TMVOC, A Numerical Simulator for Three-Phase Non-isothermal Flows of Multicomponent Hydrocarbon Mixtures in Saturated-Unsaturated Heterogeneous Media

Karsten Pruess* and Alfredo Battistelli&

* Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.

& Aquater S.p.A., 61047 San Lorenzo in Campo (PU), Italy

April 2002

This work was supported, in part, by the U.S. Department of Energy through the Office of Basic Energy Sciences under Contract No. DE-AC03-76SF00098. Partial support was also provided by a grant from Aquater S.p.A. (ENI Group) to the Lawrence Berkeley National Laboratory in the frame of the REPIS project sponsored by the ENI Research Fund.

Abstract

TMVOC is a numerical simulator for three-phase non-isothermal flow of water, soil gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. It is an extension of the TOUGH2 general-purpose simulation program developed at the Lawrence Berkeley National Laboratory. TMVOC is designed for applications to contamination problems that involve hydrocarbon fuel or organic solvent spills in saturated and unsaturated zones. It can model contaminant behavior under "natural" environmental conditions, as well as for engineered systems, such as soil vapor extraction, groundwater pumping, or steam-assisted source remediation.

This report is a self-contained guide to applications of TMVOC to subsurface contamination problems involving non-aqueous phase liquids (NAPLs). It gives a technical description of the TMVOC code, including a discussion of the physical processes modeled, and the mathematical and numerical methods used. Detailed instructions for preparing input data are presented along with illustrative sample problems.

TABLE OF CONTENTS

LIST OF FIGURES	vii
LIST OF TABLES	xi
1. INTRODUCTION	1
2. HARDWARE REQUIREMENTS AND CODE INSTALLATION	3
3. PHYSICAL PROCESSES AND ASSUMPTIONS	5
4. FLUID PROPERTIES	7
4.1 Gas Phase	9
4.2 Aqueous (Water) Phase	13
4.3 Oil (NAPL) Phase	15
4.4 Adsorption of VOCs	18
4.5 Biodegradation	18
5. IMPLEMENTATION IN TMVOC	19
5.1 Scope and Methodology	19
5.2 Program Structure and Execution	20
6. TMVOC ARRAY STRUCTURE	23
6.1 Primary Thermodynamic Variables	23
6.2 Change of Phase Composition	26
6.3 Thermophysical Property Arrays	28
6.4 Linear Equation Setup	31
6.5 Dimensioning of Major Arrays	32
7. PREPARATION OF INPUT DATA	34
7.1 TMVOC Input Data	34
7.2 Geometry Data	40
8. USER FEATURES	44
8.1 Initial Conditions and Restarting	44
8.2 Boundary Conditions and "Inactive" Elements	45
8.3 Sinks and Sources	47
8.4 Heat Exchange with Confining Beds	49
8.5 Block-by-block Permeability Modification	51
8.6 Linear Equation Solvers	52

9. OUTPUT	FROM TMVOC	55
10. SAMPL	E PROBLEMS	58
10.1	Problem No. 1 (*r7c*) - Demonstrating Initialization of Different Phase Conditions	60
10.2	Problem No. 2 (*rblm*) - 1-D Buckley-Leverett Flow	63
10.3	Problem No. 3 (*rdif2*) - Diffusion	67
10.4	Problem No. 4 (*rtcem*) - Steam Displacement of a NAPL in a Laboratory Column	71
10.5	Problem No. 5 (*rbt*) - Steam Displacement of a Benzene-Toluene Mixture in a Laboratory Column	85
10.6	Problem No. 6 (*rad*) - Air Displacement of a NAPL from a Laboratory Column	96
10.7	Problem No. 7 (*r2dl*) - NAPL Spill in the Unsaturated Zone	108
11. CONCL	UDING REMARKS	127
ACKNOWL	EDGEMENT	127
REFERENC	ES	128
Appendix A.	Mass and Energy Balances	133
Appendix B.	Space and Time Discretization	136
Appendix C.	Description of Flow in Fractured Media	140
Appendix D.	Multiphase Diffusion	143
Appendix E.	TMVOC Input Formats	148
Appendix F.	Input Formats for MESHMAKER	172
Appendix G.	Relative Permeability Functions	179
Appendix H.	Capillary Pressure Functions	182
SUBJECT II	NDEX	183

LIST OF FIGURES

Figure 1.1	Example of coding for internal version control	2
Figure 4.1	Phase composition and phase changes considered by TMVOC	7
Figure 5.2.1	.2.1 Modular architecture of TMVOC	
Figure 6.3.1	re 6.3.1 Structure of thermophysical property arrays in TMVOC	
Figure 6.3.2	Linear equation structure	30
Figure 7.1.1	TMVOC input formats	37
Figure 7.2.1	User options for supplying geometry data	41
Figure 10.1.1	TMVOC input file for initialization test	61
Figure 10.1.2	Portion of printout from initialization test	62
Figure 10.2.1	Input file for sample problem 2 (Buckley-Leverett)	64
Figure 10.2.2	Part of printed output for sample problem 2	65
Figure 10.3.1	Input file for sample problem 3 (diffusion)	68
Figure 10.3.2	Part of printed output for sample problem 3	69
Figure 10.4.1	TMVOC input file for part 1 of problem 4 (TCE injection)	74
Figure 10.4.2	Portion of printed output for part 1 of problem 4	75
Figure 10.4.3	Portion of TMVOC input file for part 2 of problem 4 (waterflood)	77
Figure 10.4.4	Portion of printed output for part 2 of problem 4	78
Figure 10.4.5	Portion of TMVOC input file for part 3 of problem 4 (TCE injection)	80
Figure 10.4.6	Portion of printed output for part 3 of problem 4	81
Figure 10.4.7.	Portion of TMVOC input file for the steamflood in the $O_2 + N_2$ variation of problem 4	83
Figure 10.4.8.	Portion of printed output for the steamflood in the $O_2 + N_2$ variation of problem 4	84
Figure 10.5.1	TMVOC input file for part 1 of problem 5 (injection of benzene and toluene into a laboratory column)	87
Figure 10.5.2	Portion of printout of part 1 of problem 5	88

Figure 10.5.3	TMVOC input file for part 2 of problem 5 (waterflood)	89
Figure 10.5.4	Portion of printout of part 2 of problem 5	90
Figure 10.5.5	NAPL bank before waterflood, and after injection of 1.2, 9, and 10.2 pore volumes of water	91
Figure 10.5.6	Benzene and toluene mass fractions at outlet (grid block AA 50) during waterflood	91
Figure 10.5.7	TMVOC input file for part 3 of problem 5 (steamflood)	92
Figure 10.5.8	Portion of printout for part 3 of problem 5 (steamflood)	93
Figure 10.5.9	Calling sequence of program units in part 3 of problem 5	95
Figure 10.6.1	TMVOC input file for part 1 of problem 6	99
Figure 10.6.2	TMVOC input file for part 2 of problem 6 (NAPL injection)	100
Figure 10.6.3	Portion of printed output for part 2 of problem 6 (NAPL injection)	102
Figure 10.6.4	TMVOC input file for part 3 of problem 6 (redistribution)	103
Figure 10.6.5	Portion of printed output for part 3 of problem 6 (redistribution)	104
Figure 10.6.6	TMVOC input file for part 4 of problem 6 (airflooding)	105
Figure 10.6.7	Portion of output file for part 4 of problem X (air flooding)	106
Figure 10.6.8	o-xylene and toluene concentrations in the NAPL phase after 1740 s (29 min) of air flooding	107
Figure 10.6.9	o-xylene and toluene concentrations in the gas phase and NAPL saturation in the uppermost element as a function of time during the air flooding	107
Figure 10.7.1	Conceptual model of 2-D vertical section problem for simulating a multicomponent NAPL spill in the unsaturated zone	108
Figure 10.7.2	MESHMAKER input data for 2-D vertical section grid	109
Figure 10.7.3	Grid diagram for 2-D vertical section model	110
Figure 10.7.4	Portion of TMVOC input file for part 1 of problem 7 (obtaining steady-state conditions prior to NAPL spill)	114
Figure 10.7.5	Portion of printout for part 1 of problem 7	116
Figure 10.7.6	Portion of TMVOC input file for part 2 (NAPL spill) of problem 7	117
Figure 10.7.7	Portion of printout for part 2 (NAPL spill) of problem 7	118
Figure 10.7.8	Contour plot of total VOC mass fraction in the aqueous phase at the end of the NAPL spill period	119

Figure 10.7.9	Portion of TMVOC input file for part 3 (NAPL redistribution) of problem 7 120
Figure 10.7.10	Portion of printout for part 3 (NAPL redistribution) of problem 7 121
Figure 10.7.11	Contour plot of total VOC mass fraction in the aqueous phase at the end of the NAPL redistribution period
Figure 10.7.12	NAPL saturations at the end of the redistribution period 122
Figure 10.7.13	Portion of TMVOC input file for part 4 (extraction) of problem 7 123
Figure 10.7.14	Portion of printed output for part 4 (extraction) of problem 7 124
Figure 10.7.15	Contour plot of total VOC mass fraction in the aqueous phase at the end of the extraction period
Figure 10.7.16	Evolution of NAPL saturation at selected locations, labeled with x, z-values 126
Figure 10.7.17	Evolution of VOC mass fractions in aqueous phase at selected locations, labeled with x, z-values
Figure B.1	Space discretization and geometry data in the integral finite difference method
Figure C.1	Idealized double porosity model of a fractured porous medium 140
Figure C.2	Subgridding in the method of "multiple interacting continua" (MINC) 141
Figure C.3.	Flow connections in the "dual permeability" model 142
Figure F.1	MESHMaker input formats

LIST OF TABLES

Table 1.	TMVOC program structure	21
Table 2.	Labeling of mass components	24
Table 3.	Primary thermodynamic variables used by TMVOC	25
Table 4.	Summary of major common blocks	33
Table 5.	TMVOC input data blocks	35
Table 6.	TMVOC disk files	39
Table E.1	Phase identifiers and primary thermodynamic variables used by TMVOC	161
Table E.2	Choice of primary variables in T2VOC	161

1. Introduction

TMVOC is designed for simulating the flow of multicomponent mixtures of volatile organic chemicals (VOCs), such as crude oil, gasoline or diesel, and organic solvents, in variably saturated media. It can be used to analyze the fate and transport of non-aqueous phase liquids (NAPLs) in the vadose zone as well as below the water table. The NAPL may consist of a general multi-component mixture of organic fluids. In addition one or several non-condensible gases may be present. Any and all phase compositions in a gas-water-NAPL system are treated, including single, two-phase, and three-phase conditions. Flows can be non-isothermal, and may involve advective, diffusive, phase-partitioning, and sorptive processes. A simple model for biodegradation is provided as well. Chief applications for which TMVOC is designed include analysis of NAPL spills and remediation alternatives in the vadose zone and below the water table.

TMVOC is implemented as a specialized module in the framework of the general multipurpose simulator TOUGH2, and it retains the general process capabilities and user features of TOUGH2 (Pruess et al., 1999). The specific methodology used to treat multicomponent VOCs was adapted from Adenekan (1992) and Adenekan et al. (1993). The TMVOC program consists of a number of functional units with flexible and transparent interfaces. Much of what the program units do is spelled out in internal comments and in printed output. TMVOC is distributed along with a number of input data files for sample problems. Besides providing benchmarks for proper code installation, these can serve as a self-teaching tutorial in the use of TMVOC, and they provide templates to help jump-start new applications.

A number of ancillary programs are available to facilitate certain operations that occur in many TMVOC applications. Examples include the assignment of initial and boundary conditions, modification of MESH files, and extracting of graphics files from output data. A selection of "utility programs" and occasional updates of program modules are available for downloading from the TOUGH2 homepage on the web, at http://www-esd.lbl.gov/TOUGH2/.

TMVOC includes a tight and visible "version control" system for meeting stringent demands on reliability and referenceability of code applications. Each program unit, when first called during a TMVOC simulation run, writes a brief (typically one line) message specifying its name, version number, date, and purpose. An example from subroutine MULTI is shown in Fig. 1.1. Version number and/or date are updated when significant modifications are made. This allows reference to user's notes for code changes, and maintains a referenceable record of code changes and applications. All version messages are optionally printed to OUTPUT at the end of a simulation run; for an example see Fig. 10.5.9.

```
SAVE ICALL
      DATA ICALL/0/
      ICALL=ICALL+1
      IF(ICALL.EQ.1) then
         WRITE(11,899)
                           1.0
                                     9 MAY
                                                  1991',6X,
c 899 FORMAT(/6X,'MULTI
                           1.01 7 MAY
c 899 FORMAT(/6X,'MULTI
                                                  1993',6X,
c 899 FORMAT(/6X,'MULTI
                                                  1994',6X,
                           1.01 S
                                    24 June
. . .
. . .
c 899 FORMAT(/6X,'MULTI
                                    8 October
                                                  1999',6X,
                           1.1
c 899 FORMAT(/6X,'MULTI
                           1.1
                                    15 November 2000',6X,
  899 FORMAT(/6X,'MULTI 1.1
899 FORMAT(/6X,'MULTI 1.1
                                    5 January
c 899 FORMAT(/6X,'MULTI
                                                  2001',6X,
                                    10 January
                                                  2001',6X,
     X'ASSEMBLE ALL ACCUMULATION AND FLOW TERMS'/
     x47X, 'includes capabilities for radiative heat transfer',
     x' and diffusion in all phases'/
     x50X, with local equilibrium phase partitioning between gas',
     x' and liquid'/
     x47X, 'allows block-by-block permeability modification'/
     x47X, 'permeability changes from precip. (EWASG) through',
     x' PAR(NLOC2S+3)'/
       x47X, 'TMVOC-compatible version'/)
```

Figure 1.1. Example of coding for internal version control.

This report provides a self-contained document for applications of TMVOC. It incorporates much of the material presented in the documentation for TOUGH2, Version 2.0 (Pruess et al., 1999), and includes a brief summary of process models and fluid property descriptions, a reference to code architecture and design, detailed instructions for preparing input data, and a series of sample problems. The mathematical model and complete instructions for preparing input data are provided in appendices.

2. Hardware Requirements and Code Installation

TMVOC was developed on an IBM RS/6000 workstation under a Unix-based operating system. The code has also been tested in a PC environment using a Compaq Deskpro equipped with a Pentium III processor under the Windows NT operating system. Coding complies with the ANSI X3.9-1978 (FORTRAN77) standard. Like other members of the TOUGH/MULKOM family of codes, TMVOC requires 64-bit arithmetic. It is available as a FORTRAN77 program that is intrinsically single precision, and may be used on 64-bit processors, or on 32-bit processors with compiler options for generating double-precision arithmetic. For example, on an IBM RS/6000 workstation with a 32-bit CPU compilation should be made with the option "-qautodbl=dblpad" to obtain 64-bit arithmetic; on Sun workstations the same effect is achieved by specifying the "-r8" compilation option.

The standard TMVOC FORTRAN77 source code consists of the files t2fm.f, T2, emvoc.f, t2cg22.f, meshm.f, t2f.f, t2solv.f, and ma28.f. Most of TMVOC uses standard T2V2 (TOUGH2, Version 2.0) program units. TMVOC-specific routines include the fluid property module emvoc.f, and a series of T2V2 routines, bundled into a file t2fm.f, that have been slightly modified to accommodate additional data needs and features of TMVOC. t2cg22.f is an updated version of the "front end" for the preconditioned conjugate gradient solvers, T2 is an INCLUDE file to be used with t2cg22.f, meshm.f performs mesh generation, t2f.f is the main body of T2V2 that performs time stepping and iterative solution of mass and energy balance equations, t2solv.f is a suite of conjugate gradient solvers, and ma28.f is a sparse direct solver. To illustrate the assembly of TMVOC, we list the compilation and linking commands that would be used on an IBM RISC/6000 workstation.

```
f77 -c -qautodbl=dblpad t2fm.f emvoc.f t2cg22.f meshm.f t2f.f t2solv.f ma28.f
f77 -o ztm t2fm.o emvoc.o t2cg22.o meshm.o t2f.o t2solv.o ma28.o
```

The "-qautodbl=dblpad" instruction is required to obtain 64-bit arithmetic on a 32-bit processor. Various levels of compilation optimization may be used but are not indicated in the command line given above. Execution of an input file rblm (second sample problem, see section 10) would be made with the command

```
ztm <rblm >rblm.out
```

where output is printed to file rblm.out.

The t2fm.f and emvoc.f modules include specialized versions of some of the same program units that appear in standard TOUGH2, creating a situation of "duplicate names" during the linking process. On many computers the linker will simply use the first program unit with a given name, and will ignore subsequent program units with the same name, perhaps issuing a warning message in the process. This is the desired outcome. The order of program modules in the linking instruction, above, is significant in that some of the subroutines in t2fm.f are supposed to supersede subroutines with the same name in t2cg22.f and t2f.f; some of the subroutines in emvoc.f should supersede earlier ones in t2f.f. On some computers the presence of duplicate names during linking will create a fatal error. The simplest way of remedying this problem is to change the names of the unwanted program units. For example, t2fm.f includes a modified version of subroutine MULTI; to avoid a conflict the name of MULTI in file t2f.f should be changed to MULTIX prior to compilation.

Memory requirements of TMVOC depend on the problem size, and can be estimated from

$$M = 0.08*(NEL+2*NCON)*NEQ*NEQ$$
(2.1)

where M is RAM in kilobytes, NEL is the number of grid blocks (elements), NCON is the number of connections between them, and NEQ is the number of equations (mass and heat balances) per grid block. Thus, a flow problem with up to 800 grid blocks, 2,400 connections, and 3 equations per grid block can be solved with 4 Megabytes of RAM, while simulation of a problem with 8,000 grid blocks, 24,000 connections, and 4 equations per grid block would require approximately 72 MB of RAM. Eq. (2.1) is approximate in that it does not account for size-independent storage requirements that need to be met even for small problems. The major problem-size dependent arrays can be easily re-dimensioned for different-size problems through the INCLUDE file T2 and through PARAMETER statements in the main program (see section 6.5).

3. Physical Processes and Assumptions

In the TMVOC formulation, the multiphase system is assumed to be composed of water, non-condensible gases (NCGs), and water-soluble volatile organic chemicals (VOCs). The number and nature of NCGs and VOCs can be specified by the user. There are no intrinsic limitations to the number of NCGs or VOCs in the TMVOC formulation; arrays for fluid components are currently dimensioned as 20, accommodating water plus 19 components that may be NCGs or VOCs. NCG arrays are dimensioned as 10. NCGs may be selected by the user from a data bank provided in TMVOC; currently available choices include O₂, N₂, CO₂, CH₄, ethane, ethylene, acetylene, and air (a pseudo-component treated with properties averaged from N₂ and O₂). In most TMVOC applications, just a single NCG, air, will be present. Thermophysical property data for VOCs must be provided by the user. The fluid components may partition (volatilize and/or dissolve) among gas, aqueous, and NAPL phases. Any combination of the three phases may be present, and phases may appear and disappear in the course of a simple half-life model.

Each phase flows in response to pressure and gravitational forces according to a multiphase extension of Darcy's law, which includes effects of relative permeability and capillary pressure between the phases. Transport of the mass components may also occur by molecular diffusion in all phases. Multiphase diffusion is treated in a fully-coupled manner that can cope with diffusion of phase-partitioning components under conditions of variable phase saturations. No Fickian model for hydrodynamic dispersion is implemented at the present time. In heterogeneous media dispersion is often caused by mass exchanges between pore regions with different fluid mobilities (Coats and Smith, 1964; Harvey and Gorelick, 2000), and such effects can be modeled with TMVOC using the method of "multiple interacting continua" (MINC; Pruess and Narasimhan, 1985).

It is assumed that the three phases are in local chemical and thermal equilibrium, and that no chemical reactions are taking place other than (a) interphase mass transfer, (b) adsorption of chemical components to the solid phase, and (c) decay of VOCs by biodegradation. Mechanisms of interphase mass transfer for the organic chemicals include evaporation and boiling, dissolution into the aqueous phase, condensation of organic chemicals from the gas phase into a NAPL, and equilibrium phase partitioning of organic chemicals between the gas, aqueous, and solid phases. Interphase mass transfer of the water component includes the effects of evaporation and boiling of the aqueous phase, condensation of water vapor from the gas phase, and water dissolution into the NAPL phase. The interphase mass transfer of the non-condensible gas components consists of equilibrium phase partitioning between the gas, aqueous, and NAPL phases.

Heat transfer occurs due to conduction and multiphase convection; heat flow associated with diffusive fluxes is neglected. The heat transfer effects of phase transitions between the NAPL, aqueous and gas phases are fully accounted for by considering the transport of both latent and sensible heat. However, heat of dissolution effects for NCG dissolution in NAPL and aqueous phases and for water in the NAPL are neglected, as are heat effects associated with adsorption/desorption of VOCs. The overall porous medium thermal conductivity is calculated as a function of total liquid saturation (water and NAPL).

The saturation pressure, density and internal energy of water are computed, within experimental accuracy, using the International Formulation Committee correlations (IFC, 1967) implemented in the TOUGH2 code. Dynamic viscosity of liquid water and steam is calculated using the correlation proposed by the International Association for the Properties of Steam (Mever et al., 1977). Thermophysical properties of the NAPL phase such as saturated vapor pressure and viscosity are calculated as functions of temperature and composition, while specific enthalpy and density are computed as function of temperature, composition, and pressure. Vapor pressure lowering effects due to capillary forces are not presently included in the simulator. Gas phase thermophysical properties such as specific enthalpy, viscosity, density, and component molecular diffusivities are considered to be functions of temperature, pressure, and gas phase composition. The solubility of the organic chemical in water may be specified as a function of temperature, and Henry's coefficient for dissolution of organic chemical vapors in the aqueous phase is calculated as a function of temperature. The Henry's coefficients for NCG dissolution in the aqueous phase are calculated as functions of temperature, whereas Henry's coefficients for NCG dissolution in NAPL have for simplicity been assumed to be constant. Water solubility in a generic NAPL is computed as a function of temperature.

The necessary NAPL/organic chemical and transport properties are computed by means of a very general thermodynamic formulation, which uses semi-empirical corresponding states methods in which chemical parameters are calculated as functions of the critical properties of the chemical such as the critical temperature and pressure. Because these data are available for hundreds of organic compounds (Reid et al., 1987), the NAPL/organic chemical equation of state is quite flexible in its application. The gas phase is treated as a mixture of "real" (not ideal) gases.

Porosity may change as a function of fluid pressure and temperature, using simple concepts of pore compressibility and expansivity. No stress calculations are made in TMVOC.

4. Fluid Properties

The fluid description in TMVOC includes arbitrary multiphase mixtures of $\kappa = 1, ..., NK$ mass components, including water ($\kappa = 1$), NCG non-condensible gases ($\kappa = 2, 3, ..., 1$ +NCG), and NHC user-selected VOCs ($\kappa = 1$ +NCG+1, 1+NCG+2, ..., 1+NCG+NHC = NK), which we often refer to as "hydrocarbons." The NK fluid components may be distributed in any combination of one, two, or three phases, namely, $\beta = 1$: gas, a multi-component mixture of NCGs, water vapor, and hydrocarbon vapors; $\beta = 2$: aqueous, which for convenience is often referred to as "water," and may include dissolved hydrocarbons and NCGs in addition to water substance; and $\beta = 3$: oil or NAPL phase, whose primary constituents are the NHC hydrocarbon components, but which may contain both dissolved water and NCGs.

Depending on thermodynamic conditions and relative abundance of the different components, the fluids may exist in seven different phase combinations, as shown in Fig. 4.1. Arrows denote routes for appearance or disappearance of phases that are checked after each update of thermodynamic conditions during the Newton-Raphson iteration process. We now proceed to a detailed discussion of the model and correlations used for compositions and thermophysical properties of the three phases. For the most part our presentation closely follows Adenekan (1992) and Adenekan et al. (1993).

Figure 4.1. Phase compositions and phase changes considered by TMVOC. The phase designations are: g - gas, w - water (aqueous), n - NAPL.

The individual fluid components partition among different phases in such a way that their chemical potentials are the same in all phases (Prausnitz et al., 1986).

$$\mu_g^{\kappa} = \mu_w^{\kappa} = \mu_n^{\kappa} \tag{4.1}$$

It is customary to write the chemical potential for the gas phase as

$$\mu_{g}^{\kappa} = \varphi_{g}^{\kappa} x_{g}^{\kappa} P_{g}$$
(4.2)

where φ_g^{κ} is the fugacity coefficient of component κ , x_g^{κ} is its mole fraction, and P_g is the total pressure of the gas phase. For the liquid phases (β = w-water, n-NAPL) we write

$$\mu_{\beta}^{\kappa} = \gamma_{\beta}^{\kappa} x_{\beta}^{\kappa} f_{\beta}^{\kappa,0}$$
(4.3)

where γ_{β}^{κ} is the activity coefficient of component κ , x_{β}^{κ} is its mole fraction, and $f_{\beta}^{\kappa,0}$ is the fugacity of component κ in phase β at some fixed condition known as the standard state (Prausnitz et al., 1986).

TMVOC assumes ideal mixtures, with all fugacity and activity coefficients equal to one. Partitioning of components among phases can then be written in terms of mole fraction ratios being equal to equilibrium constants, such as

$$\frac{x_{W}^{\kappa}}{x_{n}^{\kappa}} = K_{Wn}^{\kappa}; \quad \frac{x_{W}^{\kappa}}{x_{g}^{\kappa}} = K_{Wg}^{\kappa}; \quad \frac{x_{n}^{\kappa}}{x_{g}^{\kappa}} = K_{ng}^{\kappa}$$
(4.4)

Equilibrium constants for the condensible fluid components (VOCs, water) can be expressed in terms of solubilities and vapor pressures, see below.

Real gas and liquid hydrocarbon mixtures exhibit ideal behavior at moderate temperatures and pressures (< 15 bar) (McCain, 1990). The approach used by TMVOC is applicable, therefore, for the conditions normally encountered in environmental contamination problems in the unsaturated and saturated zones. It is not applicable when pressure and temperature conditions are far from ambient, as e.g. in conventional hydrocarbon reservoirs, where phase equilibria must be modeled through the use of experimentally determined distribution coefficients or through an equation of state for real gas and liquid hydrocarbon mixtures. The TMVOC approach has another limitation in that it cannot be used for organic chemicals whose critical temperature is lower than the maximum temperature reached during the simulation. In this case no vapor saturation pressure can be computed for the chemical and thus no equilibrium calculations are possible using the approach followed for a conventional VOC in TMVOC. Methane, in particular, has a critical temperature of - 82.6 °C, and ethane too has a low critical temperature of 32.35 °C. VOCs that are not condensible at prevailing temperature conditions can be treated as NCGs. Properties of the NAPL phase are assumed independent of the concentration of dissolved NCGs.

4.1 Gas Phase

Composition

At ambient conditions, the main constituent of the gas phase will be air. TMVOC can represent air as a single pseudo-component, or as a mixture of N2 and O2. Other non-condensible gases may also be included, see data block NCGAS in Appendix E. In addition, VOC vapors will be present in concentrations that depend upon VOC concentrations in the aqueous phase (or the NAPL phase, if it exists), and upon the VOC vapor pressures which depend strongly on temperature. Water vapor may be present at partial pressures up to saturated values for the given temperature. Vapor pressure lowering from capillary effects is neglected, so that in the presence of an aqueous phase, vapor partial pressure will always be equal to saturated vapor pressure. At elevated temperatures, gas phase composition may be dominated by water and/or VOC vapors. Assuming that gas phase fugacity coefficients and liquid phase activity coefficients are equal to one, we have from Eqs. (4.1) - (4.3)

$$\mathbf{x}_{g}^{\kappa} \mathbf{P}_{g} = \mathbf{x}_{\beta}^{\kappa} \mathbf{f}_{\beta}^{\kappa,0} \tag{4.1.1}$$

so that the partial pressures $P_g^{\kappa} = x_g^{\kappa} P_g$ of gas phase components are proportional to their mole fractions. When an aqueous phase is present, VOC concentrations in the gas phase are related to dissolved concentrations in the aqueous phase as follows. Applying Eq. (4.1.1) to a three-phase system with a pure VOC component, we obtain

$$P_{\text{vap}}^{\kappa} = x_{\text{w}}^{\kappa,\text{sol}} f_{\text{w}}^{\kappa,0}$$

$$(4.1.2)$$

which expresses the standard-state fugacity of VOC component κ in the aqueous phase in terms of its saturated vapor pressure P_{vap}^{κ} and aqueous solubility $x_w^{\kappa,sol}$. Introducing this into Eq. (4.1.1) we obtain

$$x_{g}^{\kappa} P_{g} = x_{w}^{\kappa} \left(P_{vap}^{\kappa} / x_{w}^{\kappa, sol} \right)$$
(4.1.3)

This is a statement of Henry's law, with Henry's coefficient given by $P_{vap}^{\kappa}/x_w^{\kappa,sol}$. For a singlecomponent NAPL phase in equilibrium with a gas phase, we have $P_{vap}^{\kappa} = f_n^{\kappa,0}$, so that Eq. (4.1.1) leads to

$$x_g^{\kappa} P_g = x_n^{\kappa} P_{vap}^{\kappa}$$
(4.1.4)

This is a statement of Raoult's law, according to which the vapor pressure of a component κ in a multicomponent liquid is proportional to its mole fraction in the liquid.

