for the addressee shown above and may contain confidential or privileged information. If the recipient of this material is not the intended recipient or if you have received this in error, please notify Microbial Insights, Inc. immediately. The data and other information in this report represent only the sample(s) analyzed and are rendered upon condition that it is not to be reproduced without approval from Microbial Insights, Inc. Thank you for your cooperation.

Sample Overview

Table 1: Sample information for 008OA.

MI Identifier	Sample Name	Sample Date	Reads Passing Quality Filtering	% Reads Classified to Genus
008OA-1	AS05-GW13-010617	01/06/2017	462,774	66.3%
008OA-3	AS05-GW26-012017	01/24/2017	466,244	94.5%
008OA-5	AS05-GW27-012017	01/24/2017	290,096	94.5%
008OA-6	AS05-GW28-012017	01/24/2017	392,175	92.9%
008OA-7	AS05-GW29-012017	01/25/2017	453,995	82.1%
008OA-8	AS05-GW30-012017	01/25/2017	264,956	90.7%
008OA-9	AS05-GW31-012017	01/25/2017	326,277	89.1%
008OA-10	AS05-GW18-012017	01/25/2017	541,388	88.9%
008OA-11	AS05-GW25-012017	01/26/2017	505,716	82.9%

Table 2: Genus diversity indices for 008OA. Please refer to the Interpretation section for more information on what these diversity indices mean.

MI Identifier	Sample Name	Shannon	Simpson	Chao1 Predicted Genera	Total Genera Observed	Total Eubacteria (cells/mL)
008OA-1	AS05-GW13-010617	4.7	0.98	680	623	7.99e+04
008OA-3	AS05-GW26-012017	2.5	0.82	650	563	3.07e+05
008OA-5	AS05-GW27-012017	2.5	0.8	560	488	9.04e+04
008OA-6	AS05-GW28-012017	2.5	0.78	620	540	6.53e+05
008OA-7	AS05-GW29-012017	4	0.95	700	640	3.12e+05
008OA-8	AS05-GW30-012017	2.8	0.78	630	542	1.91e+05
008OA-9	AS05-GW31-012017	3	0.78	610	544	4.84e+04
008OA-10	AS05-GW18-012017	2.7	0.8	680	625	3.09e+05
008OA-11	AS05-GW25-012017	3.3	0.9	670	573	1.34e+06

Figure 1: Principal Coordinate Analysis. This scatterplot shows a Principal Coordinate Analysis (PCoA) of the normalized relative abundance of all samples at the genus-level classifications. Increasing distance between sample points on this plot indicate increasing dissimilarity between bacterial populations in the samples.

Figure 2: Hierachical Clustering Dendrogram. This dendrogram shows a hierarchical clustering of samples based on genus-level classifications. Branch length is representative of relatedness between samples. The barchart beneath each sample show the relative abundance of the top 8 genus-level classifications, along with all other classified and unclassified genera. See the following detailed analysis by sample to identify the dominant genera in each sample.

Results for AS05-GW13-010617

Table 3: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
462,774	426,219	92.1%

Table 4: Classification Rate Summary

Taxo	nomic Le	evel		Reads Classif	ied to Taxonomi evel	ic %	Total Reads C Taxonomic	Classified to Level
King Phyl	dom um			41 37	8,260 2,006		98.1% 87.3%)
Class	S			35	3,443		82.9%)
Orde	er			33	4,853		78.6%)
Fami	ily			31	5,630		74.0%)
Genu	JS			28	2,546		66.3%)
Spec	ies			14	8,299		34.8%)
% Total Reads Classified	100% - 90% - 80% - 70% - 60% - 50% - 40% - 30% - 20% - 10% - 0% -			Class	Order			
		Kingdom	Phylum	Class	Order	rainily	Genus	Species

Figure 3: Classification Rate by Taxonomic Level

AS05-GW13-010617 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 5: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	209,853	49.2%
Unclassified at Phylum level	54,213	12.7%
Firmicutes	43,620	10.2%
Actinobacteria	21,660	5.1%
Bacteroidetes	19,680	4.6%
Nitrospirae	15,202	3.6%
Thermotogae	11,974	2.8%
Crenarchaeota	6,136	1.4%

Total Phylum-level Taxonomic Categories Identified: 31. This table shows the top 8 of 31 classifications. The 8 phyla shown in this table account for 89.7% of all observed classifications.

Figure 4: Top Phylum Classification Results

Table 6: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Crenothrix	27,831	6.5%	Crenothrix is a filamentous methane oxidizer.
Legionella	11,954	2.8%	The genus Legionella is composed of pathogenic bacteria which are found mainly in water sources, such as cooling towers, where they can be protected by growing intracellu- larly in protozoa within biofilms.
Methylophaga	7,253	1.7%	Methylophaga species are part of a consortium of bacte- ria effective in the degradation of high-molecular-weight PAHs.
Nitrosopumilus	6,029	1.4%	This common archaeon lives in sea water, where it oxidizes ammonia to nitrite.
Thermodesulfovibrio	14,147	3.3%	Members of this genus are thermophilic anaerobic sulfate-reducers.
Thermosipho	6,255	1.5%	These thermophilic anaerobic bacteria have been isolated from deep-sea hydrothermal vents.
Unclassified at Genus level	143,673	33.7%	
Weissella	5,780	1.4%	Members of this genus are chemoorganotrophic, heterofer- mentative, lactic acid bacteria.

Total Genus-level Taxonomic Categories Identified: 624. This table shows the top 8 of 624 classifications. The 8 genera shown in this table account for 52.3% of all observed classifications.

Figure 5: Top Genus Classification Results

Results for AS05-GW26-012017

Table 7: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
466,244	430,780	92.4%

Table 8: Classification Rate Summary

Taxonomic Le	evel	ŀ	Reads Classified to Taxonomic Level		C d	% Total Reads C Taxonomic	Classified to Level
Kingdom Phylum Class Order Family Genus Species			430,577 427,588 425,264 422,271 419,158 407,127 269,444			100.0% 99.3% 98.7% 98.0% 97.3% 94.5% 62.5%	
100% - 90% - 80% - 7008 Classified - %08 - 80% - 30% - 20% - 10% - 0% -	Kingdom	Phylum	Class	Order	Family	Gopus	Species

Figure 6: Classification Rate by Taxonomic Level

AS05-GW26-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 9: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	399,673	92.8%
Bacteroidetes	18,179	4.2%
Firmicutes	3,317	0.8%
Unclassified at Phylum level	3,192	0.7%
Actinobacteria	1,732	0.4%
Spirochaetes	1,330	0.3%
Chloroflexi	544	0.1%
Thermotogae	443	0.1%

Total Phylum-level Taxonomic Categories Identified: 27. This table shows the top 8 of 27 classifications. The 8 phyla shown in this table account for 99.4% of all observed classifications.

Figure 7: Top Phylum Classification Results

Table 10: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Flavobacterium	14,537	3.4%	Flavobacterium degrades biopolymers such as chitin and cellulose. This genus is aerobic and is widely distributed in soil and water.
Herminiimonas	10,656	2.5%	Some species belonging to this aerobic genus have been iso- lated from drinking water and mineral water. At least one species is capable of oxidizing arsenite and reducing nitro- gen.
Janthinobacterium	44,246	10.3%	This genus of bacteria can tolerate a variety of environmen- tal stressors and demonstrates diverse metabolic abilities.
Oxalobacter	12,531	2.9%	These anaerobic bacteria are found in the gastrointestinal tracts of vertebrates and can degrade oxalic acid.
Pseudomonas	41,498	9.6%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Rhodoferax	58,529	13.6%	This genus is typically found in well-lit stagnant water and can thrive in aerobic or anaerobic environments using many substrates as carbon sources.
Sulfuricurvum	150,811	35.0%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Unclassified at Genus level	23,653	5.5%	

Total Genus-level Taxonomic Categories Identified: 564. This table shows the top 8 of 564 classifications. The 8 genera shown in this table account for 82.7% of all observed classifications.

Figure 8: Top Genus Classification Results

Results for AS05-GW27-012017

Table 11: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
290,096	268,181	92.5%

Table 12: Classification Rate Summary

Taxonomic Le	vel		Reads Classifi	ed to Taxonomi	c o	% Total Reads C	lassified to
	VCI		L	evel		Taxonomic	Level
Kingdom			262	7,927		99.9%	
Phylum			260	5,152		99.2%	
Class			265	5,217		98.9%	
Order			252	7,905		96.2%	
Family			250	6,596		95.7%	
Genus			253	3,526		94.5%	
Species			101	1,639		37.9%	
100% - 90% - 80% - 70% - 60% - 80% - 80% - 80% - 80% - 10% - 10% - 80% -	Kingdom	Phylum	Class	Order	Family	Genus	Species

Figure 9: Classification Rate by Taxonomic Level

AS05-GW27-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 13: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	218,319	81.4%
Firmicutes	29,661	11.1%
Nitrospirae	10,535	3.9%
Bacteroidetes	2,905	1.1%
Unclassified at Phylum level	2,029	0.8%
Actinobacteria	1,152	0.4%
Chlorobi	716	0.3%
Spirochaetes	618	0.2%

Total Phylum-level Taxonomic Categories Identified: 28. This table shows the top 8 of 28 classifications. The 8 phyla shown in this table account for 99.2% of all observed classifications.

Figure 10: Top Phylum Classification Results

Table 14: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Desulfurispora	16,033	6.0%	This genus is comprised of thermophilic sulfate reducers.
Gallionella	7,053	2.6%	This genus comprises iron-oxidizing, chemolithotrophic bacteria that have been found in a variety of different aquatic habitats.
Janthinobacterium	16,071	6.0%	This genus of bacteria can tolerate a variety of environmen- tal stressors and demonstrates diverse metabolic abilities.
Pseudomonas	16,832	6.3%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Sulfuricurvum	34,642	12.9%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Sulfurimonas	102,481	38.2%	This is a genus of sulfur- and thiosulfate-oxidizing bacteria found in deep sea sediments.
Thermodesulfovibrio	10,493	3.9%	Members of this genus are thermophilic anaerobic sulfate-reducers.
Unclassified at Genus level	14,655	5.5%	

Total Genus-level Taxonomic Categories Identified: 489. This table shows the top 8 of 489 classifications. The 8 genera shown in this table account for 81.4% of all observed classifications.

Figure 11: Top Genus Classification Results

Results for AS05-GW28-012017

Table 15: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
392,175	362,475	92.4%

Table 16: Classification Rate Summary

Taxonomic Loval		Reads Classifi	ed to Taxonomi	.c %	6 Total Reads C	lassified to		
Тало	monne Le	vei		L	evel		Taxonomic	Level
King	gdom			362	2,254		99.9%	
Phyl	um			352	7,368		98.6%	
Clas	S			355	5,620		98.1%	
Orde	er			342	7,545		95.9%	
Fam	ily			343	3,438		94.8%	
Gen	us			330	5,596		92.9%	
Spec	ries			150),868		41.6%	
	ך 100%							
	90% -							
fiec	80% -							
ssi	70% -							
Cla	60%							
s (00 %							
ead	50% -							
щ	40% -							
otal	30% -							
Ĕ	200/							
%	20%					· · · · · · ·		
	10% -							
	0%							
	0%	Kingdom	Phylum	Class	Order	Family	Genus	Species

Figure 12: Classification Rate by Taxonomic Level

AS05-GW28-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 17: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	268,748	74.1%
Firmicutes	41,948	11.6%
Nitrospirae	34,430	9.5%
Unclassified at Phylum level	5,107	1.4%
Bacteroidetes	2,329	0.6%
Verrucomicrobia	1,582	0.4%
Actinobacteria	1,481	0.4%
Thermi	1,219	0.3%

Total Phylum-level Taxonomic Categories Identified: 31. This table shows the top 8 of 31 classifications. The 8 phyla shown in this table account for 98.5% of all observed classifications.

Figure 13: Top Phylum Classification Results

Table 18: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Desulfurispora	18,966	5.2%	This genus is comprised of thermophilic sulfate reducers.
Janthinobacterium	7,974	2.2%	This genus of bacteria can tolerate a variety of environmen- tal stressors and demonstrates diverse metabolic abilities.
Rhodoferax	6,561	1.8%	This genus is typically found in well-lit stagnant water and can thrive in aerobic or anaerobic environments using many substrates as carbon sources.
Sulfuricurvum	35,499	9.8%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Sulfurimonas	146,916	40.5%	This is a genus of sulfur- and thiosulfate-oxidizing bacteria found in deep sea sediments.
Sulfurospirillum	13,838	3.8%	These microaerophilic sulfur-reducing bacteria can respire PCE to cis-1,2-DCE.
Thermodesulfovibrio	34,418	9.5%	Members of this genus are thermophilic anaerobic sulfate-reducers.
Unclassified at Genus level	25,879	7.1%	

Total Genus-level Taxonomic Categories Identified: 541. This table shows the top 8 of 541 classifications. The 8 genera shown in this table account for 80% of all observed classifications.

Figure 14: Top Genus Classification Results

Results for AS05-GW29-012017

Table 19: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
453,995	412,397	90.8%

Table 20: Classification Rate Summary

Taxo	Taxonomic Level			Reads Classified to Taxonomic Level			% Total Reads Classified to Taxonomic Level		
King Phyl Class Orde Fami Genu Spec	dom um s er ily us ies			409,637 388,622 381,720 371,378 356,374 338,434 157,428			99.3% 94.2% 92.6% 90.0% 86.4% 82.1% 38.2%		
	ן 100%								
	90% -					_			
fied	80% -								
assit	70% -								
ö	60% -								
ads	50% -								
l Re	40% -								
ota	30% -								
L %	20% -								
	10% -								
	0%]	Kingdom	Phylum	Class	Order	Family	Genus	Species	

Figure 15: Classification Rate by Taxonomic Level

AS05-GW29-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 21: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	292,543	70.9%
Firmicutes	41,971	10.2%
Unclassified at Phylum level	23,775	5.8%
Actinobacteria	12,779	3.1%
Bacteroidetes	7,058	1.7%
Nitrospirae	6,777	1.6%
Chloroflexi	5,957	1.4%
Thermotogae	3,112	0.8%

Total Phylum-level Taxonomic Categories Identified: 31. This table shows the top 8 of 31 classifications. The 8 phyla shown in this table account for 95.5% of all observed classifications.

Figure 16: Top Phylum Classification Results

Table 22: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Desulfobacca	8,424	2.0%	These mesophilic sulfate reducers can degrade acetate and utilize sulfite and thiosulfate as electron acceptors.
Janthinobacterium	45,633	11.1%	This genus of bacteria can tolerate a variety of environmen- tal stressors and demonstrates diverse metabolic abilities.
Limnohabitans	27,718	6.7%	These freshwater bacteria are free-living, globally dis- tributed, and have an important role in carbon flow to higher trophic levels. Members are generally Gram- negative, aerobic, and catalase- and oxidase-positive.
Oxalobacter	13,500	3.3%	These anaerobic bacteria are found in the gastrointestinal tracts of vertebrates and can degrade oxalic acid.
Pseudomonas	29,771	7.2%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Rhodoferax	29,054	7.0%	This genus is typically found in well-lit stagnant water and can thrive in aerobic or anaerobic environments using many substrates as carbon sources.
Sulfuricurvum	14,026	3.4%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Unclassified at Genus level	73,963	17.9%	U U U U U U U U U U U U U U U U U U U

Total Genus-level Taxonomic Categories Identified: 641. This table shows the top 8 of 641 classifications. The 8 genera shown in this table account for 58.7% of all observed classifications.

Figure 17: Top Genus Classification Results

Results for AS05-GW30-012017

Table 23: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
264,956	245,413	92.6%

Table 24: Classification Rate Summary

Taxonomic Level			Reads Classified to Taxonomic		c %	% Total Reads Classified to			
			L	evel		Taxonomic	Level		
Kingdom				244,460			99.6%		
Phylum			239,919			97.8%			
Class				237,661			96.8%		
Orde	er			231,609			94.4%		
Family				228,009			92.9%		
Genus			222,662			90.7%			
Species			74	,227		30.2%)		
	1000/								
	<u>ا 100%</u>								
% Total Reads Classified	90% -								
	80% -								
	70% -								
	60% -								
	50% -								
	40% -								
	30% -								
	20% -								
0`	10% -								
	ا %0								
		Kingdom	Phylum	Class	Order	Family	Genus	Species	

Figure 18: Classification Rate by Taxonomic Level

AS05-GW30-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 25: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	204,435	83.3%
Firmicutes	11,777	4.8%
Nitrospirae	7,581	3.1%
Unclassified at Phylum level	5,494	2.2%
Thermi	4,067	1.7%
Bacteroidetes	2,325	1.0%
Actinobacteria	2,281	0.9%
Chlorobi	1,065	0.4%

Total Phylum-level Taxonomic Categories Identified: 31. This table shows the top 8 of 31 classifications. The 8 phyla shown in this table account for 97.4% of all observed classifications.