Thermophysical properties

PVT properties of the gas phase are usually described with the Soave-Redlich-Kwong (SRK) equation of state (Redlich and Kwong, 1949; Soave, 1972). This is a cubic equation which is commonly used for petroleum reservoir fluids and other nonpolar organic substances. For a pure component the SRK equation may be written in the form

$$Z^{3} - Z^{2} + \left(A^{*} - B^{*} - (B^{*})^{2}\right)Z - A^{*}B^{*} = 0$$
(4.1.5)

where the largest root Z is the real gas compressibility factor, and $A^* = aP/R^2T^2$ and $B^* = bP/RT$ are parameters that depend on pressure P and absolute temperature T, with R the universal gas constant. The molar density of the gas phase is given by

$$\rho_{\rm g} = P/(RTZ) \tag{4.1.6}$$

Parameters a and b are given by Reid et al. (1987) in terms of critical pressure P_c and critical temperature T_c as

$$a = \frac{0.42748 R^2 T_c^2}{P_c} \left[1 + \left(0.48 + 1.574 \omega - 0.176 \omega^2 \right) \left(1 - \left[T/T_c \right]^{1/2} \right) \right]^2$$
(4.1.7)

$$b = \frac{0.08664 \,\mathrm{RT_c}}{\mathrm{P_c}} \tag{4.1.8}$$

Here ω is Pitzer's acentric factor. The multicomponent versions of these parameters are written in terms of parameters a_{κ} , b_{κ} and gas phase mole fractions x_g^{κ} of the individual components κ using the mixing rules recommended by Reid et al. (1987).

$$a_{\rm m} = \left(\sum_{\kappa} x_g^{\kappa} (a_{\kappa})^{1/2}\right)^2 \tag{4.1.9}$$

$$b_{\rm m} = \sum_{\kappa} x_{\rm g}^{\kappa} b_{\kappa} \tag{4.1.10}$$

In Eqs. (4.1.9) and (4.1.10) all binary interaction parameters have been neglected. Optionally a version of the SRK equation with modified coefficients or the Peng-Robinson (PR) equation (Peng and Robinson, 1976) may be used. The latter is written

$$Z^{3} - (1 - B^{*})Z^{2} + (A^{*} - 2B^{*} - 3(B^{*})^{2})Z - (A^{*}B^{*} - (B^{*})^{2} - (B^{*})^{3}) = 0 \quad (4.1.11)$$

Gas phase specific enthalpy per mole is calculated relative to a reference temperature T^R as

$$h_{g} = \left(h(P - P_{H_{2}O}, T) - h^{0}(T) + \int_{T}^{T} C_{p}^{0} dT\right) \sum_{\kappa \neq H_{2}O} x_{g}^{\kappa} + x_{g}^{H_{2}O} h_{g}^{H_{2}O} \quad (4.1.12)$$

 T^{R} is arbitrary as long as it is used consistently and is here taken to be 0 °C. The integral represents the ideal gas enthalpy at temperature T, and $h(P-P_{H_2O},T) - h^0(T)$ is the real gas departure enthalpy, excluding water vapor with a partial pressure of P_{H_2O} . Based on the SRK equation the departure enthalpy is

$$h(P - P_{H_2O}, T) - h^0(T) = \left(\frac{a_m}{b_m} - \frac{T}{b_m}\frac{\partial a_m}{\partial T}\right) ln\left[\frac{Z}{Z + B_m^*}\right] + RT(Z - 1) \quad (4.1.13)$$

where water component (vapor) is excluded from a_m and b_m . The special treatment for water vapor in Eqs. (4.1.12) and (4.1.13) outside of the framework of the SRK equation was adopted because numerical tests showed that the SRK EOS gave a poor approximation to vapor enthalpy. For the PR equation the departure enthalpy becomes

$$h(P - P_{H_2O}, T) - h^0(T) = \frac{\left(\frac{a_m}{b_m} - \frac{T}{b_m} \frac{\partial a_m}{\partial T}\right)}{2.82284} \ln\left[\frac{Z - 0.4142B^*}{Z + 2.4142B_m^*}\right] + RT(Z - 1) \quad (4.1.14)$$

The ideal gas heat capacity for a pure gas component κ at constant pressure is estimated using the method of Joback (Reid et al., 1987)

$$C_p^{\kappa} = a_{\kappa} + b_{\kappa} T + c_{\kappa} T^2 + d_{\kappa} T^3$$
 (4.1.15)

The parameters a_{κ} , b_{κ} , c_{κ} , and d_{κ} are experimentally determined constants whose values have been tabulated by Reid et al. (1987) for over 500 organic compounds. The molar heat capacity of the multicomponent mixture is obtained as a mole fraction-weighted average of the individual C_p^{κ} .

Gas phase viscosity μ_g is obtained in terms of pure component viscosities μ_K as a function of pressure, temperature and composition using the method of Wilke (1950), which is a simplification of the Chapman-Enskog kinetic theory.

$$\mu_{g} = \sum_{\kappa=1}^{N} \frac{x_{g}^{\kappa} \mu_{\kappa}}{\sum_{\lambda=1}^{N} x_{g}^{\lambda} \Phi_{\kappa\lambda}}$$
(4.1.16)

The $\Phi_{\kappa\lambda}$ are binary interaction parameters given by

$$\Phi_{\kappa\lambda} = \frac{\left[1 + (\mu_{\kappa}/\mu_{\lambda})^{1/2} (M_{\lambda}/M_{\kappa})^{1/4}\right]^2}{\left[8(1 + M_{\kappa}/M_{\lambda})\right]^{1/2}}$$
(4.1.17)

with M_{κ} the molecular weight of component κ . Viscosities of the individual gas phase components are calculated as follows. Viscosities of non-condensible gases are obtained as functions of temperature in polynomial form after Irvine and Liley (1984)

$$\mu = \sum B_i T^i \tag{4.1.18}$$

VOC viscosities are computed using a corresponding states method (Reid et al., 1987). Viscosity of water and water vapor is obtained from the IAPS formulation (IAPS, 1975).

4.2 Aqueous (Water) Phase

Composition

The dominant constituent of the aqueous phase is water. VOCs may be present in concentrations that depend on temperature-dependent solubilities, and on VOC concentrations in gas or oil phases, if present. The equations for phase partitioning of VOCs in the presence of a gas phase were already given in section 4.1. If no gas phase is present, partitioning between water and NAPL phases is determined from Eqs. (4.1) and (4.3). Setting activity coefficients equal to one, we have

$$\mathbf{x}_{\mathrm{W}}^{\kappa} = \mathbf{x}_{\mathrm{n}}^{\kappa} \mathbf{f}_{\mathrm{n}}^{\kappa,0} / \mathbf{f}_{\mathrm{W}}^{\kappa,0}$$
(4.2.1)

Applying this relation to a single-component NAPL, it is seen that

$$f_{n}^{\kappa,0}/f_{w}^{\kappa,0} = x_{w}^{\kappa,\text{sol}} = K_{wn}^{\kappa}$$
 (4.2.2)

where $x_w^{\kappa,sol}$ is aqueous phase solubility. NCG dissolution in the aqueous phase is described by Henry's law

$$P_{NCG} = K_H x_w^{NCG}$$
(4.2.3)

 K_H is Henry's coefficient for NCG dissolution in water. For O₂, N₂, CO₂, CH₄, and air, K_H is computed from a polynomial fit to experimental data as a function of temperature (Battistelli et al., 1997). Constant values appropriate for near-ambient temperatures are used for ethane, ethylene, and acetylene. The user may also optionally choose a constant value $K_H = 10^{10}$ Pa for air, as used in T2VOC (Falta et al., 1995).

Thermophysical properties

Density and specific enthalpy of pure water are given, within experimental accuracy, by the steam table equations issued by the International Formulation Committee (IFC, 1967). Viscosity of pure water is calculated from a formulation due to the International Association for the Properties of Steam (IAPS) given in the ASME steam tables (Meyer et al., 1977).

The solubility of VOCs in the aqueous phase is usually small, typically of the order of a few hundred ppm. It may appear, then, that the presence of such a small amount of VOC in the aqueous phase would have negligible impact on the aqueous phase density, and that sufficient accuracy would be attained by taking the aqueous phase density equal to that of pure water, regardless of how much VOC may be dissolved. A closer examination of the issue reveals, however, that neglecting the impact of dissolved VOC on the aqueous phase density may result in unacceptably large spurious pressure excursions. Consider the dissolution of TCE with a density of 1462 kg/m³ at ambient conditions in water with an ambient density of 998 kg/m³. If TCE were permitted to dissolve in the aqueous phase without any density change of the latter, then the dissolution process would be accompanied by an increase in total fluid volume. If fluid volume were held constant an increase in fluid pressure would result which can be estimated as follows. At the solubility limit a mass fraction of approximately 10^{-3} of TCE is present in the aqueous phase. Dissolving this amount of NAPL in an aqueous phase of constant density, at constant pressure, would cause a relative increase in the volume of the water-NAPL two-phase mixture of $\Delta V/V \approx 0.068$ %. If fluid volume were held constant, a pressure increase of $\Delta P = (\Delta V/V)/c_w \approx 1.36 \times 10^6$ Pa would result. The reason for this surprisingly large increase is in the small compressibility of liquid water, $c_w \approx 5 \times 10^{-10}$ Pa⁻¹ at ambient conditions. These estimates were confirmed by means of numerical dissolution experiments.

Accordingly, a better density model was implemented for the aqueous phase that avoids these problems (Falta et al., 1995). The basic assumption we make is that, when NAPL dissolves in water, both total fluid mass and total fluid volume are conserved. Denoting water and NAPL phase volumes by V_w and V_n , respectively, the volume of the aqueous phase after NAPL dissolution is given by

$$V_{aq} = V_w + V_n \tag{4.2.4}$$

Similarly, the total number of moles present in the aqueous phase is

$$m_{aq} = m^w + m^n \tag{4.2.5}$$

Dividing Eq. (4.2.4) by (4.2.5) and inserting the mole fractions $x^w = m^w/m_{aq}$ of water and $x^n = m^n/m_{aq}$ of dissolved VOC, we obtain for the molar density of the aqueous phase $\rho_{aq} = m_{aq}/V_{aq}$.

$$\frac{1}{\rho_{aq}} = \frac{V_{aq}}{m_{aq}} = \frac{x^{w}}{\rho_{w}} + \frac{x^{n}}{\rho_{n}}$$
(4.2.6)

In the TMVOC implementation x^w is replaced by $(1 - x^n)$. Effects on aqueous phase enthalpy and viscosity from dissolution of VOCs and NCGs are neglected.

4.3 Oil (NAPL) Phase

Composition

This phase consists primarily of condensed VOCs, with usually small admixtures of dissolved water and NCGs.

The solubility of water in VOCs is generally small. Dependence on composition of the NAPL phase is neglected, and temperature dependence is given by a regression formula on water solubility data for generic NAPLs (Hoot et al., 1957).

$$x_n^w = 0.281226 - 4.23610v + 1.75244v^2$$
(4.3.1)

where $v = \log 10(1.8T_{C} + 32)$, with T_C the temperature in degrees Celsius. NCG dissolution in the NAPL phase is described with Henry's law, cf. Eq. (4.2.3); the same values of Henry's coefficient as for water is used for anorganic NCGs.

Thermophysical properties

For calculating density the oil phase is assumed to be an ideal mixture of the VOC components; effects of the small solubilities of water and NCG on NAPL density are neglected. Thus molar volume v_n of the NAPL phase is given as a sum of the partial molar volumes v_{κ} of the VOC components.

$$v_n = \sum_{\kappa \neq \text{water}, \text{NCG}} x_n^{\kappa} v_{\kappa}$$
(4.3.2)

Molar volumes of individual components are calculated as a function of temperature from the Rackett equation (Reid et al., 1987)

$$v_{\kappa} = v_{\kappa}^{R} (0.29056 - 0.08775\omega_{\kappa})^{\varphi_{\kappa}}$$
 (4.3.3)

where v_{κ}^{R} is molar volume of component κ at reference temperature T^{R} , ω_{κ} is the acentric factor, and the exponent is given by

$$\varphi_{\kappa} = (1 - T/T_{c\kappa})^{2/7} - (1 - T^R/T_{c\kappa})^{2/7}$$
 (4.3.4)

with $T_{c\kappa}$ the critical temperature of component $\kappa.$ A simple pressure dependence of NAPL density is accounted for according to

$$\rho_{\rm n} = \frac{\exp(c_{\rm n} \left[P - P_{\rm ref} \right])}{v_{\rm n}}$$
(4.3.5)

where $c_n = 2x10^{-9} Pa^{-1}$ is the isothermal compressibility of a generic NAPL, and $P_{ref} = 1.01325x10^5 Pa$ is a reference pressure.

The specific molar enthalpy of a pure liquid VOC component κ is calculated by means of the following decomposition

$$h_{\kappa}^{L}(T,P) = h_{\kappa}^{L,R} + (h_{\kappa} - h_{\kappa}^{L}) + (h_{\kappa}^{L} - h_{\kappa}^{V}) + (h_{\kappa}^{V} - h_{0}) + (h_{0} - h_{0}^{R}) + (h_{0}^{R} - h_{\kappa}^{V,R}) + (h_{\kappa}^{V,R} - h_{\kappa}^{L,R})$$

$$(4.3.6)$$

Here $h_{\kappa}^{L,R}$ is liquid enthalpy at a reference temperature T^R and corresponding saturated vapor pressure $P_{sat}(T^R)$, h_{κ}^L and h_{κ}^V are, respectively, the enthalpy of saturated liquid and vapor at conditions of (T, $P_{sat}(T)$), h_0 is the ideal gas enthalpy at temperature T, h_0^R is the ideal gas enthalpy at temperature T^R , and $h_{\kappa}^{V,R}$ is the enthalpy of saturated vapor at reference conditions of (T^R, $P_{sat}(T^R)$). The individual components of NAPL phase enthalpy are evaluated as follows. $h_{\kappa} - h_{\kappa}^L$ represents the effect of pressure on enthalpy which for a liquid phase is small and is neglected in TMVOC. $h_{\kappa}^L - h_{\kappa}^V$ and $h_{\kappa}^{V,R} - h_{\kappa}^{L,R}$ are enthalpies of vaporization and are calculated as follows. For a pure liquid the enthalpy of vaporization at the normal boiling point is computed by the Chen method (Reid et al., 1987)

$$\Delta h_{vb} = R T_c T_{br} \frac{3.978 T_{br} - 3.958 + 1.555 \ln P_c}{1.07 - T_{br}}$$
(4.3.7)

where $T_{br} = T_b/T_c$, with T_c the critical temperature. Enthalpy of vaporization at the temperature of interest is then obtained from the Watson correlation (Reid et al., 1987)

$$\Delta h_{v} = \Delta h_{vb} \left(\frac{1 - T_{r}}{1 - T_{br}} \right)^{0.375}$$

$$(4.3.8)$$

Here, $T_r = T/T_c$ is the reduced temperature. $h_0 - h_0^R$ is the difference between ideal gas enthalpies at temperatures T and T^R and is calculated as $\int_{T^R}^{T} C_p^0 dT$. The terms $h_{\kappa}^V - h_0$ and $h_0^R - h_{\kappa}^{V,R}$ are

gas phase departure enthalpies which are calculated in analogy to Eq. (4.1.12). The specific molar enthalpy of the NAPL phase is then obtained from those of the pure components as

$$h_n = \sum_{\kappa} x_n^{\kappa} \left(h_{\kappa}^{L} - h_{\kappa}^{L,R} \right)$$
(4.3.9)

where the summation is over all VOC components. Heat of mixing effects are neglected in Eq. (4.3.9), as are effects of dissolved NCG or water.

Saturated vapor pressures of pure VOC components are calculated from the Wagner equation (Reid et al., 1987)

$$P_{vap} = P_{c} \exp\left\{\left[a(1-T_{r}) + b(1-T_{r})^{1.5} + c(1-T_{r})^{3} + d(1-T_{r})^{6}\right]/T_{r}\right\}$$
(4.3.10)

Values of the constants a, b, c, d for several VOCs are given in Appendix A of Reid et al. (1987). When these parameters are not available, vapor pressure will be calculated from the less accurate Antoine correlation

$$\ln P_{vap} = A - \frac{B}{T+C}$$
(4.3.11)

where A, B, and C are empirical constants that have been tabulated by Reid et al. (1987) for over 500 compounds.

Viscosity of a pure VOC component is calculated as a function of temperature from an equation due to Yaws et al. (1976)

$$\ln \mu = A' - \frac{B'}{T} + C'T + D'T^2$$
(4.3.12)

A simpler correlation with C' = D' = 0 was used by van Velzen et al. (1972). Values of the constants can be found in chapter 9 of Reid et al. (1987). The mixture viscosity of the NAPL phase is obtained in terms of the pure component viscosities as

$$\mu_n = \prod_{\kappa} \mu_{\kappa} x_n^{\kappa}$$
(4.3.13)

This is one of many approximations proposed in the literature for correlating mixture viscosities. Pressure dependence of VOC viscosity is neglected.

4.4 Adsorption of VOCs

Adsorption of VOCs on the solid grains is modeled as reversible instantaneous linear sorption. The mass of VOC component κ adsorbed per unit reservoir volume is written as (Eq. A.3)

$$\mathbf{M}_{\mathrm{ads}}^{\kappa} = (1 - \phi) \rho_{\mathrm{R}} \rho_{\mathrm{w}} \mathbf{x}_{\mathrm{w}}^{\kappa} \mathbf{K}_{\mathrm{d}}$$
(4.4.1)

where ϕ is porosity, ρ_R is the density of the rock grains, ρ_w is the density of the aqueous phase, x_w^{κ} is the mole fraction of VOC component κ in the aqueous phase, and K_d is the aqueous phase distribution coefficient (de Marsily, 1986, p. 256). The use of (4.4.1) assumes that some liquid water is present in the system, and that the medium is preferentially wetted by the aqueous phase. In very dry systems, the use of Eq. (4.4.1) to describe vapor adsorption may lead to some error. It has been found that the degree of adsorption of organic chemicals depends largely on the amount of organic carbon present in the soil. Accordingly, K_d is often written as

$$K_d = K_{oc} f_{oc}$$
(4.4.2)

where K_{oc} is the organic carbon partition coefficient, and f_{oc} is the organic carbon fraction in the medium (Karickhoff et al., 1979; Schwarzenbach and Westall, 1981).

4.5 Biodegradation

TMVOC includes a simple approximate representation of biodegradation of VOCs. It is assumed that VOCs dissolved in the aqueous phase may decay according to the standard exponential decay law

$$dM_{W}^{\kappa} = -\lambda_{\kappa} M_{W}^{\kappa} dt \qquad (4.5.1),$$

where $M_w^{\kappa} = \phi S_w \rho_w x_w^{\kappa}$ is the mass of VOC component κ in the aqueous phase per unit reservoir volume, and the rate constant λ_{κ} is related to the half-life $T_{\kappa,1/2}$ as $\lambda_{\kappa} = \ln 2/T_{\kappa,1/2}$. This decay process is represented by incorporating a sink term (q^{\kappa} < 0) into Eq. (A.1).

$$q^{\kappa} = -\lambda_{\kappa} M_{W}^{\kappa} \tag{4.5.2}$$

5. Implementation in TMVOC

5.1 Scope and Methodology

TMVOC solves mass and energy balance equations that describe fluid and heat flow in general multiphase, multicomponent systems (Appendix A). For numerical simulation the continuous space and time variables must be discretized (see Appendix B). In all members of the TOUGH2 family of codes, space discretization is made directly from the integral form of the basic conservation equations, without converting them into partial differential equations. This "integral finite difference" method (IFDM; Edwards, 1972; Narasimhan and Witherspoon, 1976) avoids any reference to a global system of coordinates, and thus offers the advantage of being applicable to regular or irregular discretizations in one, two, and three dimensions. The IFDM also makes it possible, by means of simple preprocessing of geometric data, to implement double- and multipleporosity methods for fractured media (see Appendix C; Pruess and Narasimhan, 1982, 1985; Pruess, 1983a). No particular price needs to be paid for this flexibility; indeed, for systems of regular grid blocks referred to a global coordinate system the IFDM is completely equivalent to conventional finite differences. Time is discretized fully implicitly as a first-order backward finite difference. This together with 100 % upstream weighting of flux terms at interfaces is necessary to avoid impractical time step limitations in flow problems involving phase (dis-)appearances, and to achieve unconditional stability (Peaceman, 1977).

The discretization results in a set of strongly coupled nonlinear algebraic equations (Appendix B), with the time-dependent primary thermodynamic variables of all grid blocks as unknowns. These equations are cast in residual form, i.e., {residual} \equiv {left-hand side} - {right-hand side} = 0, and are solved simultaneously, using Newton-Raphson iteration. Time steps can be automatically adjusted (increased or reduced) during a simulation run, depending on the convergence rate of the iteration process. Automatic time step adjustment is essential for an efficient solution of multiphase flow problems, where intrinsic time scales for significant changes in the flow system may vary by many orders of magnitude during a simulation run. Different methods are available to solve the linear equations arising at each iteration step, including preconditioned conjugate gradient solvers, as well as sparse direct matrix methods (see section 7.6). While direct methods are more predictable and less problem-dependent in their performance, it is only through the application of iterative conjugate gradient methods that solutions for large grid systems (10,000 blocks or more) and three-dimensional problems can be accomplished (Moridis and Pruess, 1998).

The accuracy of TMVOC has been tested against analytical solutions and by comparison with numerical results obtained from T2VOC as well as other TOUGH2 modules. TOUGH2

simulations have been compared with many different analytical and numerical solutions, with results from laboratory experiments, and with field observations (see e.g., Moridis and Pruess, 1992; Pruess et al., 1996). However, users are cautioned that there is no finite process by which all program bugs that may be present can be identified and corrected. Many different options can be selected in different program units. It is not practically possible to exhaustively cross-check the mutual compatibility and proper performance of all options. Fixing a bug may cause unanticipated problems elsewhere. Continuing vigilance and application testing are needed.

5.2 Program Structure and Execution

The governing equations for multiphase fluid and heat flow (see Appendix A) have the same mathematical form, regardless of the nature and number of fluid phases and components present. TMVOC uses the modular TOUGH2 architecture (see Fig. 5.2.1), in which the main flow and transport module interfaces with the fluid property module by means of two large arrays.

Figure 5.2.1. Modular architecture of TMVOC.

These hold, respectively, the primary thermodynamic variables for all grid blocks, and all other (secondary) thermophysical parameters needed to assemble the governing flow and transport equations (see section 6.2). These arrays are one-dimensional and hold data for all grid blocks of the computational mesh in sequential fashion. The solution of a flow problem essentially consists

of a complete set of thermodynamic variables as a function of time. In TMVOC, all arrays holding spatially distributed information take the form of labeled COMMON blocks, one per array. This provides flexibility and convenience for adjusting array dimensions to different-size problems.

The subroutines contained in the TMVOC package can be grouped according to their functions as summarized in Table 1. The initialization of a simulation run is accomplished by the subroutines INPUT and RFILE in a flexible manner.

subroutine(s)	function
TOUGH2 (main program)	executive routine; define problem-size dependent arrays, generate internal documentation
INPUT, RFILE (and satellite routines, including MESHMaker)	problem initialization
CYCIT	executive routine for time stepping
EOS (and satellites)	thermophysical properties and phase diagnostics
MULTI (and satellites)	assembly of mass and energy balance equations
QU (and satellites)	sink and source terms
LINEQ (and satellites)	solution of linear equations, provisional updating of thermodynamic variables
CONVER	conclusion of converged time steps, updating of thermodynamic variables and iteration counters
WRIFI, OUT, BALLA	output of results

Table 1. TMVOC program structure

Most of the necessary data are supplied from disk files, which can be either directly provided by the user, or can be generated internally from data provided in the INPUT file. The initialization stage also can generate a variety of computational grids, or meshes. The iteration sequence for time stepping is controlled by CYCIT. On the first time step, all thermophysical properties are initialized in subroutine EOS (with a large number of satellite routines for PVT calculations), and time step counter KCYC, iteration counter ITER, and convergence flag KON are defined. The iteration counter is incremented, and the accumulation and flow terms for all equations are assembled in subroutine MULTI. If sinks or sources are present MULTI calls subroutine QU, which in turn can call a series of satellite routines to perform functions such as calculating phase compositions of produced fluids, and interpolating time-dependent data from tables. MULTI then computes the

residuals for all of the mass and energy balance equations, identifies the element index (NER) and equation index (KER) for the largest residual, and checks for convergence. If convergence is achieved the flag KON is set to 2, and CONVER is called to update the primary variables. Otherwise control shifts to LINEQ, which functions as executive routine for the linear equation solution, and can call a variety of user-selectable linear equation solvers. Informative messages during the linear equation solution process are written onto a disk file called LINEQ. Printed output subject to different user controls can be generated with subroutines OUT and BALLA. Depending on the value of the convergence flag KON, the program will proceed to the next iteration (KON = 1), or to the next time step (KON = 2). If anything goes wrong - failure in computing thermophysical parameters, failure in solving the linear equations, failure to converge within a given maximum number of iterations - the time step will be repeated with a reduced time increment Δt .

Execution will continue until one of several termination criteria is reached, such as a userspecified total number of time steps, or a specified simulation time. In some cases a simulation may proceed with convergence achieved on the first iteration (ITER = 1). This can occur when time steps are chosen so small, or conditions are so close to steady state, that the convergence tolerances are satisfied without requiring any updating of thermodynamic variables. TMVOC has coding to recognize such a condition. If convergence on ITER = 1 occurs for 10 consecutive time steps, this will be taken to indicate attainment of steady state, the current conditions will be written out, and execution will terminate.

Another termination criterion is monitored when automatic time step control is in effect. In this case execution will be stopped when convergence failure is encountered following two time steps for which convergence on ITER = 1 was achieved. The rationale for this is as follows. As conditions approach steady state, the rates of change in thermodynamic variables become small, and time steps will grow to very large values when automatic time step control is in effect. The off-diagonal elements in the Jacobian matrix are proportional to time step size, and may become so large that convergence of the linear equation system may no longer be achieved because of numerical roundoff. Thus we may have a situation where for a somewhat reduced time step convergence is achieved without requiring a linear equation solution (ITER = 1), while no convergence at all can be obtained when a linear equation solution is required. The aforementioned stopping criterion was designed to prevent such "no progress" calculations to go on and on for a potentially large number of user-specified time steps.

A general overview of TMVOC input data is presented in section 7; Appendices E and F provide a full reference to TMVOC input formats.

6. TMVOC Array Structure

6.1 Primary Thermodynamic Variables

TMVOC implements the assumption that locally all phases are in thermodynamic equilibrium. Let us now consider the number of primary thermodynamic variables that are needed to completely specify the thermodynamic state of a flow system consisting of NK components, which are distributed according to local thermodynamic equilibrium among NPH phases. From Gibbs' phase rule it follows that the number of thermodynamic degrees of freedom in such a system is

$$\mathbf{f} = \mathbf{N}\mathbf{K} + 2 - \mathbf{N}\mathbf{P}\mathbf{H} \tag{6.1.1}$$

In addition there are (NPH – 1) saturation degrees of freedom, because the NPH phase saturations (or phase volume fractions) S_{β} are constrained by the relationship

$$\sum_{\beta=1}^{\text{NPH}} S_{\beta} = 1 \tag{6.1.2}$$

The total number of primary thermodynamic variables (degrees of freedom) is therefore

$$NK1 = f + NPH - 1$$

= NK + 1 (6.1.3)

which is equal to the total number of balance equations per grid block, namely, NK mass balance and one energy balance equation. The thermodynamic state of a discretized flow system consisting of NEL volume elements, or grid blocks, is then completely specified by a set of NEL*NK1 primary thermodynamic variables, to which correspond an equal number of mass and energy balance equations. For transient flow systems, these primary variables are time-dependent, and they represent the unknowns to be calculated in each time step. While the number of balance equations per grid block is usually NEQ = NK+1, TMVOC can also operate in an isothermal mode where no energy balance is solved, so that then NEQ = NK.

An important consideration in the modeling of fluid and heat flow processes with phase change is the choice of the primary variables that define the thermodynamic state of the system. When a phase appears or disappears, the set of appropriate thermodynamic variables may change. For example, in single-component flows involving just water, natural thermodynamic variables for describing single-phase conditions (subcooled liquid or superheated steam) are temperature T and pressure P. However, in two-phase conditions pressure and temperature are not independent, but are related by the vapor-pressure relationship $P = P_{sat}(T)$. Two-phase conditions may be described using either (T, S) (S = saturation) or (P, S) as primary variables, requiring a "switching" of primary variables during phase change. Experience has proven variable-switching to be a very robust method for treating multiphase systems, and this is the approach used in TMVOC. In addition to temperature, pressure, and saturation, mole fractions x_{β}^{κ} of mass components $\kappa = 1, ...,$ NK in phases $\beta = g$, w, n are used as primary variables. Mass components are labeled in the following order: water comes first, followed by the NCG (≥ 1) non-condensible gases, and the NHC VOCs come last, see Table 2.

index	component
1	water
2	NCG #1
1+NCG	NCG #NCG
2+NCG	VOC #1
NK = NHC+1+NCG	VOC # NHC

Table 2. Labeling of mass components.