Figure 19: Top Phylum Classification Results

Table 26: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Deinococcus	4,048	1.7%	This genus is highly resistant to environmental stressors.
Janthinobacterium	7,641	3.1%	This genus of bacteria can tolerate a variety of environmen- tal stressors and demonstrates diverse metabolic abilities.
Pseudomonas	17,172	7.0%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Rhodoferax	10,844	4.4%	This genus is typically found in well-lit stagnant water and can thrive in aerobic or anaerobic environments using many substrates as carbon sources.
Sulfuricurvum	14,226	5.8%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Sulfurimonas	100,664	41.0%	This is a genus of sulfur- and thiosulfate-oxidizing bacteria found in deep sea sediments.
Thermodesulfovibrio	7,550	3.1%	Members of this genus are thermophilic anaerobic sulfate-reducers.
Unclassified at Genus level	22,751	9.3%	

Total Genus-level Taxonomic Categories Identified: 543. This table shows the top 8 of 543 classifications. The 8 genera shown in this table account for 75.3% of all observed classifications.

Figure 20: Top Genus Classification Results

Results for AS05-GW31-012017

Table 27: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
326,277	302,190	92.6%

Table 28: Classification Rate Summary

Taxonomic I oval		Reads Classified to Taxonomic			% Total Reads Classified to			
				I	level		Taxonomic	Level
King	gdom			29	98,356		98.7%	
Phyl	um			29	91,410		96.4%	
Class	s			28	37,553		95.2%	
Orde	er			28	31,491		93.2%	
Fam	ily			27	7,461		91.8%	
Gen	us			26	59,303		89.1%	
Spec	ties			8	8,446		29.3%	
	100% _Т	_						
	90%							
_	50 /8							
fiec	80% -							
ISSİ	70% -							
Cla	60% -							
ads	50% -							
Rea	40% -							
tal	30% -							
4	0070							
%	20% -							
	10% -							
	0%							
		Kingdom	Phylum	Class	Order	Family	Genus	Species

Figure 21: Classification Rate by Taxonomic Level

AS05-GW31-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 29: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	216,066	71.5%
Firmicutes	22,801	7.5%
Bacteroidetes	14,882	4.9%
Nitrospirae	12,990	4.3%
Unclassified at Phylum level	10,780	3.6%
Thermi	9,508	3.1%
Actinobacteria	2,754	0.9%
Chlorobi	2,173	0.7%

Total Phylum-level Taxonomic Categories Identified: 30. This table shows the top 8 of 30 classifications. The 8 phyla shown in this table account for 96.6% of all observed classifications.

Figure 22: Top Phylum Classification Results

Table 30: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Deinococcus	9,463	3.1%	This genus is highly resistant to environmental stressors.
Desulfurispora	6,821	2.3%	This genus is comprised of thermophilic sulfate reducers.
Pseudomonas	10,103	3.3%	Pseudomonas species can grow very rapidly to take advan- tage of carbon and oxygen availability. Members of this genus are gram-negative, chemoorganotrophic, and aero- bic. Pseudomonas are frequently involved in the early stages of biofilm formation. Biofilms can be detrimental to the underlying surface, leading to biodeterioration of the metal surface.
Rhodoferax	7,902	2.6%	This genus is typically found in well-lit stagnant water and can thrive in aerobic or anaerobic environments using many substrates as carbon sources.
Sulfuricurvum	12,660	4.2%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Sulfurimonas	122,011	40.4%	This is a genus of sulfur- and thiosulfate-oxidizing bacteria found in deep sea sediments.
Thermodesulfovibrio	12,871	4.3%	Members of this genus are thermophilic anaerobic sulfate-reducers.
Unclassified at Genus level	32,887	10.9%	

Total Genus-level Taxonomic Categories Identified: 545. This table shows the top 8 of 545 classifications. The 8 genera shown in this table account for 71% of all observed classifications.

Figure 23: Top Genus Classification Results

Results for AS05-GW18-012017

Table 31: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
541,388	498,345	92.0%

Table 32: Classification Rate Summary

Tavonomia Loval			Reads Classified to Taxonomic			Total Reads C	lassified to		
				Level			Taxonomic Level		
King	gdom			497	,346		99.8%)	
Phyl	um			482	,337		96.8%)	
Clas	s			476	,701		95.7%)	
Orde	er			466	,011		93.5%)	
Fam	ily			457	,705		91.8%)	
Gen	us			443	,231		88.9%)	
Spec	ries			212	,128		42.6%)	
	20202-002								
	ך 100%								
	90% -								
-	5070								
fiec	80% -								
ISSI	70% -								
Cla	60% -								
ds	50% -								
lea	40%								
E E	40%								
lota	30% -								
% ا	20% -								
	10% -								
	0%								
	070	Kingdom	Phylum	Class	Order	Family	Genus	Species	

Figure 24: Classification Rate by Taxonomic Level

AS05-GW18-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 33: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	367,395	73.7%
Nitrospirae	67,656	13.6%
Unclassified at Phylum level	16,008	3.2%
Firmicutes	11,420	2.3%
Bacteroidetes	10,511	2.1%
Actinobacteria	7,959	1.6%
Acidobacteria	2,319	0.5%
Tenericutes	2,168	0.4%

Total Phylum-level Taxonomic Categories Identified: 30. This table shows the top 8 of 30 classifications. The 8 phyla shown in this table account for 97.4% of all observed classifications.

Figure 25: Top Phylum Classification Results

Table 34: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Crenothrix	163,076	32.7%	Crenothrix is a filamentous methane oxidizer.
Desulfovibrio	6,413	1.3%	These halophilic sulfate-reducers are found in sediment of lakes, brackish water and marine environments. Desul- fovibrio is also commonly found in industrial water sys- tems resulting in biofouling biocorrosion. Desulfovibrio has been implicated in the corrosion of various metals, in- cluding carbon steel, stainless steel, galvanized steel, and copper alloys.
Flavobacterium	4,959	1.0%	Flavobacterium degrades biopolymers such as chitin and cellulose. This genus is aerobic and is widely distributed in soil and water.
Gallionella	81,473	16.4%	This genus comprises iron-oxidizing, chemolithotrophic bacteria that have been found in a variety of different aquatic habitats.
Methylomonas	7,621	1.5%	Methane, methanol and formaldehyde are the only known sources of energy and carbon for this organism.
Methylotenera	18,697	3.8%	Members of this genus can utilize methylamine as a single source of energy, carbon, and nitrogen.
Thermodesulfovibrio	67,281	13.5%	Members of this genus are thermophilic anaerobic sulfate-reducers.
Unclassified at Genus level	55,114	11.1%	

Total Genus-level Taxonomic Categories Identified: 626. This table shows the top 8 of 626 classifications. The 8 genera shown in this table account for 81.2% of all observed classifications.

Figure 26: Top Genus Classification Results

Results for AS05-GW25-012017

Table 35: Sequencing Statistics

Total Reads	Reads Passing Quality Filtering	% Reads Passing Quality Filtering
505,716	468,704	92.7%

Table 36: Classification Rate Summary

Taxonomic Level				Reads Classifie Le	d to Taxonom vel	ic %	% Total Reads Classified to Taxonomic Level		
King Phyl Class Orde Fam Genu Spec	rdom um s er ily us ies			467 448 443 431 423 388 223	,919 ,825 ,499 ,078 ,835 ,763 ,348		99.8% 95.8% 94.6% 92.0% 90.4% 82.9% 47.6%		
	ך ^{100%} ן		·						
	90% -								
fied	80% -								
assi	70% -								
ü	60% -								
ads	50% -								
Re	40% -								
otal	30% -								
% T	20% -								
	10% -								
	0%]	Kingdom	Phylum	Class	Order	Family	Genus	Species	

Figure 27: Classification Rate by Taxonomic Level

AS05-GW25-012017 Classification Results by Taxonomic Level Tables and pie charts show the highest 8 taxonomic classifications at each level.

Table 37: Top Phylum Classification Results

Classification	Number of Reads	% Total Reads
Proteobacteria	265,913	56.7%
Nitrospirae	91,923	19.6%
Firmicutes	56,231	12.0%
Unclassified at Phylum level	19,879	4.2%
Cyanobacteria	5,618	1.2%
Bacteroidetes	5,485	1.2%
Verrucomicrobia	5,011	1.1%
Actinobacteria	3,860	0.8%

Total Phylum-level Taxonomic Categories Identified: 30. This table shows the top 8 of 30 classifications. The 8 phyla shown in this table account for 96.8% of all observed classifications.

Figure 28: Top Phylum Classification Results

Table 38: Top Genus Classification Results

Classification	Number of Reads	% Total Reads	Description
Desulfococcus	43,381	9.3%	These strictly anaerobic, sulfate-reducing bacteria have been isolated from anaerobic mud from freshwater, brack- ish water and marine habitats. They also occur in sludge from anaerobic sewage digestors.
Desulfosarcina	29,208	6.2%	Members of this sulfate-reducing genus have been shown to degrade 3-methoxybenzoate in co-culture with an Aceto- bacterium sp. These organisms are characterized as Group II sulfate reducers because they can utilize acetate and other fatty acids, oxidizing them completely.
Desulfurispora	20,389	4.3%	This genus is comprised of thermophilic sulfate reducers.
Gallionella	16,843	3.6%	This genus comprises iron-oxidizing, chemolithotrophic bacteria that have been found in a variety of different aquatic habitats.
Sulfuricurvum	10,749	2.3%	The only described species of this genus is a motile, anaer- obic, sulfur-oxidizing bacterium.
Sulfurimonas	48,852	10.4%	This is a genus of sulfur- and thiosulfate-oxidizing bacteria found in deep sea sediments.
Thermodesulfovibrio	91,892	19.6%	Members of this genus are thermophilic anaerobic sulfate-reducers.
Unclassified at Genus level	79,941	17.1%	

Total Genus-level Taxonomic Categories Identified: 574. This table shows the top 8 of 574 classifications. The 8 genera shown in this table account for 72.8% of all observed classifications.

Figure 29: Top Genus Classification Results

Interpretation

Diversity Indices

The Shannon diversity index is a quantitative measurement that characterizes how many different genera are present in the sample and takes into account the distribution of the number of organisms classified to each genus present in the sample (commonly referred to as species eveness) [1, 2]. Shannon's diversity index increases in value as the number of genera increases and as the number of organisms present per genera becomes even. Simpson's index measures the probability that two individuals selected randomly from the sample would belong to different genera: the greater the value, the greater the sample diversity. The Chao1 index is an excellent indicator of species richness and is based on the number of reads when one (singleton) or two (doubleton) operational taxonomic units (OTUs) are observed. This value is the predicted number of genera based on the number of singletons and doubletons. The total genera observed is presented here, but does not include reads unclassified at genus species.

Principal Coordinate Analysis

Principal coordinate analysis (PCoA) is an excellent tool for visualizing differences in microbial communities between samples [3]. Unlike more traditional methods such as principal component analysis (PCA), PCoA calculates complex functions for the axes rather than dimensional scaling used in PCA. Therefore, PCoA is able to better demonstrate dissimilarities that may be nuanced in PCA tests. PCoA accomplishes this by using a dissimilarity matrix to assign each sample a location in dimensional space, then changes the coordinate system to display the data in two dimensions.

Hierarchical Clustering Dendrogram

Hierarchical clustering is accomplished by comparing dissimilarities between the samples using complete agglomeration of the Bray-Curtis dissimilarity. This groups samples which are the least dissimilar together. The length of the branches indicate the amount of dissimilarity between samples. Therefore, shorter branches are more similar. The stacked bar chart below each leaf of the tree represents the relative abundance of genus-level classifications.

References

- 1. Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. *Ecology letters* **4**, 379–391 (2001).
- 2. Hill, M. O. Diversity and evenness: a unifying notation and its consequences. *Ecology* 54, 427–432 (1973).
- 3. Buttigieg, P. L. & Ramette, A. A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. *FEMS Microbiology Ecology* **90**, 543–550. ISSN: 1574-6941 (2014).

Sample ID	AS05-GW13-012017	AS05-GW13P-010617	AS05-GW17-012017	A305-GW16-012017	A305-GW25-012017	A303-GW23F-012017	A305-GW26-012017	A303-GW27-012017	A305-GW26-012017	AS05-GW29-012017
Sample Date	1/26/17	1/6/17	1/26/17	1/25/17	1/26/17	1/26/17	1/24/17	1/24/17	1/24/17	1/25/17
Chemical Name										
Valatila Organia Compoundo (UC/L)										
Volatile Organic Compounds (UG/L)						0.5.11				
1,1,1-Irichloroethane	0.5 0	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
1,1,2-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1-Dichloroethane	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1.1-Dichloroethene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
1 2 3-Trichlorobenzene	0311	0311	0311	0311	0311	0311	0311	0311	0311	0311
1,2,4 Triphorphonzono	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0
	0.4 0	0.4 0	0.4 0	0.4 0	0.4 0	0.4 0	0.4 0	0.4 0	0.4 0	0.4 0
1,2-Dibromo-3-chioropropane	20	20	20	20	20	20	20	20	20	20
1,2-Dibromoethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
1.3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1 4-Dichlorobenzene	0.25 []	0.25 []	0.25 []	0.25 []	0.25 []	0.25 []	0.25 []	0.25 []	0.25 []	0.25 []
2 Putanono	5.11	0.20 0	5.11	5.11	0.25 0	0.25 0	5.11	0.25 0	0.25 0	0.25 0
	50	50	50	50	50	50	50	50	50	50
2-Hexanone	50	50	50	50	50	50	50	50	50	50
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 0	5 U
Acetone	5 UQ	5 U	5 UQ	5 UQ	5 UQ	5 UQ	5 UQ	5 UQ	5 UQ	5 UG
Acetylene	<u>5</u> U	NS	<u>5</u> U	<u>5 U</u>	<u>5</u> U	NS	5 U	<u>5</u> U	<u>5</u> U	5 U
Benzene	0.25 U	0.25 U	0.25 U	0.25 U	0.532 J	0.541 J	0.25 U	0.293 J	0.576 J	0.25 U
Bromochloromethane	0.4 []	0.4 LI	0.4 U	0.4 LI	0.4 []	0.4 []	0.4 []	0.4 []	0.4 []	0.4 []
Bromodichloromethane	0511	0511	0511	0511	0.5.11	0.5 []	0511	0511	0511	0511
Bromoform	1	1 11	1	1 11	1 1	1	1 11	1	1 11	1 11
Bromomethane	1.0	10	1 0	10	1.0	1.0	1.0	1.0	1.0	1.0
	70,000							1 UQ		
	78,200	NS	217,000	60,300	21,700	NS	98,000	72,000	39,200	123,000
Carbon disulfide	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Carbon tetrachloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Chlorobenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloroethane	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Chloroform	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Chloromethane	1.U	1.U	1 U	1 U	1.U	1.0	1 U	1 U	1 U	1.0
cis-1 2-Dichloroethene	0.889.1	0.697 1	5 43	2 38	4 1	4.07	0511	2.87	5 28	15.4
cis 1,2 Dichloropropopo	0.005 9	0.057 5	0.40	2.50		4.07	0.5 0	0.5.11	0.5.11	0.5.11
	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0	0.5 0
Cyclohexane	2 0	20	2 U	20	20	2 U	20	20	20	20
Dibromochloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Dichlorodifluoromethane (Freon-12)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Ethane	2 U	NS	2 U	2 U	5.75	NS	2 U	3.85 J	6.9	2 U
Ethene	2 U	NS	2 U	2 U	2 U	NS	2 U	1.08 J	1.74 J	2 U
Ethylbenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene	0.5 U	0.5 U	05.0	05.0	05.0	0.5 U	0.5 U	0.5 U	0.5 U	05.0
m- and n-Xylene		1 11	1 11	1 11	1	111	1 11	1 11	1 11	1 11
Methone	10	I U	1 07 1	2 000	NC NC		26.7	1 500	2 110	210
	20	113	1.27 5	3,090	113	113	30.7	1,500	2,110	219
Methyl acetate	20	20	20	20	20	20	20	20	20	20
Methylcyclohexane	2 0	20	2 U	20	20	2 U	20	20	20	20
Methylene chloride	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl-tert-butyl ether (MTBE)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
o-Xylene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Tetrachloroethene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Toluene	0511	0.5 U	0511	0511	0511	0.5 11	0511	0511	0511	0511
trans-1 2-Dichloroethene	0.00	0.0 0	0.5 0	1 74	0.00	0.0 0	0.5 0	0.0 0	0.00	0.00
trans_1_3_Dichloropropage	111	111	1 11	4.11	0.0 0	1 11	1 11	1 11	1 11	0.210 J 4 II
Trichloroethene	1 U 6 E A	0.50	U	0.05	10	10		10	10	10
	0.04	0.00	0.23	9.90	0.5 U	0.5 U	0.330 J	0.5 U	0.5 U	10.7
http://www.commernane.com/11)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyi chloride	0.5 U	0.5 U	0.5 U	0.592 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 J
Total Metals (MG/L)										
Aluminum	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.19 J	0.101 J	0.2 U
Antimony	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Arsenic	011	01U	011	011	011	011	01U	011	011	0111
Barium	0.1.0	0.122	0.0341	0.194	0.186	0.182	0.0532	0.1.0	0.1.0	0.0515
Beryllium	0.0224	0.0122 J	0.0041	0.134	0.100	0.102	0.0302	0.103	0.100	0.0313
Deren	0.01 0	0.01 0	0.01 U	0.01 0	0 10.0	0.010	0.01 U	0.01 0	0.01 U	0.01 0
	0.202	0.2	0.1 U	0.0526 J	0.0613 J	U.U587 J	0.1 U	0.1 U	0.1 U	0.1 U
	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Calcium	184	191	81.9	71.8	63.1	63.2	152	107	72.5	151
Chromium	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Cobalt	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Copper	0.02 U	0.02 U	0.02 U	0.02 LJ	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Iron	0.22	0.1 U	0.796	9.45	4.85	4.6	1.61	5.78	5.67	4.14
Lead	0111	0.1.0	0.1.00	0111	0111	0.1.11	0111	0111	0111	0111
Lithium	0.10	0.10	0.1 0	0.10	0.1 0	0.1 U	0.10	0.1 0	0.10	0.10
Magaaaium	0.10	0.10	0.1 0	0.10	0.1 0	0.1 0	0.10	0.1 0	0.10	0.10
	44	45.9	23	11.1	39	40.1	32.3	29	30.6	35
ivianganese	0.332	0.199	0.196	0.395	0.782	0.773	0.63	1.03	1.1	9.49
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U
Molybdenum	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Potassium	4.26	3.23	0.551 J	0.679 J	1.37 J	1.22 J	1.7 J	1.31 J	1.21 J	1.21 J

....