Fluid components are identified in TMVOC by their index numbers as shown in Table 2. This numbering is used in the assignment of source specifications. For example, injection of mass component #n is accomplished by specifying a generation type 'COMn', see below. The specification of primary thermodynamic variables as shown in Table 3 is different from the ordering of mass components. The first primary variable is always pressure. In single-phase conditions (Index = 1, 2, 3) this is the pressure of the single fluid phase present. When a gas phase is present (Index = 1, 4, 5, 7) the pressure is gas phase pressure. For two-phase water-NAPL conditions (Index = 6), P is the pressure of the NAPL phase. Pressures of other fluid phases may differ by a capillary pressure that is a function of saturation (Appendix H). The primary variables following pressure refer to VOC mole fractions in different phases, except that in three-phase conditions mole fraction of the first VOC is not a primary variable; instead gas saturation is used as primary variable and occupies the slot that for other phase combinations holds the mole fraction of
the first VOC. Following the VOC mole fractions are mole fractions of the non-condensible gases. However, when more than one phase is present, mole fraction of the last NCG is not a primary variable and a phase saturation appears in that slot instead. The last primary variable is always temperature, which must be specified even when an isothermal calculation is desired.

				Primary Variables					
			\Leftarrow	$\Leftarrow \leftarrow V$	VOCs ⇐	\Rightarrow NC	Gs⇒≓	$\Rightarrow \Rightarrow \Rightarrow$	
Phase Conditions	Phase Index		VOC #1		VOC #NHC	NCG #1		NCG #NCG	
		1	2		NHC + 1	NHC + 2		NK	NK+1
gas only	1	Р	x _g ^{2+NCG}		x _g ^{NK}	x _g ²		x ^{1+NCG}	Т
water only	2	Р	x_w^{2+NCG}		x _w ^{NK}	x _w ²		x _w ^{1+NCG}	Т
NAPL only	3	Р	x_n^{2+NCG}		x _n ^{NK}	x _n ²		x _n ^{1+NCG}	Т
gas and water	4	Р	x _g ^{2+NCG}		x _g ^{NK}	x _g ²		S_{W}	Т
gas and NAPL	5	Р	x _g ^{2+NCG}		x _g ^{NK}	x _g ²		S _n	Т
water and NAPL	6	Р	x_n^{2+NCG}		x _n ^{NK}	x _n ²		Sw	Т
three phase	7	Р	Sg		xg ^{NK}	x _g ²		Sw	Т

Table 3. Primary thermodynamic variables used by TMVOC.

6.2 Change of Phase Composition

Here we elaborate on the techniques used to handle the appearance and disappearance of fluid phases in the course of a simulation. Our presentation closely follows Adenekan (1992) and Adenekan et al. (1993).

After each step of the Newton-Raphson iteration process the primary thermodynamic variables are updated, and fluid phase compositions are checked, separately for each grid block, for consistency against the new values of the primary variables. If it is found that a fluid phase either appears or disappears, the phase index and the primary thermodynamic variables are changed according to Table 3. Disappearance of a phase is easier to recognize than appearance. For example, consider a grid block that was in two-phase gas-water conditions prior to the latest Newtonian iteration. Then water saturation S_w is among its primary variables, and disappearance of the aqueous phase would be easily recognized when the latest updated $S_w < 0$. Similarly, the gas phase would disappear if $S_w > 1$.

Checking for the possible appearance of a phase involves a thermodynamic criterion. In the case of two-phase gas-water conditions, the possibility of a NAPL phase appearing is tested by evaluating the mole fractions that the different VOC components would have in a NAPL phase. Phase partitioning calculations as discussed in section 4 are performed to derive the x_n^{κ} corresponding to latest iterated values of the primary x_g^{κ} variables. In order for a NAPL-phase to exist the sum of these mole fractions must exceed 1, i.e.

$$\sum_{\kappa} x_n^{\kappa} > 1 \tag{6.2.1}$$

is the criterion that must be satisfied if a NAPL phase is to evolve. Practically it is found that simulator performance is more robust when a "finite window" is used for phase appearance. That is to say, a transition to three-phase g-w-n conditions is made only when $\sum_{\kappa} x_n^{\kappa}$ exceeds 1 by a finite amount, which we take to be of order 10⁻³.

After the phase composition of a grid block changes, primary thermodynamic variables may have to be re-initialized to be consistent with the new phase composition. If a new phase appears, its saturation is initialized as a small $S = 10^{-6}$. Mole fractions may change dramatically during phase appearance; for example, when a NAPL phase evolves from VOCs that are either dissolved in the aqueous phase or volatilized in the gas phase, mole fractions of different VOCs in the water or gas phase may be quite differently affected, due to different solubility and vapor pressure constraints.

The progress of the simulation with new phase composition can depend sensitively on the initialization of VOC mole fractions. Ideally the new phase compositions should be obtained by equilibrating a multicomponent mixture of known overall composition among the fluid phases present. This requires what in the chemical engineering literature is known as a "flash calculation." TMVOC uses this approach when a NAPL phase evolves from either single-phase gas or two-phase gas-water conditions. For other phase transitions a simpler approach is used, in which newly appearing phases are initialized with a small saturation (10^{-6}) so that their impact on the composition of the other phases is small.

6.3 Thermophysical Property Arrays

In TMVOC all of the NEL*NK1 primary variables are stored sequentially in a onedimensional array X; first the NK1 variables for grid block # 1, then the NK1 variables for grid block # 2, and so on (see Fig. 6.3.1). The starting location for primary variables for grid block N is NLOC+1, where NLOC = (N-1)*NK1.

Figure 6.3.1. Structure of thermophysical property arrays in TMVOC.

The thermophysical properties ("secondary parameters") needed to assemble the massand energy-balance equations for all volume elements are stored sequentially in a large array "PAR" (see Fig. 6.3.1). These parameters are calculated in the EOS module for the latest updated primary variables during the iteration process. The first group of NB (= 6 or 8) secondary parameters includes 6 parameters needed for the accumulation and advective flow terms (Eqs. A.2 through A.6). If parameter NB is set equal to 8, these are followed by two parameters for the dependence of diffusion coefficients on primary variables (see Appendix D). Starting in location NB+1, there are NK component mole fractions, so that the total number of secondary parameters per fluid phase is NBK = NB + NK. Mole fractions of the NK mass components are assigned to locations NB+1, NB+2, ..., NB+NK of the PAR array in the order shown in Table 2.

In the PAR-array, the NBK gas phase parameters come first, followed by NBK parameters for the aqueous phase and then NBK parameters for the NAPL phase. Because of space limitations, Fig. 6.3.1 for the PAR array structure shows only the first two fluid phases. The NPH*NBK = 3*NBK phase-specific parameters are followed by temperature T and an additional array member that is not used by TMVOC. The total number of secondary parameters is NSEC = NPH*NBK + 2.

There are two additional arrays DX and DELX with structure identical to X. While X holds primary variables corresponding to the last successful (converged) time step, DX holds the increments calculated during the Newton-Raphson iteration process. Thus the latest updated primary variables are X + DX. Thermophysical properties are needed not only for calculating the residuals of the mass- and energy-balance equations (B.5), but also for calculating their derivatives in the Jacobian matrix $\mathbf{J} = -\partial \mathbf{R}_n / \partial x_i$ (see Eqs. B.6 and B.7; x_i denotes the collection of all primary independent thermodynamic variables). In order to avoid any restrictions in the manner that thermophysical parameters could be functionally dependent on primary variables, these derivatives are obtained by numerical differentiation. In order to calculate derivatives, the PAR-array must provide secondary parameters not only at the "state point" (latest X + DX), but also for NEQ additional sets of primary variables in which one of the primary variables at a time is incremented by a small amount. Therefore, the total number of secondary parameters per grid block is (NEQ + 1)*NSEC. Secondary parameters for grid block #N start after location # NLOC2 = (N - 1)*(NEQ +1)*NSEC of the PAR array. The small increments used for numerical differentiation are typically of order $10^{-8} * X$, and are stored in an array DELX. The structure of the coupled linear equations solved at iteration step (p+1) is shown in Fig. 6.3.2. The mass balance equations are numbered according to the labeling of mass components, see Table 2. At the conclusion of a converged time step, the primary variables X are updated, $X \rightarrow X + DX$.

Figure 6.3.2. Linear equation structure.

It was stated above that the number of mass- and energy-balance equations per grid block is the same as the number NK1 of primary thermodynamic variables. In many applications, however, heat effects and temperature changes may be small, so that it would be sufficient to consider just the mass balance equations. The simplest way of forcing temperature changes to zero would be to assign the solid matrix an overwhelmingly large heat capacity, so that finite rates of heat exchange will cause negligible temperature change. This approach is perfectly acceptable and useable with TMVOC, but it has the disadvantage that the full number of balance equations must be solved, even though the energy balance reduces to the trivial statement $\partial T/\partial t = 0$. TMVOC offers a more elegant way of running problems without temperature changes, at a considerable savings of computing time. By convention we always take the first NK equations per grid block to represent mass balances, while the energy balance equation comes last as # NK1. TMVOC uses a parameter NEQ, distinct from NK, to number the balance equations per grid block, and normally we would have NEQ = NK + 1. However, the user can choose to assign NEQ = NK in the input file; then no energy equations are set up or solved and the number of coupled equations per grid block is reduced by one. For the smaller set of NK equations we only solve for the first NK primary variables, so that temperature remains unchanged (see Table 3).

6.4 Linear Equation Setup

The data provided by the PAR-array are used in the flow module of TMVOC to assemble the linear equations (B.7) that are solved at each step of the Newton-Raphson iteration procedure. These equations are arranged and numbered sequentially, as shown in Fig. 6.3.2, with the first NK equations per grid block representing component mass balances, while the last equation (# NK1) represents the energy balance. The row indices of the Jacobian matrix correspond to the component balance equations in the order given in Table 2, followed by the energy balance, while the column indices correspond to the sequence of primary variables in array X. If the option NEQ = NK is chosen, only NK mass balance equations will be set up per grid block. In this case only the first NK primary variables per grid block will contribute matrix columns, while variable # NK1, which must be temperature, remains passive and is not engaged or altered in the linear equation handling. However, all thermophysical parameters will be calculated at the temperature values specified in variable # NK1.

Note that the accumulation terms of the balance equations depend only on primary variables for one grid block (see Eqs. A.2 - A.4), so that they will generate non-zero derivative terms only in an NEQ*NEQ submatrix that is located on the diagonal of the Jacobian J. The flow terms, being dependent on primary variables of two grid blocks, will generate two non-zero NEQ*NEQ submatrices of derivatives, which are located in the off-diagonal matrix locations corresponding to the two grid blocks.

In TMVOC all Jacobian matrix elements as well as the entries in the vector R of residuals are calculated in subroutine MULTI. The calculation first assigns all matrix elements arising from the accumulation terms, of which there are NEQ*NEQ. These are stored sequentially in a onedimensional array CO; matrix elements for grid block N begin after location (N - 1)*NEQ*NEQ in CO. The corresponding row and column indices are stored separately in arrays IRN and ICN, respectively. Calculation of the derivatives demands that each accumulation term is calculated NEQ + 1 times; once for the state point (X + DX), and NEQ times for each of the NEQ primary variables incremented (X + DX + DELX). Additional contributions to diagonal terms in the Jacobian J may arise from sink and source terms if present; these are assigned in subroutine QU called from MULTI. Subsequently all flux terms are evaluated. These depend in general on the 2*NEQ primary variables of the two connected grid blocks, so that a total of 2*NEQ + 1 flux terms need to be evaluated for calculation of the state point as well as of all derivative terms. The total number of potentially non-zero elements in the Jacobian matrix is

$$NZ = NEL * NEQ^{**2} + 2 * NCON * NEQ^{**2}$$
(6.4.1)

After all matrix elements and members of the right-hand side vector of residuals have been assembled, the linear equations (B.7) are solved by one of several user-selectable algorithms, including sparse direct methods and a variety of preconditioned conjugate gradient algorithms (see section 8.6). The resulting increments in the primary variables are added to the array DX, and the process of linear equation setup and solution is repeated for the primary variables X + DX. This process continues until the residuals are reduced below a preset convergence tolerance (Eq. B.8). If convergence is not achieved within a specified maximum number of iterations (usually 8) the time step is repeated with reduced time increment.

6.5 Dimensioning of Major Arrays

The major problem-size dependent arrays reside in labeled COMMON blocks, one array per block. They are dimensioned by means of PARAMETER statements in an INCLUDE file called T2 and in the main (TOUGH2) program. An informational statement on permissible problem size (number of grid blocks, etc.) is provided in the printed output of a TMVOC run. When problem specifications exceed array dimensions, the execution stops with a diagnostic printout. The user must then increase PARAMETER assignments accordingly. All arrays are given a dimension of 1 in the subroutines, and for re-dimensioning it is only necessary to revise the PARAMETER assignments in the INCLUDE file and in the main program; no other changes are needed. Some compilers will generate warnings or error messages when COMMON blocks are dimensioned differently in different program units. This can be avoided by compiling the main program separately from the subprograms. Subsequent linking of the object modules will properly communicate COMMON block addresses between main program and subprograms. A list of major arrays used in TMVOC and their dimensions is given in Table 4 below.

Reference to	COMMON blocks	Length
Elements	E1 - E7, VINWES, AHTRAN XYZ1, XYZ2, XYZ3, VBC	NEL (= number of elements)
Primary variables	P1 - P7	NEL*NK1
Connections (interfaces)	C1 - C12	NCON (= number of connections)
	COMPO, PORVEL, FLOVP1, FLOVP2	NCON*NPH
	DISP	NCON*NPH*NK
	DARVELM	NCON*NPH*(2*NEQ+1)
Sinks and sources	G1, G2, G3, G3A	MGTAB (= total number of tabular generation data)
	G4 through G25, and G27 through G31	NOGN (= number of sinks and sources
	G26	NOGN*NPH
Secondary parameters	SECPAR	NEL*(NEQ+1)*NSEC
Linear equations [†]	L1, L2, L3	NZ
	L4 L5, L8 L6 L7 CGARA6	NEL*NEQ 5*NEL*NEQ 8*NEL*NEQ 5*NEL*NEQ+NZ+32 38*NEL*NEQ+1000

Table 4. Su	ummary of	major con	nmon blocks
-------------	-----------	-----------	-------------

† array dimensioning is made according to the needs of the conjugate gradient solvers; when the direct solvers MA28 or LUBAND are used, only a smaller-size problem can be accommodated; restriction with MA28 is:

{number of elements} + 2 * {number of connections} < {NEL + 2* NCON}/4

7. Preparation of Input Data

The data needed to characterize a flow system include hydrogeologic parameters and constitutive relations of the permeable medium (absolute and relative permeability, porosity, capillary pressure, etc.), thermophysical properties of the fluids (partly provided internally), initial and boundary conditions of the flow system, and sinks and sources. In addition, TMVOC requires specification of space-discretized geometry, and various program options, computational parameters, and time-stepping information. Here we summarize the basic conventions adopted for TMVOC input data. A detailed explanation of TMVOC input data is given in Appendix E; input formats for internal grid generation through the MESHMaker module are explained in Appendix F.

7.1 TMVOC Input Data

Input can be provided to TMVOC in a flexible manner by means of one or several ASCII data files, with up to 80 characters per record. All TMVOC input is in fixed format and most of it is in standard metric (SI) units, such as meters, seconds, kilograms, °C, and the corresponding derived units, such as Newtons, Joules, and Pascal = N/m^2 for pressure. VOC and NCG concentrations are provided as mole fractions, see Table 2, and different customary units are used for the chemical properties of VOCs.

In the standard TMVOC input file, data are organized in blocks which are defined by fivecharacter keywords typed in columns 1-5; see Table 5 and Fig. 7.1.1. The first record must be a problem title of up to 80 characters. The last record usually is ENDCY; alternatively, ENDFI may be used if no flow simulation is to be carried out (useful for mesh generation). Data records beyond ENDCY (or ENDFI) will be ignored. Some data blocks, such as those specifying reservoir domains (ROCKS), volume elements (ELEME), connections (CONNE), initial conditions (INCON, INDOM), and sinks/sources (GENER), have a variable number of records, while others have a fixed number of records. The end of variable-length data blocks is indicated by a blank record. Most data blocks between the first and last one can be provided in arbitrary order, but block MULTI must precede any data on initial conditions (blocks PARAM, INDOM, and INCON), and block ELEME, if present, must precede block CONNE. The blocks ELEME and CONNE must either be both provided through the INPUT file, or must both be absent, in which case alternative means for specifying geometry data will be employed (see section 7.2, below). The block GENER can be omitted if there are no sinks and sources in the problem. If block START is present, consisting of one data record with START typed in columns 1-5, the block INCON can be incomplete, with elements in arbitrary order, or can be absent altogether. Elements for which no initial conditions are specified in INCON will then be assigned domain-specific initial conditions

Keyword	Function
TITLE (first record)	one data record (single line) with a title for the simulation problem
MESHM	optional; parameters for internal grid generation through MESHMaker
ROCKS	hydrogeologic parameters for various reservoir domains
CHEMP	specifies thermophysical property data for the VOCs
NCGAS	specifies number and type of non-condensible gases
SELEC	optional; specifies real gas EOS to be used and selects K_H for air
MULTI	optional; specifies number of fluid components and balance equations per grid block; useful to invoke an isothermal run, read T2VOC style initial conditions, or make a restart for a new run in which additional hydrocarbons have been added
START	optional; one data record for more flexible initialization
PARAM	computational parameters; time stepping and convergence parameters; program options
DIFFU	diffusivities of mass components
FOFT	optional; specifies grid blocks for which time series data are desired
COFT	optional; specifies connections for which time series data are desired
GOFT	optional; specifies sinks/sources for which time series data are desired
RPCAP	optional; parameters for relative permeability and capillary pressure functions
TIMES	optional; specification of times for generating printout
*ELEME	list of grid blocks (volume elements)
*CONNE	list of flow connections between grid blocks
*GENER	optional; list of mass or heat sinks and sources
INDOM	optional; list of initial conditions for specific reservoir domains
*INCON	optional; list of initial conditions for specific grid blocks
NOVER (optional)	optional; if present, suppresses printout of version numbers and dates of the program units executed in a TMVOC run
ENDFI	alternative to "ENDCY" for closing a TMVOC input file; will cause flow simulation to be skipped; useful if only mesh generation is desired
ENDCY (last record)	one record to close the TMVOC input file and initiate the simulation

Table 5. TMVOC input data blocks§

[§] Blocks labeled with a star * can be provided as separate disk files, in which case they would be omitted from the INPUT file.

from block INDOM, if present, or will be assigned default initial conditions given in block PARAM, along with default porosities given in block ROCKS. If START is not present, INCON must contain information for all elements, in exactly the same order as they are listed in block ELEME.

Between data blocks an arbitrary number of records with arbitrary data may be present in the input file that do not begin with any of the TMVOC keywords. This is useful for inserting comments about problem specifications directly into the input file. TMVOC will gather all these comments and will print the first 50 such records in the output file.

Much of the data handling in TMVOC is accomplished by means of disk files, which are written in a format of 80 characters per record, so that they can be edited and modified with any text editor. Table 6 summarizes the disk files other than (default) INPUT and OUTPUT used in TMVOC; examples are given for sample problem 1 in section 10.1. The initialization of the arrays for geometry, generation, and initial condition data is always made from the disk files MESH (or MINC), GENER, and INCON. A user can either provide these files at execution time, or they can be written from TMVOC input data during the initialization phase of a run. If no data blocks GENER and INCON are provided in the input file, and if no disk files GENER and INCON are present, defaults will take effect (no generation; domain-specific initial conditions from block INDOM, or defaults from block PARAM). If a user intends to use these defaults, (s)he has to make sure that at execution time no disk files INCON or GENER and INCON is to specify "dummy" data blocks in the input file, consisting of one record with GENER or INCON, followed by a blank record. (Include a one-record data block START in this case.)

The format of data blocks ELEME, CONNE, GENER, and INCON is basically the same when these data are provided as disk files as when they are given as part of the input file. However, specification of these data through the input file rather than as disk files offers some added conveniences, which are useful when a new simulation problem is initiated. For example, a sequence of identical items (volume elements, connections, sinks or sources) can be specified through a single data record. Also, indices used internally for cross-referencing elements, connections, and sources will be generated internally by TMVOC rather than having them provided by the user. MESH, GENER, and INCON disk files written by TMVOC can be merged into an input file without changes, keeping the cross-referencing information.

TMVOC INPUT FORMATS

ROCK	S	*:	2*3	*	4*	5*	6 * 7	7*_
MAT	NAD	DROK	POR	PER (1)	PER (2)	PER (3)	CWET	SPHT
C	OM	EXPAN	CDRY	TORTX	GK	FOCM		
IRP		RP (1)	RP (2)	RP (3)	RP (4)	RP (5)	RP (6)	RP (7)
ICP		CP (1)	CP (2)	CP (3)	CP (4)	CP (5)	CP (6)	CP (7)
CHEMI	P ·	1*	2*3	*	4 *	5*	6 * 7	7 *
NHC								
	HCN	AMES						
тс	CRIT	PCRIT	ZCRIT	OMEGA	DIPOLM			
TE	BOIL	VPA	VPB	VPC	VPD			
AN	MWT	СРА	СРВ	CPC	CPDD			
RHO	OREF	TDENRF	DIFVO	TDIFREF	TEXPO			
VL	LOA	VLOB	VLOC	VLOD	VOLCRIT			
S	OLA	SOLB	SOLC	SOLD	+ + + + + + + + + + + + + + + + + + + +			
0	DCK	FOX	ALAM		1			
NCGA	\S	1*	2*3		4 *	5*	6 * 7	7*
NCG					<u>.</u>			
			<u> </u>		4 *	5*	6 * 7	7*-
			/		/		/	
MULI				<u> </u>	4			
NK	NEQ	NPH NB	2		4	5 *		
NK STAR	(optional)	NPH NB	NKIN 2*3		4	5*	6 * 7	7 * -
	T(optional)	NPH NB	NKIN 2*3 56789012343	5678901234	4 *	5 *		*- *-
	T(optional)	NPH NB	NKIN 2	5678901234	4 *	5* 5*	6 * 7	7 * - 7 * - 1 * -
	(optional) NEQ T(optional) M	NPH NB MOP: 1 2 3 4	NKIN 2*3 5678901234 2*3 MOP(1),	5678901234	4 *	5 *	6 * 7	
	(optional) T (optional) M	NPH NB I	NKIN 2	5678901234 1=1,24 DELTMX	4 *	5 *	6 * 7 6 * 7 6 * 7 BE BE REDLT	7*- 7*- 7*- 5CALE
	(optional) T(optional) M MCYC MS TART T (1) T (1)	NPH NB I	NKIN 2 * 3 NKIN 2 * 3 56 78 90 12 3 43 2 * 3 MOP (I), DELTEN or NDLT DLT (3)	5678901234 1=1,24	4+ 4+ 4+ ELST	5* 5* TEXP GF	6 * 7 6 * 7 BE REDLT	7*- 7*- SCALE
	MCYC MS TART T (1)	NPH NB MOP: 1 2 3 4 MOP: 1 2 3 4 I *	NKIN 2*3 S6 7890 1234 2*3 MOP (I), DELTEN or NDLT DLT (3)	5678901234 * 1=1,24 DELTMX	4 *	5* 5* 5* GF 	6 * 7 6 * 7 8 E 8 E 8 E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 * - 7 * - 7 * - SCALE SCALE NDLT)
	M M M M M M	NPH NB MOP: 1 2 34 L * EC MCYR TIMAX DLT (2) RE2	NKIN 2*3 Soft 2* Soft 2* MOP (1), DELTEN or NDLT DLT (3) U	5678901234 5678901234 1=1,24 DELTMX WUP	4	5* 5* TEXP GF DLT (M)	6 * 7 6 * 7 BE REDLT (M*8*1	7*- 7*- 7*- SCALE SCALE NDLT) NDLT)
	MCYC MS T(aptional).	NPH NB MOP: 1 2 3 4 MOP: 1 2 3 4 TIMAX DLT (2) RE2	NKIN 2*3 NKIN 2*3 S6789012343 2*3 MOP (I), DELTEN or NDLT DLT (3) U	5678901234 5678901234 1=1,24 DELTMX	4	5* 5* TEXP GF DLT (M) DFAC	67 67 BE REDLT (M•8*1	
	MCYC MS TART T (1)	NPH NB MOP: 1 2 3 4 1 MOP: 1 2 3 4 1 EC MCYPR 1 TIMAX 1 DLT (2) 1 RE2 1 P (1) 1	NKIN 2*3 NKIN 2*3 56789012343 2*3 MOP(I), DELTEN or NDLT DLT (3) U U DELT (3) DLT (4) DELT (3) DEF	5678901234 1=1,24 DELTMX WUP WUP (2)	4 *	5 *	6 * 7 6 * 7 BE REDLT (M*8*1	7 * - 7 * - 7 * - SCALE VDLT) AMRE VDLT) AMRE
	M	NPH NB MOP: 1 2 34 I * MOP: 1 2 34 I *	2*3 NKIN 2*3 2*3 2*3 MOP (II) DELTEN or NDLT DLT (3) U U DLT (3) U DLT (3) U U U U U U U U U U U	5678901234 1=1,24 DELTMX WUP WUP (2)	4	5 *	6 * 7	7 * - 7 * - 7 * - 7 * - 7 * - 8 CALE 1 + - NDLT) 1 + - AMRE: 1 + - 2 (4) 7 * -
	MCYC MS TART T (1) RE1 R (optional).	NPH NB I * I MOP: 1 2 3 4 I I * I MOP: 1 2 3 4 I I * I MOP: 1 2 3 4 I I * I MOP: 1 2 3 4 I I * I FEC MCYPR I TIMAX DLT (2) I * I RE2 I I * I RE2 I I * I	2	5678901234 5678901234 1=1,24 DELTMX WUP	4	5 *	6 * 7 BE H H H H H H H H H H H H H H H H H H H	7 * - * -
	M MCYC MS MCYC MS TART T (1)	NPH NB MOP: 1 2 3 4 I *	NKIN Solution Solution Solution MOP (I), DELTEN or NDLT DLT (3) DLT (3) DEP 2	5678901234 * 1=1,24 DELTMX UELTMX WUP (2) (2) *	4	5 *	6 * 7	
	M M M M M M M M M M M M M M M M M M M M	NPH NB MOP: 1 2 34 MOP: 1 2 34 I * I * I * I * I * I * I * I * I * I * I * I * I * RITMAX I * RITMAX I *	NKIN Point State NKIN Point State State DELTEN or NDLT DLT (3) DLT (3) DLT (3) CLOSUR 2	5678901234 1=1,24 DELTMX DELTMX WUP WUP (2) 	4 *	5 *	6 * 7 BE REDLT (M*8*1 (M*8*1 DEF 6 * 7 BE 	<pre></pre>
	M M M M M M M M M M M M M M M M M M	NPH NB MOP: 1 2 34 L * MOP: 1 2 34 L * EC MCYR L * EC MCYR L * EC MCYR PLT (2) PLT (2) RE2 RITMAX PC11 RP (1) CP (1)	2 * 3 NKIN 2 * 3 2 * 3 MOP (1), DELTEN or NDLT DLT (3) DLT (3) CLOSUR 2 * 3 RP (2) CP (2)	5678901234 5678901234 1=1,24 UELTMX WUP WUP (2) (2) (2) (2) (2) (3) (CP (3)	4+ 4 4+ ELST WNR WNR 4+ WNR 4+ RP (4) CP (4)	5 *	6 * 7 BE REDLT (M*8*1 CP (6) CP (6)	<pre></pre>
	M	NPH NB MOP: 1 2 3 4	2	5678901234 1=1,24 1=1,24 UELTMX WUP (2) (2) (2) (2) (2) (3) (4) (4) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7	4	5 *	6 * 7 BE REDLT (M*8*1 (M*8*1 	
	M	NPH NB MOP: 1 2 34 MOP: 1 2 34 I * I * I * I * I * I * I * I * I * I * I * I * I * I * I * I * I * I * I * RE2 I * RITMAX I * RP (1) I * RP (1) I * NADD MA1maz	2 * 3 NKIN 2 * 3 56 78 90 12 34 4 2 * 3 MOP (I), DELTEN or NDLT DLT (3) DLT (3) CLOSUR 2 * 3 RP (2) H + H + H + H + H + H + H + H + H + H +	5678901234 1=1,24 DELTMX DELTMX WUP WUP (2) CP (3) CP (3) AHTX	4 *	5 *	6 * 7 BE REDLT (M*8*1 (M*8*1 (M*8*1 (M*8*1 7 7 7 RP (6) 7	
PARAM PARAM PARAM DL' PARAM TST DL' DL' DL' DL' DL' DL' DL' DL' RPCA RP ICP EL EL	M M M M M M M M M M	NPH NB MOP: 1 2 34 I * I * I * I * I * I * I * I * I * I * I * I * I * I * RITMAX I * RITMAX I * RP (1) I * RP (1) I * NADD MA1maz	2 * 3 NKIN 2 * 3 2 * 3 B - 5 6 78 90 1 2 3 4 3 2 * 3 MOP (1), DELTEN or NDLT DLT (3) DLT (3) CLOSUR CLOSUR 2 * 3 VU 2 * 3 VOLX	5678901234 1=1,24 1=1,24 DELTMX 1=1,24 	4	5* 5* TEXP TEXP GF DFAC DFAC DFAC P (3) 5* RP (5) 5* RP (5) 5*	6 * 7 BE REDLT (M*8*) (M*8*) CP (6) CP (6) CP (6) Y	
	M M M M M M M M	NPH NB MOP: 1 2 3 4 I * MOP: 1 2 3 4 I * EC MCYPR TIMAX DLT (2) H * RE2 P (1) RP (1) CP (1) NADD MA1Max NADD MA1Max I *	2 * 3 NKIN 2 * 3 2 * 3 MOP (1), DELTEN or NDLT DLT (3) DLT (3) CLOSUR 2 * 3 CLOSUR 2 * 3 CLOSUR 2 * 3 CLOSUR 2 * 3 VU 2 * 3 VOLX 2 * 3 2 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3 * 3	5678901234 5678901234 1=1,24 DELTMX WUP WUP C(2) C(2) C(2) C(2) C(3) CP (3) CP (3) CP (3) CP (3)	4	5 *	6 * 7 BE H H H H H H H H H H H H H H H H H H H	7 -

Figure 7.1.1. TMVOC input formats (continued on next page).