A٩

05-GW30-012017	AS05-GW31-012017	AS05-GW32-012017	AS05-GW33-012317
1/25/17	1/25/17	1/24/17	1/23/17
1/25/11	1/20/11	1/27/11	1/20/11
0.5.11	0.5.11	0.5.11	0.5.11
0.5 U	0.5 U	0.5 U	0.5 U
0.4 0	0.4 0	0.4 U	0.4 0
40	40	40	40
0.5 0	0.5 U	0.5 U	0.5 0
0.25 0	0.25 0	0.25 0	0.25 0
0.211	0.2 11	0.2 11	0.2 11
0.3 0	0.3 0	0.3 0	0.3 0
2 11	211	2	211
0511	0511	0511	0511
0.5 0	0.5 0	0.5 0	0.5 0
0.25 0	0.25 0	0.25 0	0.25 0
0.5 0	0.5 0	0.5 0	0.5 0
0.5.U	0.5 U	0.5 U	0.5 U
0.25 U	0.25 U	0.25 U	0.25 U
5.0	5 U	5 U	5 U
5 U	5 U	5 U	5 U
5 U	5 U	5 U	5 U
5 UQ	5 UQ	5 UQ	5 UQ
5 U	5 U	5 U	5 U
0.25 U	0.25 U	0.25 U	0.25 U
0.4 U	0.4 U	0.4 U	0.4 U
0.5 U	0.5 U	0.5 U	0.5 U
1 U	1 U	1 U	1 U
1 UQ	1 UQ	1 UQ	1 U
94,600	77,600	76,500	188,000
1 U	1 U	1 U	1 U
0.5 U	0.5 U	0.5 U	0.5 U
0.25 U	0.25 U	0.25 U	0.25 U
1 U	1 U	1 U	1 U
0.25 U	0.25 U	0.25 U	0.25 U
1 U	1 U	1 U	1 U
0.5 U	0.5 U	0.422 J	2.75
0.5 U	0.5 U	0.5 U	0.5 U
2 U	2 U	2 U	2 U
0.5 U	0.5 U	0.5 U	0.5 U
0.5 U	0.5 U	0.5 U	0.5 U
3.21 J	3.37 J	2 U	2 U
2 U	2 U	2 U	2 U
0.5 U	0.5 U	0.5 U	0.5 U
0.5 U	0.5 U	0.5 U	0.5 0
1 420	10	10	10
1,420	2,170	8.07	12.5
20	20	20	20
20	05.11	20	0.5.11
0.5 0	0.5 0	0.5 0	0.5 0
0511	0511	0511	0511
0.5 0	0.5 0	0.5 0	0.5 0
0.5.U	0.5 11	0.5 11	0.5 11
0.5 U	0.5 U	0.5 U	0.5 U
0.5 U	0.5 U	0.5 U	0.5 U
1 U	1 U	1 U	1 U
0.5 U	0.331 J	7.77	4.03
0.5 U	0.5 U	0.5 U	0.5 U
0.5 U	0.5 U	0.5 U	0.5 U
0.2 U	0.2 U	0.2 U	0.218 J
0.2 U	0.2 U	0.2 U	0.2 U
0.1 U	0.1 U	0.1 U	0.1 U
0.591	0.555	0.0399	0.0406
0.01 U	0.01 U	0.01 U	0.01 U
0.1 U	0.0536 J	0.1 U	0.1 U
0.02 U	0.02 U	0.02 U	0.02 U
129	98.7	109	86.4
0.02 U	0.02 U	0.02 U	0.02 U
0.02 U	0.02 U	0.02 U	0.0127 J
0.02 U	0.02 U	0.02 U	0.02 U
22.2	21.5	0.1 U	0.268
0.1 U	0.1 U	0.1 U	0.1 U
0.1 U	0.1 U	0.1 U	0.1 U
21.8	17.2	20	28.5
0.000	0.484	0.0181 J	1.28
0.0002 0	0.0002 U	0.0002 0	0.0002 U
0.1 U	0.1 U	0.1 U	0.1 U
0.04 U	0.04 U	0.04 U	0.04 U
1.1∠ J	1.19 J	0.009 J	1.24 J

Sample ID	AS05-GW13-012017	AS05-GW13P-010617	AS05-GW17-012017	AS05-GW18-012017	AS05-GW25-012017	AS05-GW25P-012017	AS05-GW26-012017	AS05-GW27-012017	AS05-GW28-012017	AS05-GW29-012017	AS05-GW30-012017	AS05-GW31-012017	AS05-GW32-012017	AS05-GW33-012317
Sample Date	1/26/17	1/6/17	1/26/17	1/25/17	1/26/17	1/26/17	1/24/17	1/24/17	1/24/17	1/25/17	1/25/17	1/25/17	1/24/17	1/23/17
Chemical Name														
Selenium	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Silicon	2.46	2.23	3.7	7.69	4.12	4.02	3.6	5.09	3.71	3.67	6.3	5.48	3.93	3.16
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Sodium	40.8	40.5	9.13	16.3	15.4	15.2	10.7	14.6	13.5	11.2	12.3	14.2	14.2	10.6
Strontium	3.65	3.93	0.715	0.137	1.03	1.01	8.63	2.86	1.93	2.98	0.365	0.45	0.307	0.279
Thallium	10	10	1 U	1 U	10	1 U	10	10	10	10	10	10	10	10
l itanium	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
	0.00/17	0.00733	0.001 U	0.000643 J	0.001 U	0.001 U	0.00289	0.000774 J	0.001 U	0.00513	0.001 U	0.001 U	0.000991 J	0.001 U
Zino	0.01 0	0.01 U	0.01 0	0.01 U	0.01 U	0.01 U	0.01 U	0.01 0	0.01 U	0.01 0				
	0.02 0	0.02 0	0.0113 J	0.02 0	0.02 0	0.02 0	0.02 0	0.0243 J	0.0211 J	0.02 0	0.02 0	0.02 0	0.02 0	0.0613
Dissolved Metals (MG/L)														
	0211	0211	0211	0211	0211	0211	0211	0.2.11	0211	0211	0211	0211	0211	0211
Antimony	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Arsenic	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Barium	0.00883 J	0.0106 J	0.0335	0.197	0.182	0.176	0.0532	0.1	0.195	0.0526	0.59	0.577	0.0384	0.0374
Beryllium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Boron	0.205	0.199 J	0.1 U	0.0542 J	0.0556 J	0.061 J	0.1 U	0.0507 J	0.1 U	0.1 U				
Cadmium	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Calcium	181	195	81.1	76.7	62.7	63.1	145	99.8	75.3	154	131	107	108	85.9
Chromium	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Cobalt	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.0114 J
Copper	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Iron	0.1 U	0.1 U	0.275	8.49	4.55	4.61	1.78	5.15	6.05	4.08	22.8	23.2	0.1 U	0.1 U
Lead	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Lithium	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Magnesium	43.9	46.4	23.4	11.7	38.5	38.5	32.4	27.4	30.3	35.2	21.9	18.2	19.8	27.8
Manganese	0.0343	0.167	0.192	0.392	0.767	0.775	0.639	0.978	1.04	9.61	0.005	0.497	0.0151 J	1.10
Mehrbanum	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0	0.0002 0
Nickel	0.1 0	0.1 0	0.1 0	0.1 0	0.10	0.1 0	0.10	0.10	0.10	0.10	0.1 0	0.1 0	0.10	0.10
Potassium	4 27	2 97	0.548.1	0.04.0	1 29 .1	1 15 .1	1.68.1	1 22 .1	1.35.1	1.32 .1	1.04.1	1 22 .1	0.653 J	1.63.1
Selenium	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Silicon	2.49	2.19	3.76	7.79	3.98	4.04	3.65	4.62	3.7	3.71	6.16	5.76	3.93	2.8
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Sodium	41.5	40	9.03	16.8	15.1	15	10.9	13.8	13.6	11.4	12.2	14.3	14.1	10.2
Strontium	3.59	4.04	0.703	0.142	1	0.989	8.12	2.67	2.03	3.02	0.362	0.492	0.305	0.268
Thallium	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Titanium	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
URANIUM	0.00737	0.00704	0.001 U	6.45E-04 J	0.001 U	0.001 U	0.0028	8.12E-04 J	0.001 U	0.00484	0.001 U	0.001 U	9.26E-04 J	0.001 U
Vanadium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Zinc	0.02 U	0.02 U	0.0124 J	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.0157 J
Wet Chamister (MO/L)														
Wet Chemistry (MG/L)	200	NO	400	400	004	NO	205	000	400	220	050	040	140	00.4
Aikainity	320	NS NC	100	180	224	INS NC	295	226	188	332	259	212	149	99.4
Ammonia Chlorido	0.167 J	NS NS	0.0753 J	0.587	0.253	NS NS	0.205	0.226	0.187 J	0.68	0.677	0.675	0.135 J 10 7	0.176 J
Fluoride	0.4.11	NS	0.118	0 158 1	0 133 1	NS	0.228 1	0 161 1	0 151 1	0.204	0 137 1	0 143 1	0.4.11	0411
Hardness	680	NS	308	260	320	NS	570	392	304	610	416	352	344	340
Nitrate	0.362.1	NS	0.33	0.211	0.211	NS	0.622.1	0.211	0.211	0.664	0211	0.211	2 81	0411
Nitrite	0.4 U	NS	0.2 U	0.2 U	0.2 U	NS	0.4 U	0.2 U	0.2 U	0.4 U	0.2 U	0.2 U	0.4 U	0.4 U
Phosphate	0.05 U	NS	0.05 U	0.05 U	0.05 U	NS	0.05 U							
Sulfate	326	NS	127	58.5	95.6	NS	192	147	96.5	212	159	118	196	233
Sulfide	1 U	NS	1 U	1 U	1 U	NS	1 U	1 U	1 U	 1 U	1 U	1 U	1 U	1 U
Total organic carbon (TOC)	7.69	NS	8.71	3.66	5.1	NS	7.81	4.74	4.13	6.83	5.39	2.74	5.74	7.62