				тмус		NPUT FOF	RMATS (co	ntinued)		
GENE	R	- 1	* 2	2 *	3	*4	*{	5*6	<u>} * 7</u>	7
			NADD				ITAB GY	EY	нх	
11171	F1 (1)	F1	(2)			<u></u> _ [=1 (LTAB)		
	F2 (1)	F2	(2) _				F2 (LTAB)		
		<u>) </u>	E2	(2)						
1177	F3 (1	<u>'</u>			I I I					
INCON		-1	*2	2*	3		*{	5*6	5*	7 * 8
			+							
			11111		TT					
		X1			X2	2	Х	3	X	4
									······································	
INDOM			*2	*	3	*	*	5*e) <u>*</u> ,	/ * e
MAT	INDICE	IN								
		X1			X2	2	X	3	X	4
1171	LLLT		LITT	TITLII					11111111	<u>статтата</u>
DIFFU	(optiona	^{al)} 1	*2	2*	3	4	* 5	5*6	6 * 7	7*
			1) l=1.	NPH						
1111	ШТ		<u>, , , , , , , , , , , , , , , , , , , </u>		тг		TITLITT			
11171	нт	FDDIAG(I	l,2), l=1,	NPH	TT					
		FDDIAG(I	NK) I=1.	NPH						
	LIIT		, , , , , , , , , , , , , , , , , , , ,							إستيتيت
SELEC		-1	*2	2*	3		↓ *	5*6) * ,	/*8
IE(1)	IE(2) IE(3)	IE(4)	IE() IE	(6)	IE(7) IE(8)	IE(9) IE(10)	IE(11) IE(12)	IE(13) IE(14)	IE(15) IE(16)
E	(1)	E	(2)	E (3)		E (4)	E (5)	FE(6)	FE(7)	FE(8)
F	()	E	(1)	F (11)		FE(12)	FE(13)	EE(14)	EE(15)	FF(16)
<u> </u>		4 u ŭ	$\gamma_{1}\gamma_{1}$		TI					
E	(17) –	<u>г ттт</u>	TITT	1111111	TT		TITLITT	TITCLITC		
										- FE(8*IE(1))
TIMES	optiona		* (<u> </u>	· · · · · · · · · · · · · · · · · · ·			7
TIMES			×2		3				, , , ,	
ITI	ITE	DE	ELAF	TINTER						
TIS	5 (1)	TI	S (2)	TIS (3)				TIS (ITI)		
MECHIN			<u> </u>	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>		<u> </u>		<u> </u>	· · · · · · · · · · · · · · · · · · ·	
NESHIN			×2		3	<u></u>		<u></u>	, 	
	1.1.1.2									
FOFT	(optiona	^{al)} 1	*2	2*	3	*4	L	5*6) * ,	7 * 8
	++++				TTT					
EUFI	117	стата	LITT		ттт					
					ттт					
COFT	(optiona	al) 1	* 2	2*	3		↓ * {	5*6	\$ * ;	7 * 8
F 0					T L L					
EC					тп					
GOFT	(optiona	⁽⁾ 1	*;	2*	3	*	↓*!	5*6) * ⁻	7*8
		LILLI			цĭ					
	111		TTTTT		TII					
NOVER	(optiona	¹⁾ 1	*0	2*	3	*	L*	5*6) * .	7*8
CNDC			<u></u>			<u> </u>				ļ
ENDF		··· 1	*2	2*	3	*	⊦{ └ · · · · · · · · · · · · · ·	o*€) * ,	3*8
ENDCY		-1	*2	2*	3	*	L * E	5*6	6 * 7	7*8

Figure 7.1.1. TMVOC input formats (continued).

Table 6. TMVOC disk file

File	Use
MESH (unit 4)	written in subroutine INPUT from ELEME and CONNE data, or in module MESHMAKER from mesh specification data;
(()))	read in RFILE to initialize all geometry data arrays used to define the discretized flow problem
GENER	written in subroutine INPUT from GENER data;
(unit 3)	read in RFILE to define nature, strength, and time-dependence of sinks and sources
INCON	written in subroutine INPUT from INCON data;
(unit 1)	read in RFILE to provide a complete specification of thermodynamic conditions
SAVE (unit 7)	written in subroutine WRIFI to record thermodynamic conditions at the end of a TMVOC simulation run;
(()))	compatible with formats of file or data block INCON for initializing a continuation run
MINC (unit 10)	written in module MESHMAKER with MESH-compatible specifications, to provide all geometry data for a fractured-porous medium mesh (double porosity, dual permeability, etc.);
	read (optionally) in subroutine RFILE to initialize geometry data for a fractured-porous system
LINEQ (unit 15)	written during linear equation solution, to provide informative messages on linear equation solution
TABLE	written in CYCIT to record coefficients of semi-analytical heat exchange at the end of a TMVOC simulation run
(unit 0)	read (optionally) in subroutine QLOSS to initialize heat exchange coefficients in a continuation run
FOFT	written in FGTAB to provide time series data for elements for plotting
(unit 12)	
COFT	written in FGTAB to provide time series data for connections for plotting
(unit 14)	
GOFT	written in FGTAB to provide time series data for sinks/sources for plotting
(unit 13)	
VERS	written in all TMVOC program units with informational message on
(unit 11)	version number, date, and function;
	read in main program and printed to default OUTPUT at the conclusion of a TMVOC simulation run; printing of version information is suppressed when keyword NOVER is present in INPUT file

7.2 Geometry Data

General Concepts

Handling of flow geometry data in TMVOC is based on the "integral finite difference" method (Edwards, 1972; Narasimhan and Witherspoon, 1976). Flow geometry is defined by means of a list of volume elements ("grid blocks"), and a list of flow connections between them (Appendix B). This formulation can handle regular and irregular flow geometries in one, two, and three dimensions. Single- and multiple-porosity systems (porous and fractured media) can be specified, and higher order methods, such as seven- and nine-point differencing, can be implemented by means of appropriate specification of geometric data (Pruess and Bodvarsson, 1983).

In TMVOC, volume elements are identified by names that consist of a string of five characters, '12345'. These are arbitrary, except that the last two characters (#4 and 5) must be numbers; an example of a valid element name is "ELE10". Flow connections are specified as ordered pairs of elements, such as "(ELE10, ELE11)". A variety of options and facilities are available for entering and processing geometric data (see Fig. 7.2.1). Element volumes and domain identification can be provided by means of a data block ELEME in the INPUT file, while a data block CONNE can be used to supply connection data, including interface area, nodal distances from the interface, and orientation of the nodal line relative to the vertical. These data are internally written to a disk file MESH, which in turn initializes the geometry data arrays used during the flow simulation. It is also possible to omit the ELEME and CONNE data blocks from the INPUT file, and provide geometry data directly on a disk file MESH.

Meshmaker

TMVOC offers an additional way for defining flow system geometry by means of a special program module MESHMaker. This can perform a number of mesh generation and processing operations and is invoked with the keyword MESHMaker in the INPUT file. The MESHMaker module itself has a modular structure; present sub-modules include RZ2D for generating two-dimensional radially symmetric (R-Z) meshes, and XYZ for one-, two-, and three-dimensional rectilinear (Cartesian) grids. Multiple-porosity processing for simulation of flow in naturally fractured reservoirs can be invoked by means of a keyword MINC, which stands for "multiple interacting continua" (see Appendix C). The MINC-process operates on the data of the primary (porous medium) mesh as provided on disk file MESH, and generates a "secondary" mesh containing fracture and matrix elements with identical data formats on file MINC. (The file MESH used in this process can be either directly supplied by the user, or it can have been internally

generated either from data in INPUT blocks ELEME and CONNE, or from RZ2D or XYZ meshmaking.)

Figure 7.2.1 User options for supplying geometry data.

The MINC process of sub-partitioning porous medium grid blocks into fracture and matrix continua will only operate on active grid blocks, while inactive grid blocks are left unchanged as single porous medium blocks. By convention, elements encountered in data block ELEME (or file MESH) are taken to be "active" until the first element entry with a zero or negative volume is encountered. The first element with volume less than or equal to zero, and all subsequent elements, are taken to be "inactive." In order to exclude selected reservoir domains from the MINC process, the user needs to preprocess or edit the ELEME data block before MINC partitioning is made, and assemble all grid blocks that are to remain single porous media at the end, then place a "dummy" block of zero volume in front of them. The concept of inactive blocks is also used in a second, unrelated manner to maintain time-independent Dirichlet boundary conditions (see section 8.2).

As a convenience for users desiring graphical display of data, the internal mesh generation process will also write nodal point coordinates on file MESH. These data are written in 3E10.4 format into columns 51-80 of each grid block entry in data block ELEME. No internal use whatsoever is made of nodal point coordinates in TMVOC.

Specific naming conventions have been adopted in the internal mesh generation process. For RZ2D, the last two characters directly number the radial grid blocks, from 1 through 99. Character #3 is blank for the first 99 radial blocks, and then runs through the sequence 1, 2, ..., 9, A, B, ..., Z for a maximum total of 3599 radial blocks. The second character counts up to 35 grid layers as 1, 2, ..., 9, A, B, ..., Z. The first character is 'A' for the first 35 layers, and is incremented to B, C, ..., Z, 1, 2, ..., 9 for subsequent groups of 35 layers.

For rectilinear meshes generated by XYZ, characters 4 and 5 together number the grid blocks in the X-direction, while character #3 = 1, 2, ..., 9, A, B, ..., Z numbers Y direction grid blocks, and character #2, running through the same sequence as #3, numbers grid blocks in the Z-direction. Overflows in any of these (more than 99 X-blocks, more than 35 Y- or Z-blocks) advance character #1 through the sequence A, B, C, ..., Z. Both RZ2D and XYZ assign all grid blocks to domain #1 (first entry in block ROCKS); a user desiring changes in domain assignments must do so by hand, either through editing of the MESH file with a text editor, or by means of preprocessing with an appropriate utility program, or by appropriate source code changes in subroutines WRZ2D and GXYZ. TMVOC runs that involve RZ2D or XYZ mesh generation will produce a special printout, showing element names arranged in their actual geometric pattern. An example is given in section 10.

The naming conventions for the MINC process are somewhat different from those originally adopted in the GMINC program (Pruess, 1983b), and are as follows. For a primary grid block with name '12345,' the corresponding fracture subelement in the secondary mesh is named ' 2345' (character #1 replaced with a blank for easy recognition). The successive matrix continua are labeled by running character #1 through 2, ..., 9, A, B, ..., Z. The domain assignment is incremented by 1 for the fracture grid blocks, and by 2 for the matrix grid blocks. Thus, domain assignments in data block ROCKS should be provided in the following order: the first entry is the single (effective) porous medium, then follows the effective fracture continuum, and then the rock matrix. An example is given in sample problem 4 (*rfp*), see p. 99 of TOUGH2 User's Guide, Version 2.0 (Pruess et al., 1999).

Users should beware that the MINC process may lead to ambiguous element names when the inactive element device is used to keep a portion of the primary mesh as unprocessed porous medium.

Mesh generation and/or MINC processing can be performed as part of a simulation run. Alternatively, by closing the input file with the keyword ENDFI (instead of ENDCY), it is possible to skip the flow simulation and only execute the MESHMaker module to generate a MESH or MINC file. These files can then be used, with additional user-modifications by hand if desired, in subsequent flow simulations. MESHMaker input formats are described in Appendix F, and examples of practical applications are given in the sample problems. Execution of MESHMaker produces printed output which is self-explanatory.

8. User Features

8.1 Initial Conditions and Restarting

Flow systems are initialized by assigning a complete set of primary thermodynamic variables to all grid blocks into which the flow domain is discretized. Various options are available in a hierarchical system, as follows. During the initialization of a TMVOC run, all grid blocks are first assigned to default thermodynamic conditions specified in data block PARAM. The defaults can be overwritten for selected reservoir domains by assigning domain-specific conditions in data block INDOM. These in turn may be superseded by thermodynamic conditions assigned to individual grid blocks in data block INCON. A disk file INCON written to the same specifications as data block INCON may also be used. In TMVOC, the primary variables used depend on the fluid phase composition. During phase change primary variables will be automatically switched from one set to another. In multiphase flow systems, therefore, different grid blocks will in general have different sets of primary variables, and must be initialized accordingly. A TMVOC run may optionally be initialized from T2VOC-style thermodynamic conditions. This is done by appropriate assignment of parameter NKIN in data block MULTI, see Appendix E. For consistency, TMVOC should then be run with a single non-condensible gas (NCG=1), specified as air.

For many applications, special initial conditions are needed, such as gravity-capillary equilibrium, or steady state corresponding to certain mass and heat flows. These can be realized by performing a series of TMVOC runs, in which thermodynamic conditions obtained in one run, and written to disk file SAVE, are used as initial conditions in a subsequent continuation run. For example, a first simulation run may be made to obtain hydrostatic pressure conditions. These may subsequently be used as boundary conditions in a second run segment to simulate the introduction of organic chemicals into the flow system. This could be followed by a third run segment to simulate a remediation process, such as air extraction, groundwater pumping, or steam injection, etc. Restarting of a TMVOC run is accomplished by providing file SAVE generated in a previous run as file INCON for initialization. Usually additional (often minor) adjustments will be made for a restart. For example, different specifications for the number of time steps and desired printout times may be made. Some editing of the MESH file may be needed to make certain grid blocks inactive, so that previously calculated pressures can serve as boundary conditions (see below). In a continuation run, simulation time and time step counters may be continuously incremented, or they may be reset to zero. The latter option will be used when simulating contaminant behavior following preparation of a steady "natural" initial state, which may correspond to a very large simulation time.

As far as the internal workings of the code is concerned, there is no difference between a fresh start of a simulation and a restart. The only feature that makes a simulation a continuation run is that the INCON-data were generated by a previous TMVOC run, rather than having them explicitly provided by the user. File SAVE always ends with a data record with '+++' in the first three columns, followed by one record with restart information (time step and iteration counters, simulation time). To reset all counters to zero, users should simply replace the '+++' with a blank record when using SAVE as file INCON for another TMVOC run.

8.2 Boundary Conditions and "Inactive" Elements

Boundary conditions can be of two basic types. Dirichlet conditions prescribe thermodynamic conditions, such as pressure, temperature, etc. on the boundary, while Neumann conditions prescribe fluxes of mass or heat crossing boundary surfaces. A special case of Neumann boundary conditions is "no flux," which in the integral finite difference framework is handled with simplicity itself, namely, by not specifying any flow connections across the boundary. More general flux conditions are prescribed by introducing sinks or sources of appropriate strength into the elements adjacent to the boundary.

Dirichlet conditions can be implemented by assigning very large volumes (e.g., $V = 10^{50}$ m³) to grid blocks adjacent to the boundary, so that their thermodynamic conditions do not change at all from fluid or heat exchange with finite-size blocks in the flow domain. In addition, a small value (such as $D = 10^{-9}$ m) should be specified for the nodal distance of such blocks, so that boundary conditions are in fact maintained in close proximity to the surface where they are desired, and not at some distance from it. It is possible to specify a nodal distance that is outright zero; however, this throws certain switches in subroutine MULTI for assignment of interface mobilities that are intended for modeling of fracture-matrix interaction. Therefore, assigning D = 0 should be used with caution.

Time-dependent Neumann conditions can be specified by making sink and source rates time dependent. Time-dependent Dirichlet conditions can also be implemented; these are realized by placing appropriate sinks or sources in the boundary blocks (Moridis and Pruess, 1992). As an example, consider a laboratory experiment reported by Kruger and Ramey (1974) that involved flashing (vaporizing) flow from a sandstone core, with a time-dependent gas pressure boundary condition

$$P_b = P_0 + P_1 t + P_2 t^2$$
(8.2.1)

maintained at the outflow end. According to the ideal gas law, the pressure behavior of Eq. (8.2.1) can be associated with a time-dependent gas inventory of mass M_b in a volume V as follows.

$$M_{b} = P_{b} (mV/RT)$$
(8.2.2)

where m is the molar weight of the gas, R the universal gas constant, and T absolute temperature. The required time dependence of M_b can be realized by means of a sink/source rate

$$Q_b = dM_b / dt = (mV/RT) dP_b / dt = (mV/RT)(P_1 + 2P_2 t)$$
 (8.2.3)

Therefore, the desired boundary condition can be implemented by means of a grid block with volume V that is initialized in single-phase gas (e.g., air) conditions, with pressure P₀, and with a time-dependent sink/source term given by Eq. (8.2.3) that would be specified through tabular generation data. In order for the pressure conditions in this block to be negligibly affected by heat and mass exchange with the flow domain, the volume V should be made very large, e.g., $V = 10^{50}$ m³, just as for time-independent Dirichlet boundary conditions. The time dependent generation rates from Eq. (8.2.3) will then also be very large. The same approach as just outlined for a time-dependent gas pressure boundary can be used to realize other time-dependent Dirichlet conditions, such as prescribed temporal variation of temperature, capillary pressure, and others.

For time-independent Dirichlet boundary conditions, TMVOC offers an alternative and more elegant implementation, which provides savings in computational work along with added user conveniences in running simulation problems. This is accomplished with the simple device of "active" and "inactive" elements. By convention, elements encountered in data block "ELEME" (or in geometry files MESH or MINC) are taken to be active until the first element entry with a zero or negative volume is encountered. The first element with volume less than or equal to zero, and all subsequent elements, are by convention taken to be inactive. For the inactive elements no mass or energy balance equations are set up, their primary thermodynamic variables are not included in the list of unknowns, and their thermodynamic conditions will remain unchanged. Inactive elements can appear in flow connections and initial condition specifications like all other elements. The computational overhead of inactive elements is small because they do not increase the number of equations to be solved in a flow problem. The easiest way to declare selected grid blocks inactive is to use a text editor to move them to the end of the ELEME data block, and then insert a dummy grid block of zero volume in front of them.

8.3 Sinks and Sources

Sinks and sources are introduced through data block GENER in the input file. Several options are available for specifying the production (q < 0) or injection (q > 0) of fluids and heat. Any of the mass components may be injected in an element at a constant rate, or at time-dependent rates that may be prescribed through user-defined tables. The specific enthalpy of the injected fluid may be specified by the user as either a constant or time dependent value. Heat sources/sinks (with no mass injection) may be either constant or time-dependent.

Fluid production from an element may be handled by prescribing a constant or timedependent mass rate. In this case, the phase composition of the produced fluid may be determined by the relative phase mobilities in the source element. Alternatively, the produced phase composition may be specified to be the same as the phase composition in the producing element. In either case, the mole fractions of the components in the produced phases are determined by the corresponding component mole fractions in the producing element. Different options are available for interpolating time-dependent rates from user-supplied tabular data; these may be selected through parameter MOP(12). Users should note that sink and source rates and enthalpies must be given on a mass basis, in units of kg/s, J/kg, and J/s. These are converted internally in TMVOC to mole-based quantities which are used in the calculations.

Deliverability Model

Production wells may operate on deliverability against a prescribed flowing bottomhole pressure, P_{wb} , with a productivity index PI (Coats, 1977). With this option, the production rate of phase β from a grid block with phase pressure $P_{\beta} > P_{wb}$ is (see Appendix A for notation)

$$q_{\beta} = \frac{k_{r\beta}}{\mu_{\beta}} \rho_{\beta} \cdot PI \cdot (P_{\beta} - P_{wb})$$
(8.3.1).

For steady radial flow the productivity index is given by (Coats, 1977; Thomas, 1982)

$$(PI)_{l} = \frac{2\pi (k \Delta z_{l})}{\ln (r_{e}/r_{w}) + s - 1/2}$$
(8.3.2)

Here, Δz_l denotes the layer thickness, (k Δz_l) is the permeability-thickness product in layer *l*, r_e is the grid block radius, r_w is the well radius, and s is the skin factor. If the well is producing from a grid block which does not have cylindrical shape, an approximate PI can be computed by using an effective radius

$$\mathbf{r}_{\mathbf{e}} = \sqrt{\mathbf{A}/\mathbf{\pi}} \tag{8.3.3}$$

where A is the grid block area; e.g., $A = \Delta x \cdot \Delta y$ for an areal Cartesian grid. More accurate expressions for specific well patterns and grid block shapes have been given in the literature (e.g., Peaceman, 1977, 1982; Pritchett and Garg, 1980; Coats and Ramesh, 1982; Hadgu et al., 1993).

The rate of production for mass component κ is

$$\hat{q}^{\kappa} = \sum_{\beta} x_{\beta}^{\kappa} q_{\beta}$$
(8.3.4)

For wells which are screened in more than one layer (element), the flowing wellbore pressure P_{wb} can be corrected to approximately account for gravity effects according to the depth-dependent flowing density in the wellbore. Assume that the open interval extends from layer l = 1 at the bottom to l = L at the top. The flowing wellbore pressure in layer l, $P_{wb,l}$, is obtained from the wellbore pressure in layer l + 1 immediately above it by means of the following recursion formula

$$P_{wb,l} = P_{wb,l+1} + \frac{g}{2} \left(\overline{\rho}_{l}^{f} \Delta z_{l} + \overline{\rho}_{l+1}^{f} \Delta z_{l+1} \right)$$
(8.3.5)

Here, g is acceleration of gravity, and $\overline{\rho}_{I}^{f}$ is the flowing density in mass units in the tubing opposite layer *l*. Flowing densities are computed using a procedure given by Coats (private communication, 1982). If wellbore pressure were zero, we would obtain the following volumetric production rate of phase β from layer *l*.

$$\mathbf{r}_{l,\beta} = \left(\frac{\mathbf{k}_{\mathbf{r}\beta}}{\boldsymbol{\mu}_{\beta}}\right)_{l} (\mathrm{PI})_{l} \mathbf{P}_{l,\beta}$$
(8.3.6)

The total volumetric flow rate of phase β opposite layer *l* is, for zero wellbore pressure

$$\mathbf{r}_{l,\beta}^{\mathrm{T}} = \sum_{m=1}^{l} \mathbf{r}_{m,\beta}$$
(8.3.7)

From this we obtain an approximate expression for flowing density opposite layer l which can be used in Eq. (8.3.5).

$$\overline{\rho}_{l}^{f} = \overline{M} \sum_{\beta} \rho_{l,\beta} r_{l,\beta}^{T} / \sum_{\beta} r_{l,\beta}^{T}$$
(8.3.8)

Here, \overline{M} is the average molecular weight of the fluid mixture in units of kg/mole. During fluid production or injection, the rate of heat removal or injection is determined by

$$\hat{q}^{h} = \sum_{\beta} q_{\beta} h_{\beta}$$
(8.3.9)

where h_{β} is the specific enthalpy of phase β .

8.4 Heat Exchange with Confining Beds

One possible approach for modeling heat exchange with confining beds is to simply extend the computational grid into the cap- and base-rock, which would be given small or vanishing permeability. This way heat exchange would be treated no different than flow in the reservoir. A drawback of this approach is that even for modest accuracy requirements, the number of grid blocks in the heat flow domain could easily become comparable to, or even larger than, the number of grid blocks in the reservoir, leading to a very inefficient calculation. A much more efficient alternative is application of a semi-analytical method, which requires no grid blocks outside of the fluid flow domain, and permits better accuracy for short- and long-term heat exchange. TMVOC provides an option to use the method of Vinsome and Westerveld (1980), which gives excellent accuracy for heat exchange between reservoir fluids and confining beds such as may arise in geothermal injection and production operations.

Observing that the process of heat conduction tends to dampen out temperature variations, Vinsome and Westerveld suggested that cap- and base-rock temperatures would vary smoothly even for strong and rapid temperature changes at the boundary of the conduction zone. Arguing that heat conduction perpendicular to the conductive boundary is more important than parallel to it, they proposed to represent the temperature profile in a semi-infinite conductive layer by means of a simple trial function, as follows:

$$T(x,t) - T_{i} = (T_{f} - T_{i} + px + qx^{2}) exp(-x/d)$$
(8.4.1)

Here x is the distance from the boundary, T_i is initial temperature in cap-or base-rock (assumed uniform), T_f is the time-varying temperature at the cap- or base-rock boundary, p and q are time-varying fit parameters, and d is the penetration depth for heat conduction, given by

$$d = \sqrt{\Theta t}/2 \tag{8.4.2}$$

where $\Theta = K/(\rho C)$ is the thermal diffusivity, K the thermal conductivity, ρ the density of the medium, and C the specific heat. In the context of a finite-difference simulation of nonisothermal flow, each grid block in the top and bottom layers of the computational grid will have an associated temperature profile in the adjacent impermeable rock as given by Eq. (8.4.1). The coefficients p and q will be different for each grid block; they are determined concurrently with the flow simulation from the physical constraints of (1) continuity of heat flux across the boundary, and (2) energy conservation for the reservoir/confining layer system.

There is no separate input data block for specifying a semi-analytical heat exchange calculation. Instead, a number of parameters have to be specified in different blocks to engage this option, as follows. A semi-analytical heat loss calculation will be performed only when the parameter MOP(15) in record PARAM.1 is set equal to 1. Initial temperature as well as heat capacity and conductivity of the confining beds are specified by means of data provided for the very last volume element in data block ELEME. The initial temperature is taken as the temperature with which the last element is initialized. Heat capacity and conductivity are taken from data provided in block ROCKS for the particular domain to which the last element belongs. Thus, if a semi-analytical heat exchange calculation is desired, the user would append an additional inactive element in block ELEME, and provide the desired parameters as initial conditions and domain data, respectively, for this element. Finally, it is necessary to specify which elements have an interface area with the confining beds, and to give the magnitude of this interface area. This information is input as parameter AHTX in columns 31-40 of volume element data in block ELEME. Volume elements for which a zero-interface area is specified will not be subject to heat exchange.

At the termination of a run the data necessary for continuing the heat exchange calculation in a TMVOC continuation run are written onto a disk file TABLE. When restaring a problem, this file has to be provided under the name TABLE. If file TABLE is absent, TMVOC assumes that no prior heat exchange with confining beds has taken place, and takes their temperatures to be uniform and equal to the temperature of the very last volume element in block ELEME. An example of the application of a semi-analytical treatment for heat exchange is given in sample problem 3 of the TOUGH2 V 2.0 user's guide (Pruess et al., 1999).

8.5 Block-by-block Permeability Modification

Heterogeneous flow systems may be specified by providing domains with different hydrogeologic properties, and associating different grid blocks with different domains. In addition, TMVOC provides a feature that applies permeability modification (PM) coefficients for individual grid blocks according to

$$k_n \rightarrow k_n' = k_n \cdot \zeta_n$$
 (8.5.1)

Here, k_n is the absolute ("reference") permeability of grid block n, as specified in data block ROCKS for the domain to which that grid block belongs, while ζ_n is the permeability modification coefficient. The strength of capillary pressure will be automatically scaled according to (Leverett, 1941)

$$P_{cap,n} \rightarrow P_{cap,n'} = P_{cap,n} / \sqrt{\zeta_n}$$
 (8.5.2)

Permeability modifiers are initialized by a subroutine PMIN which is called in RFILE after all MESH data have been processed. To engage block-by-block permeability modification, users need to specify a (dummy) domain named 'SEED' in block ROCKS. No grid blocks should be assigned to this domain; the presence of domain 'SEED' simply serves as a flag to put permeability modification into effect, while data provided in domain 'SEED' serve to select different options. Random (spatially uncorrelated) PM data can be internally generated in TMVOC. Alternatively, externally defined permeability modifiers may be provided as part of the geometry data in block ELEME. This feature can be used to apply spatially correlated fields: users can run their own geostatistical package to generate whatever fields they desire, and then use a preprocessing program to place the PM-coefficients into the ELEME data block.

Note that as presently implemented the block-by-block permeability modification affects only grid block permeabilities but not porosities. Full details on the various user options for PM-coefficients are given in informative printout that is automatically generated with each TMVOC run.

8.6 Linear Equation Solvers

The computational work to be performed in the course of a TMVOC simulation includes evaluation of thermophysical properties for all grid blocks, assembly of the vector of residuals and the Jacobian matrix, and solution of the linear equation system for each Newton-Raphson iteration step. Except for small problems with just a few grid blocks, the most computationally intensive of these different tasks is the solution of the linear equation system. TMVOC offers a choice of direct or iterative methods for linear equation solution; technical details of the methods and their performance can be found in (Moridis and Pruess, 1998).