J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outisde the quantitation range).
Q - One or more quality control criteria failed (e.g., LCS recovery, surrogate spike recovery or CCV recovery).

U - The material was analyzed for, but not detected

UQ - The internal was analyzed for, but not detected UQ - The material was analyzed for, but not detected. One or more quality control criteria failed. UG/L - Micrograms per liter MG/L - Milligrams per liter NS - Not sampled

Sample ID	AS05-GW13-010617	AS05-GW18-012017	AS05-GW25-012017	AS05-GW26-012017	AS05-GW27-012017	AS05-GW28-012017	AS05-GW29-012017	AS05-GW30-012017	AS05-GW31-012017
Sample Date	1/6/17	1/20/17	1/20/17	1/20/17	1/20/17	1/20/17	1/20/17	1/20/17	1/20/17
Analyte (Cells/mL)									
APS	1.29E+04	2.13E+05	7.64E+05	7.29E+04	2.46E+04	1.10E+05	1.06E+05	7.22E+04	1.58E+04
BAV1 R-Dase	1.00E+00 L	J 1.00E+00 L	1.00E+00 U						
CFR	1.00E+01 L	J 1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U
DCA	1.00E+01 L	J 1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U
DCAR	1.00E+01 L	J 1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U
DCM	1.00E+01 L	J 1.00E+01 L	1.00E+01 U						
DCMA	1.00E+01 L	J 1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.00E+01 U
DECO	4.28E+01	4.45E+01	1.08E+02	4.41E+01	6.00E-01 J	4.40E+01	1.70E+02	6.36E+01	1.00E+01 U
Dehalobacter	1.68E+01	2.36E+02	2.63E+02	8.19E+01	9.40E+00 J	5.44E+02	1.00E+01 U	1.70E+02	9.60E+00 J
Dehalococcoides	1.00E+00 L	3.40E+02	4.68E+01	1.01E+01	1.00E+00 U	7.80E+00	2.94E+02	3.34E+01	9.00E+00
DHG	7.53E+01	1.00E+01 L	3.88E+02	3.25E+02	1.00E+01 U	1.00E+01 U	8.33E+02	1.00E+01 U	1.00E+01 U
Desulfitobacterium	1.00E+01 L	J 1.00E+01 L	4.20E+01	1.00E+01 U	1.00E+01 U	3.34E+02	1.61E+02	1.07E+02	1.00E+01 U
Desulfuromonas	1.00E+01 L	J 1.38E+03	9.75E+03	1.00E+01 U	1.00E+01 U	1.64E+04	1.34E+04	2.59E+03	1.46E+03
Total Bacteria	7.99E+04	3.09E+05	1.34E+06	3.07E+05	9.04E+04	6.53E+05	3.12E+05	1.91E+05	4.84E+04
EtnC	1.00E+01 L	J 1.00E+01 L	1.00E+01 U						
EtnE	1.00E+01 L	1.10E+02	1.00E+01 U						
Methanogens	3.30E+00 J	2.08E+02	4.62E+02	1.81E+01	8.30E+00 J	1.41E+03	1.01E+02	9.08E+01	1.72E+01
PHE	6.70E+00 J	7.30E+00	7.30E+01	6.65E+02	8.83E+01	2.58E+02	1.82E+02	2.88E+02	9.80E+00 J
РММО	3.15E+01	2.60E+02	1.20E+02	2.07E+02	8.46E+02	4.64E+01	6.86E+01	2.63E+01	9.10E+00 J
RDEG	1.00E+01 L	2.96E+01	1.00E+01 U	7.12E+02	1.00E+01 U	3.80E+02	3.20E+00 J	9.74E+01	1.00E+01 U
RMO	1.00E+01 L	J 1.00E+01 L	1.00E+01 U	1.00E+01 U	2.72E+01	1.00E+01 U	1.00E+01 U	5.07E+01	1.00E+01 U
SMMO	4.87E+02	2.21E+03	1.12E+03	5.93E+02	5.51E+01	2.14E+02	2.89E+02	1.66E+02	4.56E+01
тсво	1.00E+01 L	J 1.00E+01 L	1.00E+01 U	1.00E+01 U	1.00E+01 U	1.40E+00 J	1.00E+01 U	1.00E+01 U	1.00E+01 U
TCE R-Dase	1.00E+00 L	J 7.00E-01 J	1.00E+00 U	1.00E+00 U	1.00E+00 U	1.00E+00 U	7.00E-01 J	1.00E+00 U	1.00E+00 U
Toluene Dioxygenase	7.00E+00 J	1.05E+01	2.14E+01	2.83E+01	7.40E+00 J	1.76E+01	1.93E+01	1.51E+01	2.00E+00 J
VC R-Dase	1.00E+00 L	J 2.00E-01 .	1.00E+00 U	1.00E+00 U	1.00E+00 U	1.00E+00 U	3.20E+00	1.00E+00 U	1.00E+00 U

J - The reported result is an estimated value

. .

U - TAnalyzed for, but not detected

control criteria failed.