The most reliable linear equation solvers are based on direct methods, while the performance of iterative techniques tends to be problem-specific and lacks the predictability of direct solvers. The robustness of direct solvers comes at the expense of large storage requirements and execution times that typically increase with problem size N (= number of equations solved) proportional to N³. In contrast, iterative solvers have much lower memory requirements, and their computational work will increase much less rapidly with problem size, approximately proportional to N^{ω}, with $\omega \approx 1.4 - 1.6$ (Moridis and Pruess, 1995). For large problems and especially 3-D problems with several thousand grid blocks or more, iterative conjugate gradient (CG) type solvers are therefore the method of choice.

The default linear equation solution technique in TMVOC uses DSLUCS, a Lanczos-type bi-conjugate gradient solver, with incomplete LU-factorization as preconditioner. Users need to beware that iterative methods can be quite "fickle" and may fail for matrices with special features, such as many zeros on the main diagonal, large numerical range of matrix elements, and nearly linearly dependent rows or columns. Depending on features of the problem at hand, appropriate matrix preconditioning may be essential to achieve convergence. Poor accuracy of the linear equation solution will lead to deteriorated convergence rates for the Newtonian iteration, and an increase in the number of iterations for a given time step. In severe cases, time steps may fail with residuals either stagnating or wildly fluctuating. Information on the convergence of the linear equation solution is written to disk file LINEQ, which may be examined with any text editor. Users experiencing difficulties with the default settings are encouraged to experiment with the various solvers and preconditioners included in the TMVOC package.

The different linear equation solvers included in the TMVOC package can be selected by means of parameter MOP(21) in data record PARAM.1, as follows.

MOP(21) = 1: direct solver MA28
MOP(21) = 2: DSLUBC, a bi-conjugate gradient solver
MOP(21) = 3: DSLUCS, a Lanczos-type bi-conjugate gradient solver
MOP(21) = 4: DSLUGM, a generalized minimum residual solver
MOP(21) = 5: DLUSTB, a stabilized bi-conjugate gradient solver
MOP(21) = 6: direct solver LUBAND

All iterative solvers selected by means of MOP(21) use incomplete LU-factorization as a preconditioner. Alternative preconditioners and iteration parameters can be selected by means of an optional data block SOLVR in the TMVOC input file. If SOLVR is present, its specifications will override the choices made by MOP(21). The default preconditioning with SOLVR is also incomplete LU-factorization. The SOLVR block includes a single data record, as follows.

SOLVR keyword to introduce a data block with parameters for linear equation solvers.

Record SOLVR.1

Format(I1,2X,A2,3X,A2,2E10.4) MATSLV, ZPROCS, OPROCS, RITMAX, CLOSUR

MATSLV selects the linear equation solver

- 1: MA28
- 2: DSLUBC
- 3: DSLUCS
- 4: DSLUGM
- 5: DLUSTB
- 6: LUBAND
- ZPROCS selects the Z-preconditioning (Moridis and Pruess, 1998). Regardless of user specifications, Z-preprocessing will only be performed when iterative solvers are used (2 ≤ MATSLV ≤ 5), and if there are zeros on the main diagonal of the Jacobian matrix.
 - Z0: no Z-preprocessing (default for NEQ=1)
 - Z1: replace zeros on the main diagonal by a small constant (1.e-25; default for NEQ \neq 1))
 - Z2: make linear combinations of equations for each grid block to achieve non-zeros on the main diagonal
 - Z3: normalize equations, followed by Z2

- Z4: affine transformation to unit main-diagonal submatrices, without center pivoting
- OPROCS selects the O-preconditioning (Moridis and Pruess, 1998).
 - O0: no O-preprocessing (default, also invoked for NEQ=1)
 - O1: eliminate lower half of the main-diagonal submatrix with center pivoting
 - O2: O1, plus eliminate upper half of the main-diagonal submatrix with center pivoting
 - O3: O2, plus normalize, resulting in unit main-diagonal submatrices
 - O4: affine transformation to unit main-diagonal submatrices, without center pivoting
- RITMAX selects the maximum number of CG iterations as a fraction of the total number of equations $(0.0 < \text{RITMAX} \le 1.0; \text{ default is RITMAX} = 0.1)$
- CLOSUR convergence criterion for the CG iterations $(1.e-12 \le CLOSUR \le 1.e-6; default is CLOSUR = 1.e-6)$

DLUSTB implements the BiCGSTAB(m) algorithm (Sleijpen and Fokkema, 1993), an extension of the BiCGSTAB algorithm of van der Vorst (1992). This has been found to be quite robust, and especially provides improved convergence behavior when iterations are started close to the solution, i.e., near steady state. The preconditoning algorithms can cope with difficult problems in which many of the Jacobian matrix elements on the main diagonal are zero, as often happens in multi-component flow problems where not all components are present in all grid blocks.

9. Output from TMVOC

TMVOC produces a variety of printed output, most of which can be controlled by the user. Information written in the initialization phase to the standard output file includes PARAMETER settings in the main program for dimensioning of problem-size dependent arrays, and disk files in use. This is followed by documentation on block-by-block permeability modification, on settings of the MOP-parameters for choosing program options, and on the EOS-module. During execution TMVOC can optionally generate a brief printout for Newtonian iterations and time steps, as well as messages related to the appearance/disappearance of fluid phases. Using the option MOP(7)>0, the input data can be printed out. Standard output at user-specified simulation times or time steps is generated by a subroutine OUT (each EOS module comes with its own routine OUT). This output provides some time-stepping information, and a complete element-by-element report of thermodynamic state variables and other important parameters. Additional optional output is available on mass and heat flow rates and velocities, and on diffusive fluxes of components in phases. Changes in thermodynamic state variables during a time step may also be printed. Volume and mole balances for the fluid phases as well as mole balances for single mass components in the different phases are printed out by subroutine BALLA. Examples of TMVOC-output are reproduced in section 10, most of which should be self-explanatory. Here we summarize the main output parameters in alphabetical order.

DELTEX	time step size, seconds
Dgas	gas phase density, kg/m ³
DNAPL	NAPL (oil phase) density, kg/m ³
DT	time step size, seconds
DX1, DX2, etc.	changes in first, second, etc. thermodynamic variable
DX1M, DX2M, DX3M	maximum change in first, second, and third primary variable in current time step
ELEM	code name of element
ELEM1, ELEM2	code name of first and second element, respectively, in a flow connection
ENTHALPY	flowing specific enthalpy for mass sinks/sources, J/kg
FF(GAS), FF(Aq), FF(NAPL)	mole fraction of flow in gas, aqueous, and NAPL phases, respectively (mass production wells only)
FFVOC(GAS), FFVOC(Aq)	total VOC mole fraction of flow in gas and aqueous phases, respectively (mass production wells only)
FLOF	total rate of fluid flow, mole/s (positive if from ELEM2 into ELEM1)
FLO(GAS)	total rate of gas flow, mole/s (positive if from ELEM2 into ELEM1)

FLOH	total rate of heat flow, W (positive if from ELEM2 into ELEM1)
FLO(Aq)	total rate of aqueous phase flow, mole/s (positive if from ELEM2 into ELEM1)
FLO(NAPL)	total rate of NAPL phase flow, mole/s (positive if from ELEM2 into ELEM1)
FLO(VOC)Aq	total rate of VOC flow in aqueous phase, mole/s (positive if fromELEM2 into ELEM1)
FLO(VOC)GAS	total rate of VOC flow in gas phase, mole/s (positive if fromELEM2 into ELEM1)
GENERATION RATE	sink (> 0) or source (< 0) rate, kg/s (mass), W (heat)
INDEX	internal indexing number of elements, connections, sinks/sources
ITER	number of Newtonian iterations in current time step
ITERC	total cumulative number of Newtonian iterations in simulation run
H Aq	Aqueous phase enthalpy (J/mole)
H gas	Gas phase enthalpy (J/mole)
H NAPL	NAPL enthalpy (J/mole)
КСҮС	time step counter
KER	index number of equation with largest residual
KRgas	gas phase relative permeability
KR Aq	aqueous phase relative permeability
KRoil	NAPL phase relative permeability
KON	convergence flag; KON = 2: converged; KON = 1: not converged
MAX. RES.	maximum (relative) residual in any of the mass and energy balance equations (see Eq. B.8)
NER	index number of element (grid block) with largest residual
Р	pressure, Pa
PCwg	capillary pressure between the gas-aqueous phases, Pa
PCog	capillary pressure between the gas-NAPL phases, Pa
PWB	flowing bottomhole pressure (production wells on deliverability only), Pa
SG	gas saturation
SW	aqueous phase saturation
SO	NAPL saturation
SOURCE	code name of sink/source
ST	simulation time, in seconds

SUMmolef	{sum of component mole fractions in a phase} - 1
Т	temperature, °C
TOTAL TIME	simulation time, in seconds
VAPDIF	diffusive vapor flow rate, kg/s (positive if from ELEM2 into ELEM1)
VEL(GAS)	gas phase pore velocity, m/s (positive if from ELEM2 into ELEM1)
VEL(WAT)	aqueous phase pore velocity, m/s (positive if from ELEM2 into ELEM1)
VEL(NAPL)	NAPL pore velocity, m/s (positive if from ELEM2 into ELEM1)
VIS Aq	aqueous phase viscosity, Pa-s
VISGAS	gas phase viscosity, Pa-s
VISOIL	NAPL viscosity, Pa-s
X1, X2, etc.	first, second, etc. thermodynamic variable (also: water 1, water 2)
XVOCw	total mass fraction of VOCs in the aqueous phase
Xwat	mole fraction of water in the different phases
Z-factor	real gas compressibility factor

Time series of some parameters for plotting can optionally be written to files FOFT (for elements), COFT (for connections), and GOFT (for sinks and sources). These files are written in subroutine FGTAB, called from and following CYCIT. At present there are no input options to select the parameters to be written out in FGTAB; users desiring different parameters than what is coded in FGTAB should modify that subroutine.

10. Sample Problems

In this section we present and discuss a number of sample problems for TMVOC which can serve as a tutorial for TMVOC applications and as benchmarks for proper code installation. Our emphasis is on demonstrating preparation of input data and illustrating code capabilities. Accordingly, most of the problems consist of small and often coarse grid systems. Users are reminded that, for accurate solution to flow problems, careful attention needs to be given to issues of space discretization and time step control. Numerous verification and validation exercises performed with various TOUGH2 modules are available in separate reports (e.g., Moridis and Pruess, 1992, 1995; Pruess et al., 1996). These demonstrate that the code can obtain accurate solutions to physically and mathematically well-posed problems, and can successfully describe laboratory experiments and field observations on fluid flow and heat transfer processes. TMVOC has been extensively cross-checked against other TOUGH2 modules. Comparisons with T2VOC are given in some of the sample problems below.

In addition to their primary purpose of documenting and benchmarking code applications, the input data files can also be used as templates to facilitate preparation of input data for new flow problems. We envisage that a user rarely if ever will assemble a new input file from scratch; instead (s)he will modify an existing input file to suit a new application.

In the data records for keywords (such as ROCKS, PARAM, etc.) in TMVOC input files, only the first 5 characters are read. As seen in the input files for the sample problems, below, we have adopted a convention of writing column counters following the keywords. This is done as a convenience to facilitate alignment of the fixed-format data with data fields.

Users are cautioned that for problems that involve (dis-)appearance of phases or components, the numerical performance can be quite sensitive to subtle issues of floating point accuracy and numerical roundoff. The sample problems given below were executed on an IBM RS/6000 workstation under the AIX Version 4 operating system. On different computing platforms the time stepping sequence may be somewhat different, so that final results also may be somewhat different due to different time truncation errors. The most sensitive check for proper code installation is provided by the quantities printed as "MAX. RES." in the output file, which represent the maximum relative difference, for all grid blocks and equations, between the left-hand sides (accumulation terms) and right-hand sides (flow terms) of the governing equations. During the Newton-Raphson iteration process these residuals are reduced to smaller and smaller values, until they drop below specified convergence tolerances. As convergence is approached, the residuals are subject to increasingly severe numerical cancellation, arising from subtracting two numbers with

diminishing difference. Small differences due to roundoff will first show up in different values for the "MAX. RES.", long before giving any visible changes in primary variables or their increments.

10.1 Problem No. 1 (*r7c*) - Demonstrating Initialization of Different Phase Conditions

Here we present an input file (Fig. 10.1.1) and portions of the TMVOC printout (Fig. 10.1.2) generated from it to document the initialization of different phase conditions. A single infinitesimal time step of 1.e-9 s was specified, and no flow simulation is carried out. Note that mole fractions for all components are assigned to the PAR array for all phases (and are printed in the output file) even when not all phases are present. As discussed in Appendix D, this is done to permit a treatment of molecular diffusion that is fully coupled with phase partitioning under multiphase conditions.

Users should note that the proper initialization of multiphase multicomponent systems can be difficult because of several thermodynamic constraints acting simultaneously. We envision that 2 or 3-phase conditions that include a NAPL will rarely be initialized directly; instead, a flow simulation will typically be started from single-phase water (saturated zone) or two-phase water-gas conditions (unsaturated zone) without any VOC present. VOC distributions and the possible evolution of a NAPL phase would then be computed using appropriate injection specifications to simulate a contamination event (see sections 10.4, 10.5, and 10.7).

TMVOC checks user-specified initial conditions during the initialization phase. Any thermodynamic inconsistencies encountered will be noted in informative messages, and will cause the simulation run to stop.
r7c ... testing all initializations; no data block NCGAS (defaults NCG=1, air) ROCKS----1----*---2----*----3----*----4----*---5----*---6----*----7----*----8 ----5--1.0e-11 1.0e-11 1.0e-11 2.1 720.0 2650. SANDA 2 .360 1.0E-8 0.25 .01 10. б .150 .05 3. 0.000 1.84 11. 8 CHEMP---1---*---2---*---3---*---4---*---5---*---6---*---7----*---8 BENZENE 1
 562.2
 48.2
 0.271
 0.212
 0.0

 353.2
 -6.98273
 1.33213
 -2.62863
 -3.33399
 78.114-.3392E+020.4739E+00-.3017E-030.7130E-07 885. 289.00 0.770E-05 273.10 1.52 0.4612E+010.1489E+03-.2544E-010.2222E-04 0.411E-03 0.000E+00 0.000E+00 0.000E+00 259.0 0.891E-01 0.001 n-DECANE 617.700 21.200 0.249 0.489 447.300 -8.56523 1.97756 -5.81971 0.00 -0.29982 142.286 -7.913E+0 730.000 293.000 9.609E-1 -5.288E-4 1.000E-5 293.000 0.5900 293.000 1.131E-7 1.600 603.000 0.5900 293.000 3.799e-7 0.000 ie(2)=1 choose SRK; ie(3)=1 choose Khair = 1.E10 Pa, as in EOS3 and T2VOC SELEC----1---*---2----*---3----*---4----*---5----*---6----*---7-----8 0 1 1 MULTI----1---*----2---*---3----*---4----*---5----*----6----*----7----*8 4 5 3 6 START----1----*----2----*---3----*---4----*--5----*---6----*---7----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----7----*---8 PARAM----1----*---2----*---3----*---4----*---5----*---6----*----7----*----8 1100090 0000 004 0 0000 4 1 0.0 -1. 1.e-9 1.0 1.e-5 1.e-8 6 .55 0.1013e6 .44974 .5 20. ELEME----1----*----3-----*----5-----*----6-----*-----8 1SANDA 1.0 1SANDA 1.0 01 G G 01 W 02 N 03 1SANDA 1.0 1SANDA 1SANDA 1SANDA 1SANDA WG 04 NG 05 1.0 1.0 WN 06 1.0 1.0 WGN07 def06 1 SANDA 1.0 CONNE----1----*---2----*---3----*---4----*---5----*---6----*---7----*----INCON----1----*----2----*----3----*----4----*----5----**----6----*----7----*8 1 0 01 0 G 0.1013e6 1.e-8 1.e-8 0.99 20. 02 0 2 W 0.1013e6 1.e-8 1.e-8 1.e-8 20. 0 03 0 3 Ν 0.1013e6 0 5 0.5 1.e-6 20. WG 04 0 4 0.1013e6 1.e-8 ⊥3e6 20. 0 1.e-8 0 5 NG 05 0 5 0.1013e6 .09730 1.e-8 0.5 20. WN 06 0 б 0.1013e6 0.5 0.5 0.5 20. 0 WGN07 0 7 0.1013e6 0.3 1.e-8 0.2 20. GENER----1----*---2----*---3----*---4---*---5----*---6----*---7----*---8 ENDCY----1----*---2----*---3----*---4----*---5----*---6----*----7----*----8

Figure 10.1.1. TMVOC input file for initialization test.

r7c testing all initializations; no data blo	ck NCGAS (defaults NCG=1, air)
--	--------------------------------

@@@@@@	OU1 0000000	PUT DATA AF	TER (1, @@@@@@@@@@@@@@	1)-2-TIME ST @@@@@@@@@@@@@	EPS @@@@@@@@@@@@@@	000000000000000000000000000000000000000			THE T	IME IS .11 Reeeeeeeeeee	574E-13 DAYS
TOTAL	L TIME	KCYC 1	ITER ITERC 1 1	KON 2				MAX. R .00000	ES. NER E+00 0	KER 0	DELTEX .10000E-08
D 000.	K1M)0E+00	DX2M .00000E+00	DX3M .00000E+00	DX4M .00000E+00	DX5M .00000E+00	DX6M	DX7M	DX8M	DX9M	DX10M	DX11M
@@@@@@	000000	000000000000000000000000000000000000000	୲ଌ୕ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼ଢ଼	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	200000000000000000000000000000000000000	୶ଌ୶ଌ୶ଌ୶ଌ୶ୡ୶	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	200000000000000000000000000000000000000	୶ଌ୶ଌ୶ଌ୶ଌ୶ଌ୶
ELEM.	INDEX	(Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
G 1 W 2 N 3 WG 4 NG 5 WN 6 WGN 7 def 6 @@@@@@	1 2 3 4 5 6 7 8 200000000	.10130E+06 .10130E+06 .10130E+06 .10130E+06 .10130E+06 .10130E+06 .10130E+06 .10130E+06	.20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02	.10000E+01 .00000E+00 .50000E+00 .50000E+00 .00000E+00 .30000E+00 .00000E+00	.00000E+00 .10000E+01 .50000E+00 .50000E+00 .50000E+00 .20000E+00 .50000E+00	.00000E+00 .00000E+00 .00000E+01 .00000E+00 .50000E+00 .50000E+00 .50000E+00	63445E+05 .00000E+00 30212E+05 37279E+04 32165E+05 17752E+04 70180E+04 17752E+04	33233E+05 .00000E+00 .00000E+00 19527E+04 .00000E+00 10729E+04 .00000E+00	.47566E-09 .12234E-06 .99888E+00 .20622E-09 .29758E-02 .89167E-03 .17791E-02 .98072E-03	.11994E+01 .44973E-03 .00000E+00 .11936E+01 .00000E+00 .13944E+01 .00000E+00	.00000E+00 .72995E+03 .77711E+03 .73080E+03 .88092E+03 .77711E+03 .88092E+03 .78387E+03
				>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MOLE FRACTIC	ONS IN THE (GAS PHASE <<	<<<<<<			
ELEM. G 1 W 2 N 3 WG 4 NG 5 WN 6 WGN 7 def 6	INDEX 1 2 3 4 5 6 7 6	Xwat .10000E-01 .23066E-01 .23066E-01 .13769E-01 .23066E-01 .23066E-01 .23066E-01	2 AIR .99000E+00 .98717E-03 .9717E-01 .97693E+00 .88893E+00 .00000E+00 .87964E+00 .67584E+00	3 BENZENE .10000E-07 .23678E-05 .48658E-01 .10000E-07 .97300E-01 .48646E-01 .97290E-01 .53524E-01	4 n-DECANE .10000E-07 .34179E-04 .64922E-03 .10000E-07 .64906E-03 .10000E-07 .58396E-03	** SUMmolef .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	** Z-factor .99971E+00 .0000E+00 .99962E+00 .99825E+00 .00000E+00 .00000E+00				
ELEM	TNDEX	Xwat	2 ATR	3 BENZENE	MOLE FRACTIC	NS IN THE AG	QUEOUS PHASE	<<<<<<			
G 1 W 2 N 3 WG 4 NG 5 WN 6 WGN 7 def 6	1 2 3 4 5 6 7 6	.43354E+00 .10000E+01 .00000E+00 .99999E+00 .59694E+00 .99979E+00 .99958E+00 .99977E+00	10029E-04 10000E-07 10000E-05 98963E-05 00049E-05 .00000E+00 .89108E-05 .68463E-05	.42232E-10 .10000E-07 .20550E-03 .42233E-10 .41093E-03 .20545E-03 .41089E-03 .22605E-03	29258E-11 .10000E-07 .18995E-06 .29258E-11 .29258E-11 .18990E-06 .29258E-11 .17086E-06	.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 11102E-15 .00000E+00 11102E-15					
				>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MOLE FRACTIC	ONS IN THE (DIL PHASE <<	<<<<<<			
ELEM. G 1 W 2 N 3 WG 4 NG 5 WN 6 WGN 7 def 6	INDEX 1 2 3 4 5 6 7 6	Xwat .10975E-03 .25315E-03 .00000E+00 .25315E-03 .25315E-03 .25315E-03 .25315E-03	2 AIR .10029E-04 .10000E-07 .10000E-05 .98963E-05 .90049E-05 .0000E+00 .89108E-05 .68463E-05	3 BENZENE .10276E-06 .24331E-04 .50000E+00 .10276E-06 .99983E+00 .49987E+00 .99973E+00 .55000E+00	4 n-DECANE .77015E-05 .26323E-01 .50000E+00 .77015E-05 .49987E+00 .77015E-05 .44974E+00	** SUMmolef .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00					

Figure 10.1.2. Portion of printout from initialization test.

10.2 Problem No. 2 (***rblm***) - **1-D Buckley-Leverett Flow**

Here we present an adaptation of T2VOC sample problem no. 2 to TMVOC. The flow system is initialized in two-phase water-NAPL conditions, with a water saturation of 15.9 % so that NAPL (chlorobenzene) saturation is 84.1 %. The input file as shown in Fig. 10.2.1 is very similar to the T2VOC input file for this problem. An NCGAS data block with a single non-condensible gas (AIR) was included, although this is not required in this case because the choices made in NCGAS are TMVOC defaults. Portions of the printed output are shown in Fig. 10.2.2. The results agree very closely with those from T2VOC.

rblm ... Buckley/Leverett problem for TMVOC: inject water into chlorobenzene MESHMAKER1----*---2----*---3----*---4----*---5----*---6----*----8 XYZ 00. 40 7.62 NX 1 NX 0.0 1 1.0 NY ΝZ 1 1.0 ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----8 1 1.E+20 .20 2.96E-13 2.96E-13 2.96E-13 3.1 1000. DIRT1 1.e-8 CHEMP----1----*-Modified Chlorobenzene data-*---5----*---6----*----8 1 CHLOROBENZENE 632.4 45.2 0.265 0.249 1.6 0.17038 -7.587 404.9 2.26551 -4.09418 112.559 -33.89 .5631 -4.522E-4 1.426E-7 292.15 8.0E-6 273.15 1.00 998.3 292.15 Ο. Ο. 1.0 308. 1.0E-7 0. 0. 0. Ο. 0. 0. NCGAS----1----*----2----*----3----*----4----*----5----*----6----*----8 1 AIR ie(2)=1 choose SRK; ie(3)=1 choose KHair = 1.E10 Pa, as in EOS3 and T2VOC SELEC----1----*----2----*----4----*---5----*---6----*----8 0 1 1 MULTI----1----*----2----*----3----*----4----*----5----*----6----*----8 3 3 6 3 START----1----*----2----*----3----*----4----*----5----*----6----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----7----* PARAM----1----*----2----*----3----*----4----*---5----*----6----*----8 20010000000 00000300001000 4 200 1.296E+8 -1. 8.64E+5 9.8060 1.e+3 1.000e-8 1.E-5 1.E00 6 6.895E5 0.159 1. 19.0 SOLVR----1----*----2----*----3----*----5----*----6----*----8 5 Z1 OO 8.0e-1 1.0e-7 RPCAP----1----*----2----*----3----*----4----*----5----*----6----*----8 11 9 GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 150.6e-6 A11 1INJ 1 COM1 80.e3 INCON----1----*----2----*----3----*----4----*---5----*---6----*----8 A1141 .2 6 6.895E5 1.0 0.80 19.0 ENDCY---1---*---2---*---3---*--4---*---5---*---6---*----8

Figure 10.2.1. Input file for sample problem 2 (Buckley-Leverett).

********* VOLUME- AND	MASS-BALANCES ************************************	* * * * * * * * * * * * * * * * * * * *	******	* * * * * * * * * * * * * * * * * * * *	*****
********* [KCYC,ITER]	= [0, 0] *****		THE TIME IS .000	00E+00 SECONDS, OR	.00000E+00 DAYS
PHASES	GAS AQUEOUS	NAPL	TOTAL		
VOLUMES (m**3) MASS (moles) ENERGY (J)	.00000000E+00 .96926400E+01 .00000000E+00 .53735172E+06 .00000000E+00 .77096530E+09	.51267360E+02 .45523189E+06 .11474721E+10	.60960000E+02 .99258362E+06 .46329600E+27		
	COMPONENTS MOLES IN PLACE - BY PH	ASES		COMPONENTS IN PLA	ACE - OVERALL
COMPONENTS WATER AIR CHLOROBENZENE total VOCs	GAS PHASE AQUEOUS PHASE .00000000E+00 .53735167E+06 .00000000E+00 .0000000E+00 .00000000E+00 .53722337E-01 .00000000E+00 .53722337E-01	NAPL .10873734E+03 .00000000E+00 .45512316E+06 .45512316E+06	ADSORBED .00000000E+00 .00000000E+00	TOTAL MOLES .53746041E+06 .0000000E+00 .45512321E+06 .45512321E+06	TOTAL MASS (kg) .96828867E+04 .0000000E+00 .51228213E+05 .51228213E+05
		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
ITERATING AT [All 1(1, 2) ST = ITERATING AT [1, 1] DELTEX = .100000E+04 .100000E+04 DT = .100000E+04 DX1= 2, 1] DELTEX = .200000E+04	MAX. RES. = .6 .472480E+04 DX2= MAX. RES. = .1	522129E-03 AT ELEMEN 238861E-03 T = 1 .24346E-02 AT ELEMEN	NT A11 1 EQUATION 19.000 P = 694225 NT A11 1 EQUATION	1 5. S = .000000E+00 1
A11 1(2, 2) ST =	.300000E+04 DT = .200000E+04 DX1= 3, 11 DELTEX = .400000E+04	.556933E+04 DX2= MAX. RES. = .2	000000E+00 T = 1 248381E-02 AT ELEMEN	19.000 P = 699794 NT A11 1 EOUATION	L. S = .000000E+00
A11 1(3, 2) ST =	.700000E+04 DT = .400000E+04 DX1= 4, 11 DELTEX = .800000E+04	.709877E+04 DX2= MAX. RES. = .4	000000E+00 T = 1 95530E-02 AT ELEMEN	19.000 P = 706893 NT A11 1 EOUATION	B. S = .000000E+00
A11 1(4, 2) ST =	.150000E+05 DT = .800000E+04 DX1=	.954002E+04 DX2=	= .000000E+00 T =	19.000 P = 716433 NT A11 1 FOUATION	S = .000000E+00
All 1(5, 2) ST = $TTEPATING AT [$.310000E+05 DT = .160000E+05 DX1=	.131696E+05 DX2=	= .000000E+00 T = .05306E-01 AT FLEMEN	19.000 P = 729602	S = .000000E+00
All 1 (6, 2) ST = ITERATING AT [630000E+05 DT = .320000E+05 DX1= 7, 1] DELTEX = .640000E+05 7, 2] DELTEX = .640000E+05	MAX. RES1 .184157E+05 DX2= MAX. RES. = .3	000000E+00 T =	19.000 P = 748018 NT A11 1 EQUATION	3. S = .000000E+00
All 2(7, 3) ST = ITERATING AT [ITERATING AT [.127000E+06 DT = .640000E+05 DX1= 8, 1] DELTEX = .128000E+06 8 2] DELTEX = .128000E+06	MAX. RES1 .256067E+05 DX2= MAX. RES. = .7 MAX. PES7	000000E+00 T =	19.000 P = 767886 NT A11 1 EQUATION	5. S = .000000E+00 $\frac{1}{1}$
All 2(8, 3) ST = ITERATING AT [ITERATING AT [255000E+06 DT = .128000E+06 DX1= 9, 1] DELTEX = .256000E+06 9 2] DELTEX = .256000E+06	.350714E+05 DX2= MAX. RES. = .1	000000E+00 T = . .37272E+00 AT ELEMEN .33354E-03 AT ELEMEN	19.000 P = 802957 NT A11 1 EQUATION	7. $S = .000000E+00$ 1 1
All 2(9, 3) ST = ITERATING AT [ITERATING AT [.511000E+06 DT = .256000E+06 DX1= 10, 1] DELTEX = .512000E+06 10 21 DELTEX = .512000E+06	.427444E+05 DX2= MAX. RES. = .2 MAX. RES. = .2	000000E+00 T =	19.000 P = 845701 NT A11 1 EQUATION	1. S = .000000E+00
All 2(10, 3) ST = ITERATING AT [10/2300E+07 DT = .512000E+06 DX1= 11, 1] DELTEX = .864000E+06	.400943E+05 DX2= MAX. RES. = .3	000000E+00 T =	19.000 P = 885796 NT A11 1 EQUATION	5.S = .000000E+00
ITERATING AT [ITERATING AT [All 2(11, 4) ST = ITERATING AT [11, 2] DELIEX = .864000E+06 11, 3] DELTEX = .864000E+06 188700E+07 DT = .864000E+06 DX1= 12, 1] DELTEX = .864000E+06	MAX. RES. = .1 MAX. RES. = .1 .237980E+05 DX2= MAX. RES. = .2	08291E-04 AT ELEMEN 08291E-04 AT ELEMEN 0000000E+00 T = 1 025869E+00 AT ELEMEN	NT All 2 EQUATION NT All 1 EQUATION 19.000 P = 909594 NT All 1 EQUATION	$1 \\ 1 \\ S = .000000E+00 \\ 1$
ITERATING AT [ITERATING AT [All 2(12, 4) ST = ITERATING AT [12, 2] DELTEX = .864000E+06 12, 3] DELTEX = .864000E+06 .275100E+07 DT = .864000E+06 DX1= 13 1] DELTEX = .864000E+06	MAX. RES. = .1 MAX. RES. = .4 .869918E+04 DX2= MAX RES = 1	.66410E-01 AT ELEMEN 49347E-04 AT ELEMEN = .000000E+00 T = 60826E+00 AT ELEMEN	NT A11 2 EQUATION NT A11 2 EQUATION 19.000 P = 918293 NT A11 1 EQUATION	$ \begin{array}{c} 1 \\ 1 \\ 3. \\ S \\ 1 \end{array} = .000000E+00 $
ITERATING AT [ITERATING AT [All 3(13, 4) ST =	13, 2] DELTEX = .864000E+06 13, 3] DELTEX = .864000E+06 .361500E+07 DT = .864000E+06 DX1=	MAX. RES. = .8 MAX. RES. = .2 .290764E+04 DX2=	257466E-02 AT ELEMEN 262738E-04 AT ELEMEN = .000000E+00 T =	NT A11 2 EQUATION NT A11 2 EQUATION 19.000 P = 914525	1 1 5. S = .000000E+00
ITERATING AT [ITERATING AT [All 2(14, 3) ST =	14, 1] DELTEX = .864000E+06 14, 2] DELTEX = .864000E+06 .447900E+07 DT = .864000E+06 DX1=	MAX. RES. = .1 MAX. RES. = .4 .204810E+04 DX2=	45845E+00 AT ELEMEN 10478E-02 AT ELEMEN 000000E+00 T = 1	NT A11 2 EQUATION NT A11 3 EQUATION 19.000 P = 923969	1 1 9. S = .000000E+00

Figure 10.2.2. Part of printed output for sample problem 2.

rblm		Buckley/Leverett	problem	for	TMVOC:	inject	water	into	chlorobenzene
--------	--	------------------	---------	-----	--------	--------	-------	------	---------------

@@@@@@	OUT 000000	PUT DATA AF @@@@@@@@@@@	FTER (159, eeeeeeeeeeeeee	3)-2-TIME ST	EPS Beeeeeeeeeeeee	୲ଌଌଌଌଌଌଌଌଌଌ	ଉଉଉଉଉଉଉଉଉଉଉ	ଢଉଢଢଢଢଢଢଢଢ	THE TI @@@@@@@@@@@@@@	IME IS .1! Beeeeeeeeee	5000E+04 DAYS Reeeeeeeeeeeeee
TOTAL .129	TIME 60E+09	КСҮС 159	ITER ITERC 3 475	KON 2				MAX. R .28558	ES. NER E-06 27	KER 1	DELTEX .70500E+06
DX .8260	1M 9E+03	DX2M .00000E+00	DX3M .25052E-01	DX4M .00000E+00	DX5M	DX6M	DX7M	DX8M	DX9M	DX10M	DX11M
@@@@@@	@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	0000000000000000	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000	200000000000000000000000000000000000000	900000000000000000000000000000000000000
ELEM.	INDEX	P (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
A11 1	1	.10145E+07	.19000E+02	.00000E+00	.77510E+00	.22490E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10001E+04
A11 2	2	.10078E+07	.19000E+02	.00000E+00	.76149E+00	.23851E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10001E+04
A11 3	3	.10008E+07	.19000E+02	.00000E+00	.74982E+00	.25018E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10001E+04
A11 4	4	.99349E+06	.19000E+02	.00000E+00	.73930E+00	.26070E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10001E+04
A11 5	5	.98597E+06	.19000E+02	.00000E+00	.72961E+00	.27039E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10001E+04
A11 6	6	.97823E+06	.19000E+02	.00000E+00	.72055E+00	.27945E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10001E+04
A11 7	7	.97027E+06	.19000E+02	.00000E+00	.71199E+00	.28801E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10000E+04
A11 8	8	.96211E+06	.19000E+02	.00000E+00	.70383E+00	.29617E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10000E+04
A11 9	9	.95376E+06	.19000E+02	.00000E+00	.69600E+00	.30400E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.10000E+04
A1110	10	.94521E+06	.19000E+02	.00000E+00	.68843E+00	.31157E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99999E+03
A1111	11	.93648E+06	.19000E+02	.00000E+00	.68107E+00	.31893E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99997E+03
A1112	12	.92756E+06	.19000E+02	.00000E+00	.67387E+00	.32613E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99995E+03
A1113	13	.91847E+06	.19000E+02	.00000E+00	.66677E+00	.33323E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99993E+03
A1114	14	.90920E+06	.19000E+02	.00000E+00	.65972E+00	.34028E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99991E+03
ALL15	15	.89975E+06	.19000E+02	.00000E+00	.65266E+00	.34734E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99990E+03
AIII6	16	.89013E+06	.19000E+02	.00000E+00	.64550E+00	.35450E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99988E+03
ALLL /	10	.88034E+06	.19000E+02	.00000E+00	.63815E+00	.36185E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99986E+03
A1110	10	.8/036E+06	.19000E+02	.00000E+00	.03040E+00	.30954E+UU	.00000E+00	.00000E+00	.02402E-00	.00000E+00	.99984E+03
A1120	19	.86020E+06	.19000E+02	.00000E+00	.02222E+00	.3///8E+00	.00000E+00	.00000E+00	.02402E-00	.00000E+00	.99982E+03
A1120	20	.04904E+00	190005+02	000005+00	.01307E+00	207595+00	.00000E+00	.00000E+00	62462E-06	.00000E+00	.99900E+03
A1122	21	92947E+06	10000E+02	.00000E+00	59012E+00	.39738E+00	000000000000000000000000000000000000000	.00000E+00	62462E-06	.00000E+00	00075F+03
A1122	22	81739F+06	19000E+02	00000E+00	57067F+00	429338+00	00000E+00	000000E+00	62462E-00	00000E+00	99973E+03
A1124	24	80594E+06	19000E+02	00000E+00	54089E+00	45911E+00	00000E+00	00000E+00	62462E-06	00000E+00	99971E+03
A1125	25	79404E+06	19000E+02	00000E+00	48141E+00	51859E+00	00000E+00	00000E+00	62462E-06	00000E+00	99968E+03
A1126	26	78177E+06	19000E+02	00000E+00	34434E+00	65566E+00	00000E+00	00000E+00	62462E-06	00000E+00	99966E+03
A1127	27	.77147E+06	.19000E+02	.00000E+00	.18625E+00	.81375E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99964E+03
A1128	28	.76491E+06	.19000E+02	.00000E+00	.15908E+00	.84092E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99963E+03
A1129	29	.75887E+06	.19000E+02	.00000E+00	.15889E+00	.84111E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99961E+03
A1130	30	.75284E+06	.19000E+02	.00000E+00	.15890E+00	.84110E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99960E+03
A1131	31	.74681E+06	.19000E+02	.00000E+00	.15891E+00	.84109E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99959E+03
A1132	32	.74078E+06	.19000E+02	.00000E+00	.15892E+00	.84108E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99958E+03
A1133	33	.73475E+06	.19000E+02	.00000E+00	.15893E+00	.84107E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99957E+03
A1134	34	.72871E+06	.19000E+02	.00000E+00	.15894E+00	.84106E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99955E+03
A1135	35	.72268E+06	.19000E+02	.00000E+00	.15895E+00	.84105E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99954E+03
A1136	36	.71665E+06	.19000E+02	.00000E+00	.15896E+00	.84104E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99953E+03
A1137	37	.71062E+06	.19000E+02	.00000E+00	.15897E+00	.84103E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99952E+03
A1138	38	.70458E+06	.19000E+02	.00000E+00	.15898E+00	.84102E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99951E+03
A1139	39	.69855E+06	.19000E+02	.00000E+00	.15899E+00	.84101E+00	.00000E+00	.00000E+00	.62462E-06	.00000E+00	.99949E+03
A1140	40	.69252E+06	.19000E+02	.00000E+00	.15900E+00	.84100E+00	.00000E+00	.U0000E+00	.62462E-06	.00000E+00	.99948E+03
ALL41	4⊥ ∞∞∞∞∞∞	.08950E+06	.190008+02	.000005+00	.80000E+00	.200005+00	.000005+00	.000005+00	.02462E-06	.00000E+00	.999488+03

Figure 10.2.2. Part of printed output for sample problem 2 (continued).

10.3 Problem No. 3 (*rdif2*) - Diffusion

This problem examines diffusion of several solutes (air, benzene, and n-decane) in singlephase water and is similar to sample problem *rdif7* from TOUGH2, Version 2.0 (Pruess et al., 1999). A 1-D grid of 20 blocks is initialized in single-phase aqueous conditions, with no solutes present. Boundary conditions provided by an inactive (zero volume; see section 8.2) grid block "ina 1" include step changes of 1.e-7, 1.e-8, and 1.e-6, respectively, for mole fractions of benzene, n-decane, and air. Also, there is a 1 °C change of temperature at the boundary. All diffusivities are specified as -1.e-6 m²/s (see Fig. 10.3.1), where the "-" sign serves as a switch to suppress tortuosity effects (see Appendix D). Diffusivities are equal to 1.e-6 m²/s for all mass components, and thermal parameters were chosen in such a way that thermal diffusivity $\Theta = K/\rho C$ also has the same value. Advective processes are suppressed by setting permeabilities to zero. For the same step change in the diffusing quantity (temperature for thermal diffusion, mole fractions for mass diffusion) at the boundary, all diffusive profiles should then be identical. The step changes imposed here differ by powers of 10, and apart from these factors the simulated diffusive profiles are seen to be identical (Fig. 10.3.2).

rdif2 ... 1-D diffusion problem for water ROCKS---1---*---2----*---3----*---4----*---5----*---6----*----8 SANDY 2 2500. 1.e-4 0.e-12 0.e-12 0.e-12 2.5 1000. 1.e-8 0.25 0.00e-04 0.00E-00 1 0. Ο. 1. 1. 9 MULTI----1----*---2----*---3----*---4----*---5----*---6----*----7-----8 4 5 3 8 CHEMP----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 2 BENZENE 562.248.20.2710.2120.0353.2-6.982731.33213-2.62863-3.33399 0.0 78.114-.3392E+020.4739E+00-.3017E-030.7130E-07 885. 289.00 0.770E-05 273.10 1.52 0.5900 293.000 259.0 0.415E-03 0.000E+00 0.000E+00 0.000E+00 0.891E-01 0.001 n-DECANE 617.700 21.200 0.249 0.489 0.00 447.300 -8.56523 1.97756 -5.81971 -0.29982 142.286 -7.913E+0 9.609E-1 -5.288E-4 1.131E-7 730.000 293.000 1.000E-5 293.000 1.600 0.5900 293.000 603.000 3.799e-7 0.000 NCGAS----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 1 ATR ie(2)=1 choose SRK; ie(3)=1 choose Khair = 1.E10 Pa, as in EOS3 and T2VOC SELEC----1----*----2----*----3----*----4----*----5----*----6----*-----8 0 1 1 START----1----*----2----*----3----*----4----*----5----*----6----*----7-----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----7----*----8 PARAM---1---*---2---*---3----*---4----*---5----*---6----*----7---*---8 4 30 301000 0 0000 004 0 0000 .1427e7 0.0 -1. 1.e5 1.e3 1.e-3 1.e-8 1.e-8 2 1.e5 0.e-7 0.e-8 0.e-6 8. SOLVR----1----*---2----*---3----*---4----*---5----*---6----*----7----*8 5 Z1 O0 8.0e-1 1.0e-7 DIFFU----1----*----2----*----3----*----4----*----5----*----6----*----7-----8 -1.e-6 -1.e-6 -1.e-6 -1.e-6 -1.e-6 -1.e-6 -1.e-6 -1.e-6 ELEME----1----*----2----*----3----*---4----*---5----*----6----*----7----*----8 A 1 19 1 1 .1 ina 1 CONNE----1----*----3----*---4----*---5----*---6----*----7----*----1 1 1.e-9 .05 1. 2 18 1 1 1 .05 °^c ina 1A 1 A 1A INCON----1----*----2----*---3----*---4----*---5----*---6----*----7----*----8 2 ina 1 1.e5 1.e-7 1.e-8 1.e-6 9. GENER----1----*----2----*----3----*----4----*----5----*----6----*----7-----8 ENDCY---1----*---2----*---3----*---4----*---5----*---6----*----8

Figure 10.3.1. Input file for sample problem 3 (diffusion).

ITERATING	AT [1, 1]	DELTEX =	100000E+04	MAX. RES. = .2	49983E-01 A	T ELEMENT A	1 EQU	JATION 5		
ITERATING	AT [1, 2]	DELTEX = .	100000E+04	MAX. RES. = .2	72024E-06 A	T ELEMENT A	1 EQU	JATION 1		
A 1(1, 3)	ST =	.100000E+04	DT = .10000)0E+04 DX1=	.816579E+03 DX2=	.154845E-0	7 T = 8.15	5 P =	100817. S	=	.000000E+00
ITERATING	AT L	2, 1]	DELTEX = .	200000E+04	MAX. RES. = .3	79744E-01 A	T ELEMENT A	1 EQU	JATION 5		
ITERATING	AT [2, 2]	DELTEX = .	200000E+04	MAX. RES. = .3	00083E-06 A	T ELEMENT A	1 EQU	JATION 1		
A 1(2, 3)	ST =	.300000E+04 !	DT = .20000	0E+04 DX1=	.110339E+04 DX2=	.199595E-0	7 T = 8.35	4 P =	101920. S	=	.000000E+00
ITERATING	AT L	3, 1]	DELTEX = .	400000E+04	MAX. RES. = .4	77807E-01 A	T ELEMENT A	1 EQU	JATION 5		
ITERATING	AT [3, 2]	DELTEX = .	400000E+04	MAX. RES. = .3	02193E-06 A	T ELEMENT A	1 EQU	JATION 1		
A 2(3, 3)	ST =	.700000E+04 !	DT = .40000)0E+04 DX1=	.565541E+03 DX2=	.106170E-0	7 T = 8.16'	7 P =	100885. S	=	.000000E+00
ITERATING	AT [4, 1]	DELTEX = .	800000E+04	MAX. RES. = .4	69317E-01 A	T ELEMENT A	1 EQU	JATION 5		
ITERATING	AT [4, 2]	DELTEX = .	800000E+04	MAX. RES. = .1	.83332E-06 A	T ELEMENT A	2 EQU	JATION 1		
A 1(4, 3)	ST =	.150000E+05	DT = .80000)0E+04 DX1=	.939469E+03 DX2=	.154855E-0	7 T = 8.71	0 P =	104027. S	=	.000000E+00
ITERATING	AT [5, 1]	DELTEX = .	160000E+05	MAX. RES. = .3	75411E-01 A	T ELEMENT A	2 EQU	JATION 5		
ITERATING	AT [5, 2]	DELTEX = .	160000E+05	MAX. RES. = .2	05222E-06 A	T ELEMENT A	2 EQU	JATION 1		
A 2(5, 3)	ST =	.310000E+05 3	DT = .16000	0E+05 DX1=	.950901E+03 DX2=	.165510E-0	7 T = 8.48	9 P =	102697. S	=	.000000E+00
ITERATING	AT [6, 1]	DELTEX = .	320000E+05	MAX. RES. = .3	89930E-01 A	T ELEMENT A	2 EQU	JATION 5		
ITERATING	AT [6, 2]	DELTEX = .	320000E+05	MAX. RES. = .1	84739E-06 A	T ELEMENT A	3 EQU	JATION 1		
A 4(6, 3)	ST =	.630000E+05	DT = .32000)0E+05 DX1=	.774496E+03 DX2=	.141565E-0	7 T = 8.28	5 P =	101532. S	=	.000000E+00
ITERATING	AT [7, 1]	DELTEX = .	640000E+05	MAX. RES. = .3	78766E-01 A	T ELEMENT A	3 EQU	JATION 5		
ITERATING	AT [7, 2]	DELTEX =	640000E+05	MAX. RES. = .1	84295E-06 A	T ELEMENT A	4 EQU	JATION 1		
A 6(7,3)	ST =	.127000E+06	DT = .64000)0E+05 DX1=	.706148E+03 DX2=	.130280E-0	7 T = 8.24	5 P =	101305. S	=	.000000E+00
ITERATING	AT [8, 1]	DELTEX =	100000E+06	MAX. RES. = .2	90463E-01 A	T ELEMENT A	4 EQU	JATION 5		
ITERATING	AT [8, 2]	DELTEX =	100000E+06	MAX. RES. = .1	34550E-06 A	T ELEMENT A	6 EOU	JATION 1		
A 9(8,3)	ST =	.227000E+06	DT = .10000	0E+06 DX1=	.525363E+03 DX2=	.979632E-0	8 T = 8.18	8 P = ~	100998. S	=	.000000E+00
ITERATING	AT [9, 1]	DELTEX =	100000E+06	MAX. RES. = .1	57680E-01 A	T ELEMENT A	6 EOU	JATION 5		
ITERATING	AT [9, 21	DELTEX =	100000E+06	MAX. RES. = .6	52991E-07 A	T ELEMENT A	7 EÕI	JATION 1		
A 7(9,3)	ST =	.327000E+06	DT = .10000	0E+06 DX1=	.503502E+03 DX2=	.889667E-0	8 T = 8.39	1 P = ~	102127. S	=	.000000E+00
ITERATING	AT [10, 11	DELTEX =	100000E+06	MAX. RES. = .1	.06028E-01 A	T ELEMENT A		JATION 5		
TTERATING	AT [10. 21	DELTEX =	100000E+06	MAX. RES. = .3	53683E-07 A	T ELEMENT A	8 EÕI	JATTON 1		
A 9(10, 3)	ST =	427000E+06	DT = .10000	0E+06 DX1 =	.370322E+03 DX2=	.661579E-0	8 т = 8.33	б Р = ~	101816. S	=	.000000E+00
	~ -										
rdif2 1-D	diffus	ion problem	for water								
		-									
OUTPUT	DATA A	FTER (20,	3)-2-TIME S	STEPS				THE	TIME IS	.16	516E+02 DAYS
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	0000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	0000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	00000000	000000000000	0000	0000000000000
TOTAL TIME	KCYC	ITER ITERC	KON				MAX. RES.	NEF	R KER		DELTEX
.14270E+07	20	3 60	2				.27842E-12	15	5 1		.10000E+06
1א1אם	רע2™	DX3M	DX4M		DX6M	DX7M	DX8M	MPX0	ו0 1 צת	м	DX11M
19108E+03 32	2959E-0	8 329598-0	9 329598-0	17 329598-0	11	2-11/1-1	211011	1011011	12/11/01	••	DATT 71.1
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	0	0,0000	000000000000000000000000000000000000000)@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	രതതതതതതതതത	രരരരരരരരരം	രതരതരര	രതതതതതത	രരരം	രതതതതതതതതത
		222888888888888888888888888888888888888								0000	

ELI	EM.	INDEX	(Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
A	1	1	.10574E+06	.89786E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.50162E-06	.13419E-01	.73870E+03
А	2	2	.10546E+06	.89361E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.47980E-06	.12402E-01	.73873E+03
А	3	3	.10519E+06	.88939E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.45819E-06	.11431E-01	.73876E+03
А	4	4	.10492E+06	.88524E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.43693E-06	.10511E-01	.73879E+03
А	5	5	.10466E+06	.88119E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.41614E-06	.96472E-02	.73882E+03
А	б	б	.10442E+06	.87725E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.39597E-06	.88420E-02	.73885E+03
А	7	7	.10418E+06	.87346E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.37654E-06	.80973E-02	.73888E+03
А	8	8	.10395E+06	.86984E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.35796E-06	.74145E-02	.73891E+03
А	9	9	.10374E+06	.86640E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.34035E-06	.67936E-02	.73893E+03
А	10	10	.10355E+06	.86318E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.32382E-06	.62343E-02	.73896E+03
А	11	11	.10337E+06	.86018E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.30847E-06	.57353E-02	.73898E+03
А	12	12	.10320E+06	.85743E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.29439E-06	.52951E-02	.73900E+03
А	13	13	.10305E+06	.85495E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.28166E-06	.49117E-02	.73902E+03
А	14	14	.10292E+06	.85275E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.27036E-06	.45828E-02	.73903E+03
А	15	15	.10281E+06	.85083E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.26056E-06	.43062E-02	.73905E+03
Α	16	16	.10271E+06	.84922E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.25230E-06	.40797E-02	.73906E+03
А	17	17	.10264E+06	.84792E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.24563E-06	.39013E-02	.73907E+03
А	18	18	.10258E+06	.84694E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.24060E-06	.37691E-02	.73907E+03
Α	19	19	.10254E+06	.84628E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.23724E-06	.36818E-02	.73908E+03
А	20	20	.10252E+06	.84595E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.23555E-06	.36384E-02	.73908E+03
ina	a 1	21	.10000E+06	.90000E+01	.00000E+00	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.51256E-06	.14763E-01	.73868E+03
@@@	2000	200000	000000000000000000000000000000000000000	0000000000000	00000000000000	00000000000000	200000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	20000000000000	00000000000000

Figure 10.3.2. Part of printed output for sample problem 3.

EL	EM.	INDEX	Xwat	2 AIR	3 BENZENE	4 n-DECANE	** SUMmolef
А	1	2	.10000E+01	.97865E-06	.97865E-07	.97865E-08	.00000E+00
А	2	2	.10000E+01	.93608E-06	.93608E-07	.93608E-08	.00000E+00
А	3	2	.10000E+01	.89393E-06	.89393E-07	.89393E-08	.00000E+00
А	4	2	.10000E+01	.85244E-06	.85244E-07	.85244E-08	.00000E+00
А	5	2	.10000E+01	.81189E-06	.81189E-07	.81189E-08	.00000E+00
А	6	2	.10000E+01	.77254E-06	.77254E-07	.77254E-08	.00000E+00
А	7	2	.10000E+01	.73462E-06	.73462E-07	.73462E-08	.00000E+00
А	8	2	.10000E+01	.69837E-06	.69837E-07	.69837E-08	.00000E+00
Α	9	2	.10000E+01	.66402E-06	.66402E-07	.66402E-08	.00000E+00
Α	10	2	.10000E+01	.63178E-06	.63178E-07	.63178E-08	.00000E+00
А	11	2	.10000E+01	.60183E-06	.60183E-07	.60183E-08	.00000E+00
Α	12	2	.10000E+01	.57436E-06	.57436E-07	.57436E-08	.00000E+00
А	13	2	.10000E+01	.54953E-06	.54953E-07	.54953E-08	.00000E+00
А	14	2	.10000E+01	.52748E-06	.52748E-07	.52748E-08	.00000E+00
Α	15	2	.10000E+01	.50835E-06	.50835E-07	.50835E-08	.00000E+00
Α	16	2	.10000E+01	.49223E-06	.49223E-07	.49223E-08	.00000E+00
А	17	2	.10000E+01	.47923E-06	.47923E-07	.47923E-08	.00000E+00
Α	18	2	.10000E+01	.46942E-06	.46942E-07	.46942E-08	.00000E+00
Α	19	2	.10000E+01	.46284E-06	.46284E-07	.46284E-08	.00000E+00
А	20	2	.10000E+01	.45955E-06	.45955E-07	.45955E-08	.00000E+00
in	a 1	2	.10000E+01	.10000E-05	.10000E-06	.10000E-07	.00000E+00

Figure 10.3.2. Part of printed output for sample problem 3 (continued).

10.4 Problem No. 4 (*rtcem*) - Steam Displacement of a NAPL in a Laboratory Column

This problem is an adaptation of T2VOC sample problem no. 3 (Falta et al., 1995). It models, in a somewhat simplified way, a laboratory experiment conducted by Hunt et al. (1988). The simulation consists of three parts that involve, respectively, injection, waterflooding, and steamflooding of TCE in a horizontal sandpacked column. The column is 91 cm long with a cross sectional area of 20.428 cm². The mesh used for this simulation consists of 50 evenly spaced elements with a mesh spacing of 1.82 cm. Initially, the column is water saturated with no air or VOC present.

The first part of the simulation involves the injection of liquid trichloroethylene into a system that is in single-phase liquid (aqueous) conditions and is run with the input file shown in Fig. 10.4.1. We specify NKIN = -2 in data block MULTI to initialize the system with twocomponent (water and air) T2VOC-style initial conditions. This is done to illustrate use of this option; further explanations are given in Appendix E. The temperature in the column is 22 °C, and deliverability boundary conditions are used at each end of the column. The deliverability boundary condition is specified by setting TYPE in record GENER.1 equal to DELV and by specifying a productivity index (GX in record GENER.1) and a wellbore pressure (EX in record GENER.1). Trichloroethylene is injected at a constant rate into the 15th element by choosing the COM3 option for TYPE in record GENER.1. The specific enthalpy of the injected trichloroethylene (EX in record GENER.1) corresponds to liquid trichloroethylene at a temperature of about 22 °C. Because the TCE injection is run in isothermal mode (NEQ=NK=3 in MULTI) this enthalpy specification is not really necessary. The various constants used to compute the thermophysical properties of trichloroethylene are contained in data block CHEMP. Details of the three-phase relative permeability functions (IRP = 6 in record RPCAP.1) and the three-phase capillary pressure functions (ICP = 8 in record RPCAP.2) may be found in Appendices G and H, respectively.

Trichloroethylene is injected into the column for a period of 120 s, with an initial time step size of 2 seconds. A partial printout of the T2VOC simulation results is given in Figure 10.4.2; agreement with the T2VOC simulation of the same problem is excellent (Falta et al., 1995; pp. 84 - 87). The NAPL plume (region with SO \neq 0) is seen to extend from grid block AA 12 to AA 18.

The second part of this simulation consists of injecting cold water (22 °C) into one end of the column and allowing fluids to drain from the other end of the column according to a deliverability boundary condition (TYPE = DELV in record GENER.1). The initial conditions for this part of the simulation are the conditions at the end of the first part of the simulation. To start the

second part of the simulation, the SAVE file generated by the first part of the simulation was placed into the input file, shown (partly) in Figure 10.4.3. This file is otherwise similar to the previous input file (Figure 10.4.1), except that data block GENER has been changed. These changes consist of removing the NAPL injection, and changing the inlet condition at the first element to water (COM1) injection. Water with a specific enthalpy of 9.2332×10^4 J/kg is injected at a rate of 3.5395×10^{-4} kg/s (a Darcy velocity of 15 m/day) for a period of 17,880 s with an initial time step size of 2 s. The simulation is run to a total time of 18,000 s (120 s + 17,880 s), and a partial printout of results is given in Figure 10.4.4. The NAPL plume has migrated downstream and spread. It extends from grid block AA 18 to AA 32 but has not reached the outlet. The aqueous phase downstream from the plume contains VOC at a mole fraction of .15091e-3, corresponding to the solubility limit of 1.100 kg/m³. 24.6 % of the original VOC has been removed by dissolution in the aqueous phase and subsequent extraction from well PRO 1. The results agree well with the T2VOC simulation (Falta et al., 1995; pp. 90 - 93).

The final part of the simulation consists of steam injection into the column. Again, the initial conditions for this part of the problem are the conditions at the end of the previous part. The file SAVE generated during the waterflood part of the simulation was placed in the input file as block INCON (Fig. 10.4.5). During this final part of the simulation, steam with an enthalpy of 1.562×10^{6} J/kg is injected at a rate of 3.5341×10^{-5} kg/s for a period of 9000 s. Parameter NEQ in MULTI is increased to 4, to include an energy balance equation, and printout is specified for a total time of 23,000 s (5000 s after start of steam injection) using data block TIMES.

Part of the output is shown in Figure 10.4.6. After 5,000 s of steam injection, a compact NAPL bank is present in the condensation zone ahead of the steam front (grid blocks AA 39 to AA 43), demonstrating that the steam is effectively displacing the trichloroethylene. By the end of the simulation, after 9000 s of steam injection, the entire column is at the steam temperature, and the trichloroethylene has been completely removed. Simulation results agree well with those from a T2VOC simulation, but TMVOC requires a considerably larger number of time steps for this problem (779 vs. 520 for T2VOC).