Shading indicates detection

Cells/mL - cells per milliliter

Sample ID	SLOP-MW119-012017	SLOP-TW01-012017	SLOP-TW02-012017	SLOP-TW03-012017	SLOP-TW03P-012017	SLOP-TW04-012017	SLOP-TW05-012017	SLOP-TW06-012017
Sample Date	1/23/17	1/25/17	1/24/17	1/23/17	1/23/17	1/25/17	1/24/17	1/24/17
Chemical Name								
Volatile Organic Compounds (UG/L)								
1,1,1-Trichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,1,2,2-Tetrachloroethane	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
1,1,2-Trichloro-1,2,2-trifluoroethane (Freon-113)	4 U	4 U	4 U	4 U	4 U	4 U	4 U	4 U
1,1,2-Trichloroethane	4.43	3.32	0.5 U	0.5 U	0.5 U	4.69	0.5 U	0.5 U
1,1-Dichloroethane	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,1-Dichloroethene	1 U	2.73	1.09 J	1 U	1 U	2.49	1 U	1 U
1,2,3-Trichlorobenzene	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U	0.3 U
1,2,4-Trichlorobenzene	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
1,2-Dibromo-3-chloropropane	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
1,2-Dibromoethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichlorobenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
1,2-Dichloroethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,2-Dichloropropane	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
1,3-Dichlorobenzene	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
1,4-Dichlorobenzene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
2-Butanone	4.02 J	3.72 J	21.6	5 U	5 U	5 U	5 U	5 U
2-Hexanone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
4-Methyl-2-pentanone	5 U	5 U	5 U	5 U	5 U	5 U	5 U	5 U
Acetone	6.89 J	9.87 Q	36.1 Q	5 U	5 U	3.26 Q	5 UQ	5 UQ
Acetylene	5 U	5 U	5 U	5 U	NS	5 U	5 U	5 U
Benzene	3.13	0.794 J	7.92	0.25 U	0.25 U	0.441 J	0.25 U	0.25 U
Bromochloromethane	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U	0.4 U
Bromodichloromethane	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Bromotorm	10	10	10	10	10	10	10	10
Bromometnane	10	1 UQ	1 UQ	10	10	1 UQ	1 UQ	1 UQ
Carbon disullide		10			10			
	0.5 0	1.40	0.5 U	0.5 0	0.5 0	0.5 0	0.5 U	0.5 U
Chloroothana	0.25 0	0.25 0	0.25 0	0.25 0	0.25 0	0.25 0	0.25 0	0.25 0
Chloroform	0.25 U	1 U 5 5		0.161	0 177 1	0.27	0 104 1	0 179 1
Chloromothana	0.25 0	5.5	0.417 J	0.101 J	0.177 J	9.27	0.194 J	0.176 J
	7 17	107	1 070	0511	0511	754	0511	144
cis-1,2-Dichloropropopo	0511	0511	0511	0.5 0	0.5 U	0511	0.5 0	0.5.11
Cyclobeyane	211	2.1	2.1	211	0.3 0	211	2 11	2.1
Dibromochloromethane	0511	0511	0 342 1	0511	0511	0.636.1	0511	0511
Dichlorodifluoromethane (Freon-12)	0.5 UO	0.5 0	0.542 0	0.5 0	0.5 0	0.000 0	0.5 0	0.5 0
Ethane	140	22	270	211	NS	8.4	211	211
Ethene	4.1 J	11	4.5 J	2 U	NS	2 U	2 U	2 U
Ethylbenzene	1.52	0.291 J	9.57	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Isopropylbenzene	0.5 U	0.5 U	0.256 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
m- and p-Xvlene	1.2 J	1 U	18.1	1 U	10	1 U	1 U	1 U
Methane	14.000	120	3.200	2 U	NS	13	2 U	2 U
Methyl acetate	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Methylcyclohexane	2 U	2 U	2 U	2 U	2 U	2 U	2 U	2 U
Methylene chloride	0.5 U	0.406 J	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Methyl-tert-butyl ether (MTBE)	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
o-Xylene	0.763 J	0.277 J	2.86	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Styrene	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U	0.25 U
Tetrachloroethene	0.5 U	9,570	269	1.21	1.13	12,000	1.14	677

Sample ID	SLOP-MW119-012017	SLOP-TW01-012017	SLOP-TW02-012017	SLOP-TW03-012017	SLOP-TW03P-012017	SLOP-TW04-012017	SLOP-TW05-012017	SLOP-TW06-012017
Sample Date	1/23/17	1/25/17	1/24/17	1/23/17	1/23/17	1/25/17	1/24/17	1/24/17
Chemical Name								
Toluene	4.14	1.3	6.73	0.258 J	0.278 J	0.504 J	0.5 U	0.5 U
trans-1,2-Dichloroethene	0.5 U	3.82	3.93	0.5 U	0.5 U	10.6	0.5 U	1.94
trans-1,3-Dichloropropene	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Trichloroethene	0.454 J	400	143	0.298 J	0.311 J	611	1.03	79.7
Trichlorofluoromethane (Freon-11)	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U	0.5 U
Vinyl chloride	0.5 U	0.528 J	2.3	0.5 U	0.5 U	0.312 J	0.5 U	0.5 U
	0 173	0.1/0.1	0.211	0.162	0.228 1	0.211	0.503	0.2.11
Antimony	0.173 J	0.149 J	0.2 0	0.102 J	0.220 J	0.2 0	0.303	0.2 0
	0.2 0	0.2 0	0.2 0	0.2 0	0.2 0	0.2 0	0.2 0	0.2 0
Barium	0.1 0	0.10	0.1 0	0.10	0.1 0	0.10	0.10	0.10
Beryllium	0.0400	0.117	0.177	0.100	0.100	0.0300	0.0310	0.000
Boron	0.01 U	01U	01U	01U	01U	01U	0.0934 J	01U
Cadmium	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Calcium	32.3	55.4	80.7	53.7	54	51.1	62.5	44.6
Chromium	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Cobalt	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Copper	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Iron	0.281	0.473	0.262	0.136 J	0.148 J	0.1 U	0.56	0.0692 J
Lead	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Lithium	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Magnesium	5.16	21.5	33.7	22.8	23	21.8	26.9	19.9
Manganese	0.258	2.15	2.43	0.0773	0.077	0.0375	0.0734	0.0493
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U
Molybdenum	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Potassium	10	2.5	0.755 J	0.822 J	0.661 J	0.795 J	0.595 J	10
	0.04 0	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 0	0.04 U
Silicon	3.70	10.2	4.98	12.4	13	12.1	14.3	14.3
Sodium	0.01 0	21.5	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0	0.01 0
Strontium	0.0	0.206	02.1	0.278	0.28	40.1	45.2	0 186
Thallium	1	1	1	1]	1	1]	0.000	1]
Titanium	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
URANIUM	0.001 U	0.000853 J	0.000559 J	0.001 U	0.001 U	0.001 U	0.000703 J	0.001 U
Vanadium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Zinc	0.0472	0.02 U	0.02 U	0.023 J	0.02 U	0.0352 J	0.02 U	0.0227 J
Dissolved Metals (MG/L)								
Aluminum	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Antimony	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U	0.2 U
Arsenic	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Barium	0.0502	0.117	0.177	0.136	0.133	0.0968	0.0851	0.0941
	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Boton	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.0913 J	0.1 U
	0.02 0	0.02 U	0.02 0	0.02 U	U.U2 U	U.U2 U	0.02 0	0.02 U
Chromium	32.9 0.02.11		02.0			0.02.11		
Cobalt	0.02 0	0.02 0	0.02 0	0.02.0	0.02 0	0.02 0	0.02 0	0.02.0
Cobait	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0	0.02 0

Sample ID	SLOP-MW119-012017	SLOP-TW01-012017	SLOP-TW02-012017	SLOP-TW03-012017	SLOP-TW03P-012017	SLOP-TW04-012017	SLOP-TW05-012017	SLOP-TW06-012017
Sample Date	1/23/17	1/25/17	1/24/17	1/23/17	1/23/17	1/25/17	1/24/17	1/24/17
Chemical Name								
Copper	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Iron	0.0904 J	0.239	0.128 J	0.0727 J	0.1 U	0.1 U	0.1 U	0.1 U
Lead	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Lithium	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Magnesium	5.41	21.5	34.6	23.7	23	22.1	26.1	20
Manganese	0.277	2.06	2.45	0.0755	0.0742	0.0425	0.0655	0.0495
Mercury	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U	0.0002 U
Molybdenum	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U	0.1 U
Nickel	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Potassium	1 U	1.41 J	0.786 J	0.681 J	0.821 J	0.697 J	1 U	1 U
Selenium	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U	0.04 U
Silicon	3.66	8.98	4.68	12.6	12.4	12.3	13.5	13.7
Silver	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Sodium	83.6	33.8	59.7	57.7	56.5	47	44.1	32.5
Strontium	0.174	0.216	0.388	0.287	0.281	0.211	0.35	0.184
Thallium	1 U	1 U	1 U	1 U	1 U	1 U	1 U	1 U
Titanium	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U	0.03 U
URANIUM	0.001 U	0.00101 J	0.000512 J	0.001 U	0.001 U	0.001 U	0.000621 J	0.001 U
Vanadium	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U	0.01 U
Zinc	0.02 U	0.02 U	0.0133 J	0.02 U	0.02 U	0.02 U	0.02 U	0.02 U
Wet Chemistry (MG/L)								
Alkalinity	221	232	96.4	175	NS	154	233	128
Ammonia	0.18 J	0.164 J	0.0867 J	0.163 J	NS	0.0913 J	0.0951 J	0.0708 J
Chloride	31.4	22.6	228	60.4	NS	43	25.8	38.9
Fluoride	1.8	0.477	0.422 J	0.281 J	NS	0.204 J	0.257 J	0.211 J
Hardness	130	252	328	110	NS	224	260	188
Nitrate	0.2 U	0.2 U	0.922 J	0.2 U	NS	0.2 U	0.2 U	0.2 U
Nitrite	0.2 U	0.2 U	0.4 U	0.2 U	NS	0.2 U	0.2 U	0.2 U
Phosphate	0.142	0.05 U	0.05 U	0.05 U	NS	0.05 U	0.05 U	0.05 U
Sulfate	1.7 J	25.4	44	84.7	NS	107	84.8	84.4
Sulfide	1 U	1 U	1 U	1 U	NS	1 U	1 U	1 U
Total organic carbon (TOC)	11.4	17.8	27.6	5.24	NS	7.35	6.84	4.25

J - The reported result is an estimated value (e.g., matrix interference was observed or the analyte was detected at a concentration outisde the quantitation range).

Q - One or more quality control criteria failed (e.g., LCS recovery, surrogate spike recoery or CCV recovery).

U - The material was analyzed for, but not detected

UQ - The material was analyzed for, but not detected. One or more quality control criteria failed.

UG/L - Micrograms per liter

MG/L - Milligrams per liter

NS - Not sampled

Sample ID	SLOP-MW119-012017	SLOP-TW01-012017	SLOP-TW02-012017	SLOP-TW03-012017	SLOP-TW04-012017	SLOP-TW05-012017	SLOP-TW06-012017
Sample Date	1/23/17	1/25/17	1/24/17	1/23/17	1/25/17	1/24/17	1/24/17
Analyte (Cells/mL)							
APS	6.95E+05	2.28E+02	2.31E+01	2.70E+00 J	2.70E+00 J	2.00E+01 U	3.14E+01
BAV1 R-Dase	1.30E+00 U	2.00E+00 U	2.00E+00 U	1.00E+00 U	2.00E+00 U	2.00E+00 U	1.70E+00 U
CFR	1.25E+01 U	2.00E+01 U	2.00E+01 U	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
DCA	1.25E+01 U	2.00E+01 U	2.00E+01 U	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
DCAR	1.25E+01 U	2.00E+01 U	2.00E+01 U	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
DCM	1.25E+01 U	2.00E+01 U	2.00E+01 U	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
DCMA	1.25E+01 U	2.00E+01 U	2.00E+01 U	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
DECO	1.15E+03	2.00E+01 U	4.40E+00 J	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
Dehalobacter	7.07E+02	2.51E+03	1.95E+03	1.00E+01 U	4.18E+01	2.00E+01 U	4.70E+00 J
Dehalococcoides	2.42E+01	5.11E+01	2.00E+00 U	1.00E+00 U	2.03E+01	2.00E+00 U	1.70E+00 U
DHG	9.69E+03	2.00E+01 U	4.19E+02	1.00E+01 U	1.78E+02	2.00E+01 U	1.67E+01 U
Desulfitobacterium	3.93E+02	1.22E+02	1.27E+02	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
Desulfuromonas	1.22E+04	5.17E+03	5.65E+03	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
Total Bacteria	7.25E+06	6.56E+05	7.76E+05	1.19E+04	1.60E+05	3.56E+03	1.46E+04
EtnC	1.25E+01 U	2.00E+01 U	2.00E+01 U	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
EtnE	3.89E+02	2.00E+01 U	2.00E+01 U	1.00E+01 U	2.44E+02	2.00E+01 U	1.67E+01 U
Methanogens	4.27E+03	3.70E+01	1.55E+02	1.90E+00 J	4.14E+01	2.00E+01 U	2.90E+00 J
PHE	1.03E+04	3.81E+03	3.71E+03	1.93E+02	1.27E+03	1.00E+00 J	5.30E+02
РММО	1.32E+04	3.99E+01	3.37E+01	3.60E+00 J	3.26E+02	2.00E+01 U	2.90E+00 J
RDEG	2.79E+03	1.25E+03	1.36E+03	1.01E+03	5.39E+03	2.00E+01 U	7.81E+01
RMO	5.17E+03	9.34E+01	2.00E+01 U	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
SMMO	1.01E+04	4.03E+02	2.28E+02	4.84E+01	2.37E+02	2.00E+01 U	3.15E+02
тсво	8.33E+01	2.00E+01 U	2.00E+01 U	1.00E+01 U	2.00E+01 U	2.00E+01 U	1.67E+01 U
TCE R-Dase	1.30E+00 U	9.00E-01 J	2.00E+00 U	1.00E+00 U	2.00E+00 U	2.00E+00 U	1.70E+00 U
Toluene Dioxygenase	8.66E+01	3.88E+01	3.37E+01	6.80E+00 J	9.74E+02	7.00E-01 J	6.60E+00 J
VC R-Dase	1.30E+00 U	5.00E-01 J	2.00E+00 U	1 U	2.00E+00 U	2.00E+00 U	1.70E+00 U

J - The reported result is an estimated value

. .

U - TAnalyzed for, but not detected

control criteria failed.

Shading indicates detection

Cells/mL - cells per milliliter

Appendix H Trend Graphs ABL

Appendix H-1A Geochemical Concentration Trends In the Vicinity of the ZVI PRB Allegany Ballistics Laboratory Rocket Center, WV

Methane,

, Ethane, and E	thene Concentration Trends	Appendix H-1B In the Vicinity of the ZVI PRB Allegany Ballistics Laboratory Rocket Center, WV

GW32	GW33	
Side	ט מעופו וו	

Appendix H-2A Total Metals Concentration Trends In the Vicinity of the ZVI PRB Allegany Ballistics Laboratory Rocket Center, WV

Appendix H-2A Total Metals Concentration Trends In the Vicinity of the ZVI PRB Allegany Ballistics Laboratory Rocket Center, WV

Appendix H-2A Total Metals Concentration Trends In the Vicinity of the ZVI PRB Allegany Ballistics Laboratory Rocket Center, WV

Appendix H-2B Dissolved Metals Concentration Trends In the Vicinity of ZVI PRB Allegany Ballistics Laboratory Rocket Center, WV

Appendix H-2B Dissolved Metals Concentration Trends In the Vicinity of ZVI PRB Allegany Ballistics Laboratory Rocket Center, WV

Appendix I Trend Graphs St. Louis

Appendix I-!A Geochemical Concentration Trends Throughout Treatment Area St. Louis Ordnance Depot St. Louis, MO

Chloride	
1W119 TW01 TW04 TW05 TW	/06
Treatment Area Down Gradient	ient
Treatment Area Down Gradient Cross Grad	ient
Treatment Area Down Gradient Cross Grad	ient
Treatment Area Down Gradient Cross Grad	ient
Treatment Area Down Gradient Cross Grad	ient
Down Gradient Cross Grad Image: Nitrate Vitrate	ient
Down Gradient Cross Grad Image: Nitrate Image: Nitrate Image: Nitrate Image: Nitrate	ient
Treatment Area Down Gradient Cross Grad	ient
Down Gradient Cross Grad Image: Strate st	ient

Appendix I-!A Geochemical Concentration Trends Throughout Treatment Area St. Louis Ordnance Depot St. Louis, MO

Appendix I-1B Methane, Ethane, and Ethene Concentration Trends Throughout Treatment Area St. Louis Ordnance Depot St. Louis, MO

TW06

Appendix I-2A Total Metals Concentration Trends Throughout Treatment Area St. Louis Ordnance Depot St. Louis, MO

Boron	l
NN ¹¹⁹ TW	D ¹ ₁ N ^{0^A} 1N ⁰⁵ 1N ⁰⁶ Down Gradient Cross Gradient
Magnesi	um

Appendix I-2A Total Metals Concentration Trends Throughout Treatment Area St. Louis Ordnance Depot St. Louis, MO

Appendix I-2A Total Metals Concentration Trends Throughout Treatment Area St. Louis Ordnance Depot St. Louis, MO

Appendix I-28 Dissolved Metals Concentration Trends Throughout Treatment Area St. Louis Ordnance Depot St. Louis, MO

Boron			
		-	
		-	
MW119 TWO'	TWOA K	1,NO5 TNO6	
•			
Treatment Area	Down Gradient	Cross Gradient	
Treatment Area ■ Magnesiu	Down Gradient M	Cross Gradient	
Treatment Area ■ Magnesiu	Down Gradient M	Cross Gradient	
Treatment Area ■ Magnesiu	Down Gradient	Cross Gradient	
Treatment Area	Down Gradient M	Cross Gradient	
Treatment Area	m	Cross Gradient	
Treatment Area Magnesiu	Down Gradient	Cross Gradient	
Treatment Area Magnesiu	Down Gradient	Cross Gradient	
Treatment Area	Down Gradient m	Cross Gradient	

Appendix I-2B Dissolved Metals Concentration Trends Throughout Treatment Area St. Louis Ordnance Depot St. Louis, MO

Appendix J Slug Test Results

Appendix K Points of Contact

Point Of Contact Name	Organization Name Address	E-Mail	Role In Project
Jovan Popovic	NAVFAC EXWC	jovan.popovic@navy.mil	Principal Investigator
Kyle Kirchner	NAVFAC EXWC	kyle.kirchner@navy.mil	Co-Investigator
Laura Cook	CH2M	Laura.Cook@ch2m.com	Co-Investigator
Dean Williamson	CH2M	Dean.Williamson@ch2m.com	Co-Investigator
Rick Wilkin	USEPA	Wilkin.Rick@epa.gov	Co-Investigator
Rick Johnson	OHSU	Rick.johnson.phd@gmail.com	Co-Investigator

Appendix K: Points of Contact