The reason why a TMVOC simulation may proceed somewhat differently from T2VOC is in significant differences in the treatment of thermodynamic conditions. For example, TMVOC calculates gas phase density and specific enthalpy from the cubic SRK equation of state (Redlich and Kwong, 1949; Soave, 1972), while T2VOC uses an ideal gas mixture assumption. The aqueous phase is not allowed to disappear in T2VOC, while TMVOC allows all possible phase combinations in the gas-water-NAPL system. TMVOC includes effects of water dissolution in the NAPL, which were neglected in T2VOC.

To illustrate the use of multiple non-condensible gases, we also present a variation of the steamflooding problem in which oxygen and nitrogen are selected in data block NCGAS instead of air. The problem is again run in three segments, first NAPL injection, then waterflood, followed by steamflood. Here we only show the steamflood portion which is run with the input file given in Fig. 10.4.7. There now are NK=4 fluid components (water, O₂, N₂, TCE), and NEQ=5 equations to solve. The INCON-data generated by the waterflood have 5 primary variables. This problem is quite difficult in terms of the linear equation solution, because O₂ and N₂ concentrations are close to zero at all times, and the Jacobian matrix has a large and variable number of zero elements on the main diagonal. The run proceeds somewhat differently from the version with air, which is due to differences in the Jacobian matrix, and consequent differences in the linear equation solution and convergence of the Newtonian iterations during time stepping. Fig. 10.4.8 shows that a simulation time of 23,000 s is reached after 592 time steps (591 time steps for the problem with air), and the total number of Newtonian iterations up to this time is ITERC=4333 (4230 for the problem with air). The results are close but not identical to the air problem (compare Figs. 10.4.6 and 10.4.8). The final simulation time of 27,000 s is reached after 788 time steps in the $O_2 + N_2$ problem (not shown), as compared to 779 time steps for the problem with air. The accuracy of the linear equation solution depends on the number of significant digits available for the floating point operations. Accordingly, the convergence rate of the Newtonian iterations and the time stepping sequence may be somewhat different on different computing platforms.

rtcem1 TMVOC: INJECTION OF TRICHLOROETHYLENE INTO A COLUMN; nkin=-2 ROCKS----1----*----2----*----3----*----4----*---5----*---6----*----7----*8 1 2650. .385 1.6E-11 3.1 DIRT1 1.6E-11 1.6E-11 1000. 0. 2.85 0.0 0.e-8 CHEMP----1----*-trichloroethylene data-4----*---5----*----6----*----8 1 TCE 572.0 50.5 0.265 0.213 0.9 -7.38190 1.94817 -3.03294 -5.34536 360.4 .2287-2.229E-04 8.244E-08 131.389 30.170 293.0 8.0E-06 273.0 1462. 1.60 0. 0.59 293.15 256.0 0. 1.50954E-4 Ο. Ο. Ο. Ο. Ο. 0. NCGAS----1----*----2----*----3----*----4----*----5----*----6----*-----8 1 AIR ie(2)=1 choose SRK; ie(3)=1 choose Kh air = 1.E10 Pa, as in EOS3 and T2VOC SELEC----1----*----2----*----3----*----4----*----5----*----6----*----8 0 1 1 nkin= -2 : a T2VOC incon format is used !!! MULTI----1----*----2----*----4----*---5----*---6----*----8 3 3 3 6 -2 START----1----*----2----*----3-----*----4----*----5-----*----6-----*-----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----7----*----8 PARAM----1----*----2----*----3----*----4----*----5----*----6----*----8 4 20 201000300000002 4 0001000 9.8060 120.00 2. 120. 1.E00 1.E-5 1.0133e5 50.0 22.0 RPCAP----1----*----2----*----3----*----4----*----5----*----6----*-----8 .150 .05 .001 3. 6 10. 0.000 1.84 8 11. ELEME----1----*----2----*----3----*----4----*---5----*----6----*----7----*----8 1DIRT1 3.7179E-5 49 AA 1 CONNE----1----*----2----*----4----*---5----*---6----*----7----*----8 .0091 .0091 2.0428E-3 AA 1AA 2 48 1 1 1 0.0 GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 DELV 3.5917E-12 1.0140E+5 AA lend 1 AA 50end 2 DELV 3.5917E-12 1.0140E+5 AA 15INO 1 COM3 2.1900E-04 2.2100E+4 INCON----1----*----2----*----3----*----4----*---5----*---6----*----8 ENDCY---1---*---2---*---3----*---4----*---5----*---6---*---7----*---8

Figure 10.4.1. TMVOC input file for part 1 of problem 4 (TCE injection).

******	VOLUME- AND	MASS-BALAN	ICES ******	**********	*****	* * * * * * * * * * * * * * * * * * *	*****	***********	* * * * * * * *	*****
*****	[KCYC,ITER]	= [0,	0] *****			THE TIME IS	.00000E+00	SECONDS, OR	.0000	0E+00 DAYS
PHASES		GAS		AQUEOUS	NAPL	TOTAL				
VOLUMES MASS ENERGY	(m**3) (moles) (J)	.000000001 .000000001 .000000001	E+00 .71 E+00 .39 E+00 .65	571500E-03 9642773E+02 5860914E+05	.00000000E+00 .00000000E+00 .00000000E+00	.71571500E- .39642773E+ .13251443E+	03 02 06			
		COMPONEN	IS MOLES IN	PLACE - BY PH	IASES		COMP	ONENTS IN PL2	ACE - OV	ERALL
COMPONENTS WATER AIR TCE total VOCs		GAS PHASI .000000001 .000000001 .000000001 .00000000	E AQUE 5+00 .39 5+00 .39 5+00 .39 5+00 .39	COUS PHASE 9642773E+02 9642773E-28 9642773E-28 9642773E-28	NAPL .00000000E+00 .00000000E+00 .00000000E+00 .00000000E+00	ADSORBED .000000000000000000000000000000000000	TOT. .396 .396 .00 .396 .00 .396	AL MOLES 42773E+02 42773E-28 42773E-28 42773E-28	TOTAL M .71420 .11480 .52086 .52086	HASS (kg) 1419E+00 1547E-29 1242E-29 1242E-29
*******	*******	*******	*******	***********	*****	* * * * * * * * * * * * * * * * * *	*****	***********	* * * * * * * *	****
ITERATIN \$\$\$ 2> ITERATIN ITERATIN AA 14(1, ITERATIN AA 14(2, AA 14(2, ITERATIN	G AT [6 \$\$\$ NAPL G AT [G AT [5] ST = G AT [G AT [G AT [3] ST = G AT [1, 1] EVOLVES AT 1, 2] 1, 3] 1, 4] 2, 1] 2, 2] 400000E+01 3, 1]	DELTEX = ELEMENT *AA DELTEX = DELTEX = DELTEX = DELTEX = L DT = .200 DELTEX =	.200000E+01 A 15* \$\$\$ x .200000E+01 .20000E+01 .20000E+01 D00E+01 DX1= .200000E+01 .200000E+01 .400000E+01	MAX. RES. = .2785. MAX. RES. = MAX. RES. = MAX. RES. = .834697E+03 DX: MAX. RES. = -497742E+00 DX: MAX. RES. =	.896614E+02 AT 4E+02 487960E+03 AT .349026E+00 AT 599881E-01 AT 2= .221151E-05 100000E+01 AT 2= .217747E-05 100000E+01 AT	ELEMENT AA ELEMENT AA ELEMENT AA T = 22.000 ELEMENT AA T = 22.000 ELEMENT AA	15 EQUATION 1 EQUATION 15 EQUATION 15 EQUATION 16 EQUATION 16 EQUATION 16 EQUATION 17 P 102164 EQUATION 16 EQUATION 17 P 18 EQUATION	3 1 3 $5 \cdot S = 3$ 3 $4 \cdot S = 3$.000000E+00 .000000E+00
ITERATIN ITERATIN AA 16(3, ITERATIN \$\$\$ 2>	IG AT [IG AT [4) ST = IG AT [6 \$\$\$ NAPL	3, 2] 3, 3] .800000E+03 4, 1] EVOLVES AT	DELTEX = DELTEX = L DT = .400 DELTEX = ELEMENT *AA	.400000E+01 .400000E+01 0000E+01 DX1= .800000E+01 A 14* \$\$\$ x	MAX. RES. = MAX. RES. = .448500E+01 DX: MAX. RES. = :sumoil= .2456	.868339E+00 AT .548189E-03 AT 2= .354609E-04 .174515E+01 AT 5E+01	ELEMENT AA ELEMENT AA T = 22.000 ELEMENT AA	14 EQUATION 14 EQUATION P = 102207 14 EQUATION	3 3 7. S = 3	.000000E+00
<pre>S\$\$ 2>ITERATINITERATINITERATIN A. 14(4,ITERATINITERATINITERATIN A. 16(5,ITERATINITERATINITERATINITERATIN A. 17(6,ITERATIN A. 17(6,ITERATIN</pre>		EVOLVES AT 4, 2] 4, 3] 4, 4] 4, 4] 5, 1] 5, 1] 5, 2] 5, 3] 240000E+03 6, 2] 6, 3] 6, 4] 4, 40000E+03 7, 1]	$ \begin{array}{l} \text{ELEMENT *AA} \\ \text{DELTEX =} \\ \text{DELTEX =} \\ \\ \\ -$	A 16* \$\$\$ x .800000E+01 .800000E+01 .800000E+01 .800000E+01 .800000E+01 .800000E+01 .800000E+01 .800000E+02 .160000E+02 .160000E+02 .160000E+02 .160000E+02 .160000E+02 .160000E+02 .160000E+02 .13* \$\$\$ x	MAX. RES. = MAX. R	21-01 170533E+02 AT 400315E+00 AT 188117E+00 AT 116356E-04 AT 2= .999671E+00 947765E+00 AT 463972E-02 AT 2= .867467E-17 148976E+01 AT 1695305E+01 AT 1695332E-02 AT 114795E-03 AT 2= .469361E-04 858301E+00 AT DE+01	ELEMENT AA ELEMENT AA ELEMENT AA T = 22.000 ELEMENT AA ELEMENT AA ELEMENT AA ELEMENT AA ELEMENT AA ELEMENT AA T = 22.000 ELEMENT AA	14 EQUATION 14 EQUATION 14 EQUATION 13 EQUATION 19 = 102216 16 EQUATION 14 EQUATION 16 EQUATION 17 EQUATION 17 EQUATION 19 = 102227 17 EQUATION	3 3 3 3 3 3 3 3 3 3 3 3 3 3 7. S =	.000000E+00 .000000E+00 .000000E+00
\$\$\$ 2> ITERATIN ITERATIN ITERATIN AA 13(7, ITERATIN ITERATIN ITERATIN	6 \$\$\$ NAPL IG AT [IG AT [IG AT [IG AT [6) ST = IG AT [IG AT [IG AT [IG AT [EVOLVES AT 7, 2] 7, 3] 7, 4] 7, 5] .560000E+00 8, 1] 8, 2] 8 3	ELEMENT *AA DELTEX = DELTEX = DELTEX = 2 DT = .160 DELTEX = DELTEX = DELTEX =	A 17* \$\$\$ x .160000E+02 .160000E+02 .160000E+02 .160000E+02 0000E+02 DX1= .160000E+02 .160000E+02 .160000E+02	<pre>sumoil= .15920 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 558531E+02 DX: MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. =</pre>	3E+01 84404E+01 AT 379179E+00 AT 299669E+00 AT 442518E-04 AT 2 999632E+00 AT 892987E+00 AT 119320E+01 AT 981405E-02 AT	ELEMENT AA ELEMENT AA ELEMENT AA T = 22.000 ELEMENT AA ELEMENT AA ELEMENT AA	13 EQUATION 12 EQUATION 12 EQUATION 12 EQUATION 14 EQUATION 15 EQUATION 16 EQUATION 17 EQUATION 12 EQUATION 13 EQUATION 14 EQUATION	3 3 3 5. S = 3 3	.000000E+00
AA 17(8, ITERATIN ITERATIN \$\$\$ 2> ITERATIN ITERATIN ITERATIN	4) ST = [G AT [IG AT [6 \$\$\$ NAPL IG AT [IG AT [IG AT [IG AT [.720000E+02 9, 1] 9, 2] EVOLVES AT 9, 3] 9, 4] 9, 5]	2 DT = .160 DELTEX = DELTEX = ELEMENT *AA DELTEX = DELTEX = DELTEX =	.10000E+02 DX1= .320000E+02 .320000E+02 .12* \$\$\$ x .320000E+02 .320000E+02 .320000E+02	MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. =	22 .172947E-16 155414E+01 AT .812437E+01 AT 9E+01 .691830E+01 AT .911254E+00 AT .435052E-02 AT	T = 22.000 ELEMENT AA ELEMENT AA ELEMENT AA ELEMENT AA	P = 102369 17 EQUATION 12 EQUATION 12 EQUATION 12 EQUATION 12 EQUATION 12 EQUATION	9. S = 3 3 3 3	.000000E+00
AA 12(9, ITERATIN \$\$\$ 2> ITERATIN ITERATIN ITERATIN ITERATIN	6) ST = IG AT [6 \$\$\$ NAPL IG AT [IG AT [IG AT [IG AT [.104000E+0: 10, 1] EVOLVES AT 10, 2] 10, 3] 10, 4] 10, 5]	B DT = .320 DELTEX = ELEMENT *AA DELTEX = DELTEX = DELTEX = DELTEX =	0000E+02 DX1= .160000E+02 A 18* \$\$\$ x .160000E+02 .160000E+02 .160000E+02	.281942E+02 DX: MAX. RES. = sumoil= .2164 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. =	2= .999678E+00 .456032E+00 AT HE+01 .213490E+01 AT .192649E+00 AT .148269E+00 AT .241716E-04 AT	T = 22.000 ELEMENT AA ELEMENT AA ELEMENT AA ELEMENT AA ELEMENT AA	P = 102054 12 EQUATION 18 EQUATION 19 EQUATION 19 EQUATION 19 EQUATION	$ \begin{array}{c} 3 \\ 3 \\ $.000000E+00
AA 18(10,	6) ST =	.120000E+03	3 DT = .160	0000E+02 DX1=	.507413E+02 DX	2= .999570E+00	T = 22.000	P = 102304	4.S=	.000000E+00

Figure 10.4.2. Portion of printed output for part 1 of problem 4.

rtceml	TMVOC:	INJECTION	OF	TRICHLOROETHYLENE	INTO	Α	COLUMN;	nkin=-2
----------	--------	-----------	----	-------------------	------	---	---------	---------

@@@@@@@	OUT 200000	PUT DATA AN @@@@@@@@@@@@	TER (10,	6)-2-TIME ST	EPS aaaaaaaaaaaaaaaa	000000000000000000000000000000000000000	2000000000	000000000000000000000000000000000000000	@@@@@@@@@@@@	THE T] 200000000	IME IS	13889E-02 DAYS @@@@@@@@@@@@@@@
TOTAL .120	TIME 00E+03	KCYC 10	ITER ITERC 6 49	KON 2				MA .4	X. RES. 2687E-11	NER 18	KER 3	DELTEX .16000E+02
DX: .1340	1M 1E+03	DX2M .99957E+00	DX3M .99858E+00	DX4M .00000E+00	DX5M	DX6M	DX7	'M DX	8M	DX9M	DX10M	DX11M
@@@@@@@	200000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	300000000000000000000000000000000000000	20000000000000000000000000000000000000	200000000000000000000000000000000000000	100000000000000000000000000000000000000	30000000000	000000000000000000000000000000000000000	@@@@@@@@@@@@	00000000	2000000000000	800000000000000000000000000000000000000
ELEM.	INDEX	P (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVO (mass	Cw fract.)	Dgas (kg/m**3	DNAPL (kg/m**3)
$\begin{array}{rrrr} AA & 1 \\ AA & 2 \\ AA & 3 \\ AA & 4 \\ AA & 5 \\ AA & 6 \\ AA & 7 \\ AA & 8 \\ AA & 0 \\ AA & 11 \\ AA & 12 \\ AA & 11 \\ AA & 12 \\ AA & 13 \\ AA & 14 \\ AA & 15 \\ AA & 16 \\ AA & 17 \\ AA & 18 \\ AA & 19 \\ AA & 20 \\ AA & 21 \end{array}$	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 9 20 21	.10143E+06 .10148E+06 .10153E+06 .10159E+06 .10164E+06 .10175E+06 .10175E+06 .10185E+06 .10196E+06 .10209E+06 .10263E+06 .10328E+06 .10230E+06 .10230E+06 .10224E+06 .10224E+06 .10221E+06	.22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02	.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	$\begin{array}{c} .10000\pm +01\\ .9944\pm +00\\ .86170\pm +00\\ .86170\pm +00\\ .59539\pm +00\\ .70910\pm +00\\ .99858\pm +00\\ .10000\pm +01\\ .10000\pm +01\\ .10000\pm +01\\ .10000\pm +01\end{array}$.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .55615E-02 .13830E+00 .30944E+00 .40461E+00 .29909E+00 .14208E-02 .00000E+00 .00000E+00	0 .00000E 0 .10041E 0 .13358E 0 .43829E 2 .37153E 0 .00000E 0 .00000E	++00 .00000 ++00 .00000 ++00 .00000 ++00 .00000 ++00 .00000 ++00 .00000 ++00 .00000 ++00 .00000 ++00 .00000 ++00 .00000 ++00 .00000 ++02 .00000 ++03 .00000 ++04 .00000 ++02 .00000 ++02 .00000 ++00 .00000 ++00 .00000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17E-10 77E-09 01E-08 88E-08 21E-07 69E-06 03E-05 46E-04 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-03 08E-04	.50587E-0: .50561E-0: .50513E-0: .50513E-0: .50513E-0: .51281E-0: .51281E-0: .51281E-0: .6022E-0: .16021E-0: .16021E-0: .00000E+0! .00000E+0! .00000E+0! .00000E+0! .00000E+0! .31891E-0: .52838E-0:	3 .14586E+04 3 .14586E+04 3 .14586E+04 3 .14586E+04 3 .14586E+04 3 .14586E+04 3 .14586E+04 3 .14586E+04 3 .14586E+04 3 .14586E+04 2 .14586E+04 0 .14586E+04 0 .14586E+04 0 .14586E+04 0 .14586E+04 0 .14586E+04 0 .14586E+04 14586E+04 14586E+04 3 .14586E+04 3 .14586
 ELEM1 1	ELEM2	INDEX	FLOH FLO (W) (mo	(GAS) FLO ole/s) (ma	(Aq) FLC ole/s) (n)(NAPL) FLO nole/s)	O(VOC)GAS (mole/s)	FLO(VOC)Aq (mole/s)	VEL(GAS) (m/s)	VEL((n	(WAT) VI n/s)	EL(NAPL) (m/s)
AA 9 2 AA 10 2 AA 11 2 AA 12 2 AA 13 2 AA 14 2 AA 14 2 AA 15 2 AA 16 2 AA 16 2 AA 17 2 AA 18 2 AA 19 2 AA 20 2	AA 10 AA 11 AA 12 AA 13 AA 14 AA 15 AA 16 AA 17 AA 18 AA 19 AA 20 AA 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2180E+01 .000 2167E+01 .000 2129E+01 .000 848E+01 .000 136E+01 .000 5525E+01 .000 1396E+00 .000 3436E+01 .000 5341E+01 .000 5138E+01 .000 5165E+01 .000	000E+00 .55 000E+00 .55 000E+00 .53 000E+00 .30 000E+00 .14 000E+00 .71 000E+00 .27 000E+00 .27' 000E+00 .27' 000E+00 .27'	423E-02 .00 416E-02 .00 392E-02 .00 343E-02 .41 247E-02 .62 424E-02 .82 284E-03 65 055E-03 36 025E-02 .14 740E-02 .00 755E-02 .00	0000E+00 (0000E+00 (0000E+00 (0427E-03 (151E-03 (928E-03 (3374E-03 (1356E-04 (0000E+00 (0000E+00 (0000E+00 (00000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 0000E+00 00000E+00 0000E+00 0000E+00	.61174E-07 .25209E-06 .83593E-06 .80501E-06 .45646E-06 .21774E-06 .10758E-06 40783E-06 40783E-06 41863E-06 63896E-07 78054E-08	.00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	722E-03 793E-03 793E-03 1218E-03 558E-04 372E-04 3728E-04 303E-04 712E-04	00000E+00 00000E+00 34035E-04 18663E-03 22253E-03 19793E-03 15108E-03 15798E-04 00000E+00 00000E+00
ELEMEN	I SOUR	CE INDEX TY	YPE GENERATION (Mole/s) (N RATE ENTH OR (W) (J/m	ALPY FF(G ole)	GAS) FF	(Aq)	FF(NAPL)	FFVOC(GAS) FFVOC	C(Aq) PV (1	WB Pa)
AA 1 AA 50 AA 15 @@@@@@@	end end INC @@@@@@	1 1 DH 2 2 DH 1 3 CC @@@@@@@@@@@@@	ELV554261 ELV277571 DM3 .166681 2000000000000000000000000000000000000	E-02 .16633 E-02 .16633 E-02 .2903 @@@@@@@@@@@@@@	2E+04 .0000 2E+04 .0000 7E+04 @@@@@@@@@@@@@@@	00E+00 .100 00E+00 .100	000E+01 . 000E+01 .	00000E+00 00000E+00	.00000E+00 .00000E+00 @@@@@@@@@@@	.47604 .84919	4E-11 .101 9E-24 .101	140E+06 140E+06 @@@@@@@@@@@@@@@@
			WAGO DALANGO	~ ********						د بد بد بد بد بد بد بد		
******	**** V	VOLUME - AND	MASS-BALANCE	*****				TTME TO	120005.02	CECONDC	0.0.0.0.1.20	
PHASES		Kere, rink)	GAS	AOU	FOUS	NAPL	1115	TOTAL	120001105	DECONDO,	, on .150	JUJE UZ DAIS
VOLUME: MASS ENERGY	S ((m**3) moles) (J)	.0000000E+00 .00000000E+00	0 .69776 0 .38645 0 .64203	046E-03 285E+02 702E+05	.17954541E- .19931828E+ .54472341E+	-04 .7 +00 .3 +03 .1	21571500E-03 88844604E+02 .3140194E+06				
			COMPONENTS I	MOLES IN PLA	CE - BY PHAS	SES			COMPO	NENTS IN	N PLACE - (OVERALL
COMPONI WATER AIR TCE total V	ENTS VOCs		GAS PHASE .00000000E+0 .00000000E+0 .00000000E+0 .00000000E+0	AQUEOUS 0 .38644 0 .22076 0 .75506 0 .75506	PHASE 530E+02 827E-18 629E-03 629E-03	NAPL .56597916E- .00000000E- .19926168E- .19926168E-	-04 +00 +00 .0 +00 .0	ADSORBED 00000000E+00 00000000E+00	TOTA .3864 .2207 .2000 .2000	L MOLES 4587E+02 6827E-18 1674E+00 1674E+00	TOTAL 2 .6962 3 .6393 0 .2628 0 .2628	MASS (kg) 22088E+00 34491E-20 80000E-01 80000E-01
*****	*****	*******	******	*******	**********	*********	* * * * * * * * * *	******	*******	******	* * * * * * * * * * *	* * * * * * * * * * * *
WRITE 1	FILE *	SAVE* AFTER	R 10 TIME S	TEPS TI	HE TIME IS	.120000E+03	3 SECONDS					

Figure 10.4.2. Portion of printed output for part 1 of problem 4 (continued).

rtcem2 TMVOC: WATERFLOODING OF TCE . . . MULTI----1----*----2----*----3----*----4----*---5----*---6----*----8 3 3 3 6 START----1----*----2----*----3----*----4----*----5----*----6----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*----2----*----3----*----4----*----5----*----6----*----8 1001000300000002 4 00 1 00 3 100 18000.00 2. 8000. 9.8060 1.E-5 1.E02 1.000e-8 1.e+4 2 0.00 1.0133e5 0.0 22.0 SOLVR----1----*----2----*----3----*----4----*----5----*----6----*----8 5 Z1 O0 8.0e-1 1.0e-7 RPCAP----1----*----2----*----3----*----4----*----5----*----6----*-----8 .150 .05 0.000 1.84 .001 б 3. 10. 8 11. ELEME----1----*----2----*----3----*----4----*---5----*----6----*----7----*----8 AA 1 49 1DIRT1 3.7179E-5 CONNE----1----*----2----*----3----*----4----*---5----*----6----*----8 AA 1AA 2 48 1 1 1 .0091 .0091 2.0428E-3 0.0 GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 DELV 3.5917E-12 1.0140E+5 AA 50PRO 1 AA 1INJ 1 COM1 3.5395E-04 9.2332E+4 INCON -- INITIAL CONDITIONS FOR 50 ELEMENTS AT TIME .120000E+0338500000E+00 2 AA 9 .1018524107567E+06 .2433400175293E-05 .1903102196660E-20 .220000000000E+02 AA 10 .38500000E+00 2 .1019056354619E+06 .1103762602867E-04 .1561998416009E-19 .220000000000E+02 .38500000E+00 2 AA 11 .1019588601641E+06 .4549057460679E-04 .4805850495739E-19 .220000000000E+02 .38500000E+00 6 AA 12 .1020937919145E+06 .9997160425154E+00 .9944385452780E+00 .2200000000000E+02 AA 13 .38500000E+00 6 .1026300850715E+06 .9997160425154E+00 .8617005434031E+00 .220000000000E+02 .38500000E+00 6 AA 14 .1032175152789E+06 .9997160425154E+00 .6905600449084E+00 .220000000000E+02 .38500000E+00 6 AA 15 .1036455795090E+06 .9997160425154E+00 .5953854222830E+00 .220000000000E+02 .38500000E+00 6 AA 16 .1032812082392E+06 .9997160425154E+00 .7091031666517E+00 .220000000000E+02 AA 17 .38500000E+00 6 .1027431349188E+06 .9997160425154E+00 .8959250792547E+00 .220000000000E+02 .38500000E+00 6 AA 18 .1023035699155E+06 .9997160425154E+00 .9985791865696E+00 .220000000000E+02 AA 19 .38500000E+00 2 .1022396278775E+06 .2302169668704E-04 .9433747639043E-20 .220000000000E+02 .38500000E+00 2 AA 20 .1022129730149E+06 .2812045633888E-05 .1498389392053E-20 .22000000000E+02 ENDCY----1----*-----3----*----4----*----5----*----6----*-----8

Figure 10.4.3. Portion of TMVOC input file for part 2 of problem 4 (waterflood).

******	VOLUME- AN	ID MASS	-BALAI	NCES	******	*******	******	******	*****	******	*****	*******	****	******	*****	****	******
******	[KCYC,ITER	2] = [10,	0] ;	****					THE TIME	IS .	.12000E+	03 SE	CONDS, O	R .1	3889	9E-02 DAYS
PHASES			GAS		A	QUEOUS		NAPL		TOTA	L						
VOLUMES MASS ENERGY	(m**3) (moles) (J)	.000 .000 .000	000001 000001 000001	E+00 E+00 E+00	.697 .386 .642	76046E-03 45285E+02 03702E+05	.1 .1 .5	7954541E 9931828E 4472341E	2-04 2+00 2+03	.715715 .388446 .131401	00E-03 04E+02 94E+06	3 2 5					
		COM	PONEN	rs mo	OLES IN P	LACE - BY	PHASES					CO	MPONE	NTS IN P	LACE -	- OVI	ERALL
COMPONENTS WATER AIR trichloroet total VOCs	hylene	GAS .000 .000 .000 .000	PHASI 000001 000001 000001 000001	E E+00 E+00 E+00 E+00 E+00	AQUEC . 386 . 220 . 755 . 755	US PHASE 44530E+02 76827E-18 06629E-03 06629E-03	.5) .0) .1) .1)	NAPL 6597916E 0000000E 9926168E 9926168E	2-04 2+00 2+00 2+00	ADSOR .000000 .000000	BED 00E+00 00E+00	T(.3; .2:) .2) .2) .2	OTAL 1 86445 20768 00016 00016	MOLES 87E+02 27E-18 74E+00 74E+00 ********	TOT# .69 .63 .26 .26	AL M2 96220 99344 52800 52800	ASS (kg) 088E+00 491E-20 000E-01 000E-01
ITERATIN ITERATIN AA 14(11, ITERATIN ITERATIN ITERATIN	IG AT [IG AT [IG AT [4) ST = IG AT [IG AT [11, 11, 11, .1220 12, 12,	1] 2] 3] 00E+03 1] 2]	DI DI DI 3 DT DI DI	ELTEX = ELTEX = = .2000 ELTEX = ELTEX =	.200000E+ .200000E+ .200000E+ .00E+01 DX .400000E+ .400000E+	01 MAX 01 MAX 01 MAX 1= .74 01 MAX 01 MAX	X. RES. X. RES. X. RES. 5738E+04 X. RES. X. RES.	= .6 = .7 = .9 DX2= = .1 = .5	35470E-01 87199E-01 22957E-02 375255E 77039E+00 53724E-02	AT EI AT EI AT EI -13 T AT EI AT EI AT EI	LEMENT AJ LEMENT AJ = 22.0 LEMENT AJ LEMENT AJ	A 1 A 15 A 13 00 P A 17 A 18 A 18	EQUATIO EQUATIO EQUATIO = 1106 EQUATIO EQUATIO	N 1 N 1 85. S N 3 N 3	= .	.000000E+00
AA 16(12, ITERATIN ITERATIN	IG AI [4) ST = IG AT [IG AT [.1260 13, 13,	00E+03 1] 2]	DI 3 DT DI DI	ELTEX = = .4000 ELTEX = ELTEX =	.400000E+ 00E+01 DX .800000E+ .800000E+	1= .80 01 MA 01 MA	X. RES. 7766E+02 X. RES. X. RES.	= .1 2 DX2= = .3 = .3	145627E 11447E+00 99986E-01	-23 T AT EI AT EI	= 22.0 LEMENT A LEMENT A	A 18 00 P = A 17 A 18 A 18	EQUATIO = 1094 EQUATIO EQUATIO	N 17. S N 3 N 3	= .	.000000E+00
AA 18(13, ITERATIN	4) ST = IG AT [IG AT [.1340 14, 14,	00E+03 1] 2]	DI 3 DT DI DI	ELTEX = = .8000 ELTEX = ELTEX =	.160000E+ .160000E+	1= .53 02 MA 02 MA	X. RES. 3391E+02 X. RES. X. RES.	= .2 2 DX2= = .5 = .1	666365E 38006E+00 03672E+00	-24 T AT EI AT EI	= 22.0 LEMENT A	A 18 00 P = A 18 A 18	EQUATIO = 1076 EQUATIO EQUATIO	48.S N 3 N 3	= .	.000000E+00
ITERATIN AA 18(14, ITERATIN ITERATIN \$\$\$ 2>	IG AT [4) ST = IG AT [IG AT [6 \$\$\$ NAPL	14, .1500 15, 15, EVOLV	3] 00E+03 1] 2] ES AT	DI 3 DT DI DI ELEN	ELTEX = = .1600 ELTEX = ELTEX = MENT *AA	.160000E+ 00E+02 DX .320000E+ .320000E+ 19* \$\$\$	02 MA 1= .13 02 MA 02 MA xsumo	K. RES. 2995E+03 K. RES. K. RES. il= .2	= .1 DX2= = .1 9845E	.01210E-02 218650E .41132E+01 .56855E+00 .+01	AT EI -22 T AT EI AT EI	LEMENT AJ = 22.0 LEMENT AJ LEMENT AJ	A 18 00 P = A 18 A 18	EQUATIO = 1077 EQUATIO EQUATIO	N 1 81. S N 3 N 1	= .	.000000E+00
\$\$\$ 2> ITERATIN \$\$\$ 6>	6 \$\$\$ NAPL IG AT [2 \$\$\$ NAPL	15, DISAP	ES AT 3] P. AT	ELER DI ELEN	IENT *AA ELTEX = MENT *AA	20* \$\$\$.320000E+ 20* \$\$\$	02 MA SW =	LI= .1 K. RES. .10006	.4502E = .1 5E+01	:+01 .14380E+00	AT EI	LEMENT A	A 19	EQUATIO	N 3		
ITERATIN	IG AT [15,	4]	DI	ELTEX =	.320000E+	02 MA	K. RES.	= .3	82755E+00	AT EI	LEMENT A	A 19	EQUATIO	N 1		
AA 19(15,	6) ST =	.1820	00E+03 11	3 DT DI	= .3200 ELTEX =	00E+02 DX	1= .52 02 MA	8090E+02	5 2 DX2= = .6	.999631E	+00 T AT EI	= 22.0	00 P = A 18	= 1073 EOUATIO	97.S	= .	.000000E+00
ITERATIN	IG AT [IG AT [16, 16,	2] 3]	DI	ELTEX = ELTEX =	.320000E+ .320000E+	02 MA 02 MA	K. RES. K. RES.	= .1 = .8	84713E+00 24815E-02	AT EI AT EI	LEMENT A	A 19 A 19	EQUATIO EQUATIO	N 1 N 1		
AA 20(16, ITERATIN ITERATIN	4) ST = IG AT [IG AT [.2140 17, 17,	00E+03 1] 2]	3 DT DI DI	= .3200 ELTEX = ELTEX =	00E+02 DX .640000E+ .640000E+	1=93 02 MA 02 MA	2603E-03 K. RES. K. RES.	DX2= = .9 = .6	.285188E 11142E+00 73629E+00	-04 T AT EI AT EI	= 22.0 LEMENT A	00 P = A 19 A 19	= 1071 EQUATIO EQUATIO	55.S N 3 N 1	= .	.000000E+00
\$\$\$ 2> \$\$\$ 2>	6 \$\$\$ NAPL 6 \$\$\$ NAPL	EVOLV	ES AT ES AT	ELEN	IENT *AA IENT *AA	20* \$\$\$ 21* \$\$\$	xsumo: xsumo:	il= .1 il= .1	.5301E .1333E	+01 +01				DOTINETO			
\$\$\$ 6>	1G AT [2 \$\$\$ NAPL	DISAP	3] P. AT	ELEN	MENT *AA	.640000E+ 21* \$\$\$	02 MA SW = 02 MA	. RES. .10004	= .3 E+01	28022E+00	AT EI	LEMENT A	A 20	EQUATIO	IN 3		
ITERATIN	IG AT [17,	5]	DI	ELTEX =	.640000E+	02 MA	K. RES.	= .2	52314E-03	AT EI	LEMENT A	A 20	EQUATIO	N 1		
AA 20(17,	6) ST =	.2780	00E+0	3 DT	= .6400	00E+02 DX	1= .28	3100E+02	2_DX2=	.999601E	+00 T	= 22.0	00 P =	= 1071	83. S	= .	.000000E+00
ITERATIN	IG AT [18,	2]	DI	SLTEX =	.640000E+	02 MA	X. RES.	= .3	62639E+00	AT EI	LEMENT A	A 20	EQUATIO	N 1		
ITERATIN	IG AT [18,	3]	DH	ELTEX =	.640000E+	02 MA	K. RES.	= .4	48281E-01	AT EI	LEMENT A	A 20	EQUATIO	N 1	_	000000000000000000000000000000000000000
AA ZI(18, ITERATIN	4) ST = IG AT [.3420 19,	1] -·	DI	= .6400 ELTEX =	.128000E+	1=53 03 MAX	±559E-03 К. RES.	= .8	: .1//565E 60547E+00	AT EI	= 22.0 Lement A	оо Р: А 19	EQUATIO	оо. S N 3	= .	.00000010000000000000000000000000000000
ITERATIN	IG AT [19,	2]	DI	ELTEX =	.128000E+	03 MA	K. RES.	= .1	90439E+01	AT EI	LEMENT A	A 20	EQUATIO	N 1		
ITERATIN	IG AT [IG AT [19, 19	3]	DI זרו	SLTEX = ELTEX =	.128000E+	03 MA: 03 MA:	K. RES. K. RES	= .4	27483E-01 08332E-04	AT EI	LEMENT A	A 21 A 20	EQUATIO EQUATIO	N 1 N 1		
AA 13(19,	5) ST =	.4700	00E+03	3 DT	= .1280	00E+03 DX	1=79	1147E+02	2 DX2=	327054E	-20 T	= 22.0	00 P :	= 1102	00. S	= .	.000000E+00

Figure 10.4.4. Portion of printed output for part 2 of problem 4.

T COCKED TILLOG HITTELE DOOD TIC OF TOD	*rtcem2*	TMVOC:	WATERFLOODING	OF	TCE
---	----------	--------	---------------	----	-----

000000000	OUTPUT DATA A	FTER (41, @@@@@@@@@@@@@@	4)-2-TIME ST	EPS @@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	10000000000	THE T: 00000000	IME IS .20 a@@@@@@@@@@@@	833E+00 DAYS @@@@@@@@@@@@@
TOTAL TI	ME KCYC +05 41	ITER ITERC 4 225	KON 2				MA1 .52	K. RES. 2674E-07	NER 32	KER 1	DELTEX .37800E+03
DX1M	DX2M	DX3M	DX4M	DX5M	DX6M	DX7I	M DX8	3м :	DX9M	DX10M	DX11M
.294001+	02 .10734E-0	200000000000000000000000000000000000000	000001+00	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	00000000	800000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
ELEM. IN	DEX P (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVO (mass	Cw fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
AA 18 1: AA 19 1: AA 20 2 AA 21 2 AA 23 2 AA 23 2 AA 24 2 AA 25 2 AA 26 2 AA 27 2 AA 28 2 AA 30 3 AA 31 3 AA 33 3	8 .10849E+06 9 .10832E+06 0 .10810E+06 1 .1078E+06 3 .10745E+06 4 .10722E+06 5 .10698E+06 6 .10674E+06 7 .10650E+06 8 .10625E+06 9 .10600E+06 0 .10573E+06 1 .10544E+06 2 .10508E+06 3 .10470E+06	.22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02 .22000E+02	.00000E+00 .0000E+00 .0000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	.96352E+00 .94920E+00 .94752E+00 .93810E+00 .93810E+00 .9371E+00 .92724E+00 .9279E+00 .92291E+00 .92199E+00 .9230E+00 .9230E+00 .94305E+00 .97752E+00 .10000E+01	.36476E-01 .50797E-01 .52478E-01 .61897E-01 .66285E-01 .69808E-01 .72756E-01 .72756E-01 .75212E-01 .78010E-01 .76996E-01 .71691E-01 .56948E-01 .22480E-01 .00000E+00	23233E- 28192E 28741E- 29816E- 31721E 33062E- 34120E- 34994E- 35716E- 36262E- 36236E- 36236E- 30174E- 17619E- .00000E-	+03 .00000 +03 .000000 +03 .00000000 +03 .00000000 +03 .000000 +03 .0000000 +03 .000000 +03 .000000 +03 .000000 +03 .000000 +03 .000000 +03 .000000 +03 .000000 +03 .000000 +03 .000000 +03 .000000 +00 .000000 +00 .000000 +00 .0000000000	E+00 .109 E+00 .109	95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02 95E-02	.00000E+00 .0000E+00 .0000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	.14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04 .14586E+04
ELEM1 ELE	M2 INDEX	FLOH FLO (W) (m	(GAS) FLO ole/s) (m	(Aq) FLO ole/s) (m	(NAPL) FLO	(VOC)GAS 1 (mole/s)	FLO(VOC)Aq (mole/s)	VEL(GAS)	- 4 VEL (1	- IIME - (WAT) VEL m/s) ((NAPL) m/s)
AA 18 AA AA 19 AA AA 20 AA AA 21 AA AA 22 AA AA 22 AA AA 24 AA AA 25 AA AA 26 AA AA 28 AA AA 28 AA AA 28 AA AA 30 AA AA 30 AA AA 30 AA AA 32 AA AA 32 AA	19 18 3: 20 19 3: 21 20 3: 22 21 3: 23 22 3: 24 23 3: 25 24 3: 26 25 3: 27 26 3: 28 27 3: 29 28 3: 30 29 3: 31 30 3: 33 32 3:	2663E+02 .00 2662E+02 .00 2660E+02 .00 2657E+02 .00 2654E+02 .00 2652E+02 .00 2646E+02 .00 2646E+02 .00 2648E+02 .00 2643E+02 .00	000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019 000E+0019	637E-01 .00 637E-0113 635E-0145 632E-0115 628E-0129 626E-0126 622E-0130 622E-0132 620E-0135 620E-0135 622E-0131 628E-0119 628E-0119 637E-01 .00	000E+00 .00 400E-06 .00 159E-05 .00 337E-05 .00 409E-05 .00 714E-05 .00 925E-05 .00 015E-05 .00 026E-05 .00 026E-05 .00 026E-05 .00 000E+00 .00	0000E+00 0000E+	29635E-05 29634E-05 29627E-05 29627E-05 29618E-05 29618E-05 29612E-05 29610E-05 29610E-05 29608E-05 29612E-05 29621E-05 29621E-05 29635E-05	.00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+ .00000E+	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	000E+00 210E-06 553E-05 938E-05 574E-05 016E-05 049E-05 702E-05 914E-05 914E-05 365E-05 563E-05 563E-05 563E-05 000E+00
ELEMENT S	OURCE INDEX T	YPE GENERATIO	N RATE ENTH OR (W) (J/m	ALPY FF(G ole)	AS) FF(2	Aq) I	FF(NAPL)	FFVOC(GAS) FFVO	C(Aq) PWB (Pa)
AA 50 AA 1 @@@@@@@@@@	PRO 1 1 DI INJ 1 2 C0 @@@@@@@@@@@@@@@	ELV19637 DM1 .19649 a@@@@@@@@@@@@@	E-01 .1663 E-01 .1663 @@@@@@@@@@@@@	2E+04 .0000 4E+04 @@@@@@@@@@@@@@@	0E+00 .1000	00E+01 .(@@@@@@@@@@	00000E+00	.00000E+00	.15093 @@@@@@@@	1E-03 .1014 @@@@@@@@@@@@@	0E+06 @@@@@@@@@@@@@
*******	* VOLUME- AND	MASS-BALANCE	S ********	*****	**********	* * * * * * * * * *	* * * * * * * * * * * * *	******	******	* * * * * * * * * * * *	****
******	* [KCYC,ITER]	= [41, 4]	* * * * *			THE :	TIME IS .1	L8000E+05	SECONDS	, OR .2083	3E+00 DAYS
PHASES		GAS	AQU	EOUS	NAPL		TOTAL				
VOLUMES MASS ENERGY	(m**3) (moles) (J)	.00000000E+0 .00000000E+0 .00000000E+0	0 .70247 0 .38894 0 .64617	801E-03 342E+02 254E+05	.13236991E-(.14694853E+(.40155240E+(04 .73 00 .39 03 .13	1571500E-03 9041291E+02 3167232E+06				
		COMPONENTS	MOLES IN PLA	CE - BY PHAS	ES			COMPO	NENTS II	N PLACE - OV	ERALL
COMPONENT: WATER AIR trichloro total VOC	'S ethylene 's	GAS PHASE .00000000E+0 .00000000E+0 .00000000E+0 .00000000E+0	AQUEOUS 0 .38890 0 .32338 0 .38448 0 .38448	PHASE 497E+02 141E-30 038E-02 038E-02	NAPL .41727135E-(.00000000E+(.14690680E+(.14690680E+(04 00 00 .00 00 .00	ADSORBED 00000000E+00 0000000E+00	TOTA .3889 .3233 .1507 .1507	L MOLES 0539E+02 8141E-30 5161E+00 5161E+00	TOTAL M 2 .70065 0 .93651 0 .19807 0 .19807	ASS (kg) 195E+00 257E-32 103E-01 103E-01
WRITE FIL	E *SAVE* AFTF	R 41 TTME S	TEPS T	HE TIME IS	180000±+05	SECONDS					
MIXII FILL	AFILI AFILI	C TT TT D	10-0 1	TTUR TO	.10000000-00	COMOS					

Figure 10.4.4. Portion of printed output for part 2 of problem 4 (continued).

rtcem3 TMVOC: STEAMFLOODING OF A TCE BANK ROCKS----1----*----2----*----3----*----5----*----6----*----8 DIRT1 1 1.6E-11 1.6E-11 1.6E-11 3.1 2650. .385 1000. 0. 2.85 0.0 0.e-8 MULTI----1----*----2----*----3----*----4----*----5----*----6----*----7-----8 3 4 3 6 START----1----*----2----*----3----*----4----*----5----*----6----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*----2----*----3----*----4----*----5----*----6----*----8 19991000300000002 4 00 2 00 9 31999 27000.00 -1. 2000. 9.8060 20. 1.E-5 1.E02 1.e-06 1.e+4 2 0.00 0.0 1.0133e5 22.0 SOLVR----1----*----2----*----4----*---5----*---6----*----8 5 Z1 O0 8.0e-1 1.0e-7 RPCAP----1----*----2----*----3----*----4----*---5----*----6----*----7----*----8 .150 .05 .001 3. 6 10. 0.000 1.84 11. 10 TIMES----1----*----2----*----3----*----4----*----5----*----6----*----7-----8 1 23.e3 ELEME----1----*----2----*----3----*----4----*---5----*----6----*----7----*----8 AA 1 49 1DIRT1 3.7179E-5 CONNE----1----*----2----*----4----*---5----*---6----*----7----*----8 AA 1AA 2 48 1 1 1 .0091 .0091 2.0428E-3 0 0 GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 DELV 3.5917E-12 1.0140E+5 AA 50PRO 1 AA 1INJ 1 COM1 3.5341E-05 1.562e6 INCON -- INITIAL CONDITIONS FOR 50 ELEMENTS AT TIME .180000E+05 .38500000E+00 2 AA 1 .1114636655744E+06 .7511555344729E-29 .2895007288839E-51 .220000000000E+02 .38500000E+00 2 AA 2 .1112749780662E+06 .8414418922537E-28 .8309693527039E-50 .220000000000E+02 .38500000E+00 2 AA 3 .1110862905303E+06 .1096382519643E-28 .1249868398762E-48 .220000000000E+02 .38500000E+00 2 AA 16 .1086333500363E+06 .1253984052195E-06 .1863308156046E-32 .220000000000E+02 AA 17 .38500000E+00 2 .1084446621116E+06 .1157836715725E-04 .9809412498193E-31 .220000000000E+02 .38500000E+00 6 AA 18 .1084882999860E+06 .9997160425154E+00 .9635236969712E+00 .220000000000E+02 .38500000E+00 6 AA 19 .1083226745125E+06 .9997160425154E+00 .9492034916908E+00 .220000000000E+02 .38500000E+00 6 AA 20 .1081011692024E+06 .9997160425154E+00 .9475224954772E+00 .220000000000E+02 AA 21 .38500000E+00 6 .1078834980482E+06 .9997160425154E+00 .9441820776929E+00 .220000000000E+02

Figure 10.4.5. Portion of TMVOC input file for part 3 of problem 4.

	ND MASS-BALANCES **	*****	*****	******	* * * * * * * * * * * * * * * * *	*****
********* [KCYC,ITE	R] = [41, 0] ***	***		THE TIME IS .1800	00E+05 SECONDS,	OR .20833E+00 DAYS
PHASES	GAS	AQUEOUS	NAPL	TOTAL		
VOLUMES (m**3) MASS (moles) ENERGY (J)	.0000000E+00 .0000000E+00 .0000000E+00	.70247801E-03 .38894342E+02 .64617254E+05	.13236991E-04 .14694853E+00 .40155240E+03	.71571500E-03 .39041291E+02 .13167232E+06		
	COMPONENTS MOLE	S IN PLACE - BY PHA	SES		COMPONENTS IN	PLACE - OVERALL
COMPONENTS WATER AIR trichloroethylene total VOCs	GAS PHASE .00000000E+00 .00000000E+00 .00000000E+00 .00000000E+00	AQUEOUS PHASE .38890497E+02 .32338141E-30 .38448038E-02 .38448038E-02	NAPL .41727135E-04 .00000000E+00 .14690680E+00 .14690680E+00	ADSORBED .00000000E+00 .00000000E+00	TOTAL MOLES .38890539E+02 .32338141E-30 .15075161E+00 .15075161E+00	TOTAL MASS (kg) .70065195E+00 .93651257E-32 .19807103E-01 .19807103E-01
******	******	******	************	*******	* * * * * * * * * * * * * * * * * * *	*****
ITERATING AT ITERATING AT ITERATING AT AA 2(42,5) ST = ITERATING AT ITERATING AT AA 2(43,3) ST = ITERATING AT ITERATING AT AA 2(44,3) ST = 	[42, 1] DELT [42, 2] DELT [42, 3] DELT [42, 4] DELT [42, 4] DELT [43, 1] DELT [43, 2] DELT [44, 2] DELT [44, 2] DELT [44, 2] DELT] .180800E+05 DT =	TEX = .200000E+02 TEX = .200000E+02 TEX = .200000E+02 TEX = .200000E+02 TEX = .200000E+02 TEX = .200000E+02 .200000E+02 DX1= TEX = .400000E+02 TEX = .400000E+02 .400000E+02 DX1=	MAX. RES. = MAX. RES. = .772248E+01 DX2	446173E+00 AT ELEME 115478E+00 AT ELEME 126700E-01 AT ELEME 2e. 453810E-16 T = 2 265826E+00 AT ELEME 131367E-02 AT ELEME 2e224008E-17 T = 2 396017E+00 AT ELEME 649222E-02 AT ELEME 2e409253E-17 T = 2	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
rtcem3 TMVOC: STE	AMFLOODING OF A TCE	BANK			ייוה יידו	E IS 26620E+00 DAVS
0001001 011000		000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	10000000000000000000000000000000000000	200000000000000000000000000000000000000	
TOTAL TIME KCYC .23000E+05 591	ITER ITERC KC 4 4230 2	DN 2		MAX. H .52625	RES. NER 5E-07 42	KER DELTEX 2 .16719E+02
DX1M DX2M .93312E+02 .12760E	L DX3M +00 .16257E-01 .4	DX4M DX5M 17042E+01	DX6M	DX7M DX8M	DX9M	DX10M DX11M
	0@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	200000000000000000000000000000000000000	000000000000000000000000000000000000000
ELEM. INDEX P (Pa)	T (Deg-C)	SG SW	SO	PCwg PCog (Pa) (Pa)	XVOCw (mass fract.)	Dgas DNAPL (kg/m**3) (kg/m**3)
AA 1 1 .12012E+ AA 2 2 .11977E+ AA 3 3 .11942E+ AA 4 4 .11908E+ AA 5 5 .11873E+ 	06 .10484E+03 .67 06 .10475E+03 .67 06 .10467E+03 .67 06 .10459E+03 .67 06 .10459E+03 .67	7984E+00 .32016E+00 7982E+00 .32018E+00 7979E+00 .32021E+00 9775E+00 .32025E+00 7971E+00 .32029E+00	.00000E+00 .00000E+00 .00000E+00 .00000E+00	66168E+0434660E+0 66167E+0434659E+0 66163E+0434657E+0 66158E+0434654E+0 66150E+0434650E+0	4 .98956E-28 . 4 .11468E-27 . 4 .56209E-27 . 4 .42531E-27 . 4 .22991E-29 .	69530E+00 .13169E+04 69343E+00 .13170E+04 69156E+00 .13172E+04 68968E+00 .13173E+04 68780E+00 .13175E+04
AA 19 10 10 11365E+ AA 20 20 .11327E+ AA 21 21 .11285E+ AA 22 22 .11250E+ AA 23 23 .11210E+ AA 24 24 .11170E+ AA 25 25 .11130E+ AA 26 26 .11089E+ AA 27 27 .11047E+ AA 28 28 .11004E+ AA 30 30 .10915E+ AA 31 31 .10865E+ AA 32 .10819E+ AA 33 .10768E+ AA 34 34 .10713E+ AA 35 .5 .10652E+ AA 36 .0583E+ AA 37 37 .10497E+	00 .10325E+03 .67 00 .10315E+03 .67 00 .10305E+03 .67 00 .10296E+03 .67 00 .10296E+03 .67 00 .10296E+03 .67 00 .10265E+03 .66 010255E+03 .66 .10245E+03 .66 00 .10233E+03 .65 .66 00 .10210E+03 .65 .66 00 .10210E+03 .65 .66 00 .10197E+03 .62 .66 00 .10185E+03 .62 .66 00 .10171E+03 .62 .66 00 .10171E+03 .62 .66 00 .10171E+03 .52 .66 00 .10141E+03 .57 .66 00 .10122E+03 .52 .66 00 .10122E+03 .52 .66 00 .10122E+03 .52 .66 00 .0099E+03 .46 .66 00 .9	32426E+00 .32426E+00 32518E+00 .32518E+00 3270E+00 .32518E+00 3270E+00 .32766E+00 32931E+00 .32931E+00 6628E+00 .33372E+00 3337E+00 .33663E+00 5628E+00 .34432E+00 568E+00 .34432E+00 568E+00 .34432E+00 568E+00 .3547E+00 35547E+00 .35247E+00 701E+00 .3629E+00 747E+00 .37253E+00 193E+00 .42807E+00 193E+00 .42807E+00 193E+00 .45805E+00 093E+00 .53907E+00	.00000E+00 - .00000E+00 - .0000E+00 -	$\begin{array}{r} 5315104 & -34134\pm+0\\ 645164\pm+04 & -34134\pm+0\\ 64929\pm+04 & -33861\pm+0\\ 64300\pm+04 & -33861\pm+0\\ 63885\pm+04 & -33263\pm+0\\ 63885\pm+04 & -33203\pm+0\\ 62793\pm+04 & -32892\pm+0\\ 61256\pm+04 & -32522\pm\pm0\\ 61256\pm+04 & -32522\pm\pm0\\ 61256\pm+04 & -31576\pm+0\\ 59140\pm+04 & -30278\pm+0\\ 56219\pm+04 & -30278\pm+0\\ 56219\pm+04 & -29448\pm+0\\ 51921\pm+04 & -27197\pm+0\\ 48873\pm\pm04 & -25600\pm+0\\ 44865\pm+04 & -25600\pm+0\\ 31794\pm+04 & -16654\pm+0\\ 19652\pm+04 & -10294\pm+0\\ 51921\pm+04 & -10294\pm+0\\ 5178\pm+04 & -10294\pm+0\\ 5182\pm+04 & -20072\pm+0\\ 5178\pm+04 & -10294\pm+0\\ 5182\pm+04 & -20072\pm+0\\ 5178\pm+04 & -20072\pm+0\\ 518\pm+04 & -2002\pm+0\\ 518\pm+04 & -2002\pm+0\\ 518\pm+04 & -2002\pm+0\\ 518\pm+04 & -2$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30120100 13198E+04 66036E+00 13200E+04 65830E+00 13201E+04 6521E+00 13203E+04 65411E+00 13203E+04 65421E+00 13203E+04 64763E+00 13205E+04 64763E+00 13210E+04 64763E+00 13211E+04 64381E+00 13215E+04 63841E+00 13215E+04 63341E+00 13212E+04 63341E+00 13224E+04 62796E+00 13224E+04 62796E+00 132224E+04 62796E+00 13223E+04 61325E+00 13232E+04 61325E+00 13232E+04 61325E+00 13232E+04 61325E+00 13232E+04 61325E+00 13235E+04 61325E+00 13235E+04 61325E+00 13235E+04 61325E+00 13235E+04 6130E+00 13235E+04

Figure 10.4.6. Portion of printed output for part 3 of problem 4.

rtcem3	TMVOC:	STEAMFLOODING	OF	Α	TCE	BANK	
----------	--------	---------------	----	---	-----	------	--

@@@@@@@@	OUT 200000	PUT DATA AN	FTER (2000000	779, 3 @@@@@@@@@)-2-TIME ST	EPS 20000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	THE T1	LME IS .31 20000000000000	250E+00 DAYS
TOTAL .2700	TIME)0E+05	КСҮС 779	ITER 3	ITERC 5606	KON 2				MAX. R .72737	ES. E-05	NER 41	KER 1	DELTEX .38248E+03
DX1	M	DX2M	2 20	DX3M	DX4M	DX5M	DX6M	DX7M	DX8M		DX9M	DX10M	DX11M
@@@@@@@@	000000	.05517E-22	2 .20	000000000000000000000000000000000000000	.255576-02	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000	00000000	800000000000000000000000000000000000000	୶୶୶୶୶୶୶୶୶୶୶୶
FT.FM	TNIDEY	D		т	SC	GM	50	PCwa	PCog	XVC)("1.1	Drag	
выви.	TINDEX	(Pa)	(D	eg-C)	96	5	50	(Pa)	(Pa)	(mass	fract.)	(kg/m**3)	(kg/m**3)
AA 1	1	.12318E+06	.105	57E+03	.67948E+00	.32052E+00	.00000E+00	66035E+04	34590E+04	.787	37E-33	.71182E+00	.13155E+04
AA 3	3	.12251E+06	.105	41E+03	.67966E+00	.32043E+00	.00000E+00	66092E+04	34620E+04	.167	37E-25	.70818E+00	.13157E+04
AA 4 AA 5	4 5	.12217E+06	.105	33E+03 24E+03	.67975E+00 .67985E+00	.32025E+00 .32015E+00	.00000E+00	66121E+04 66149E+04	34635E+04	.785	96E-33	.70635E+00 .70452E+00	.13160E+04 .13161E+04
AA 6	6	.12149E+06	.105	16E+03	.67994E+00	.32006E+00	.00000E+00	66178E+04	34665E+04	.785	01E-33	.70268E+00	.13163E+04
AA 7 AA 8	·/ 8	.12114E+06 12080E+06	.105	08E+03	.68003E+00 68012E+00	.31997E+00 31988E+00	.00000E+00 00000E+00	66207E+04	34680E+04	.709	03E-26	.70084E+00 69899E+00	.13164E+04 13166E+04
AA 9	9	.12046E+06	.104	92E+03	.68021E+00	.31979E+00	.00000E+00	66264E+04	34710E+04	.783	57E-33	.69714E+00	.13167E+04
AA 10	10	.12011E+06	.104	84E+03	.68030E+00	.31970E+00	.00000E+00	66293E+04	34725E+04	.783	08E-33	.69529E+00	.13169E+04
AA 11 AA 12	12	.11977E+06	.104	:75E+03 :67E+03	.68039E+00 .68048E+00	.31951E+00	.00000E+00	66322E+04	34740E+04	./82	42E-25	.69343E+00 .69156E+00	.13170E+04 .13172E+04
AA 13	13	.11908E+06	.104	59E+03	.68057E+00	.31943E+00	.00000E+00	66379E+04	34770E+04	.125	32E-25	.68969E+00	.13173E+04
AA 14	14	.11873E+06	.104	50E+03	.68066E+00	.31934E+00	.00000E+00	66407E+04	34784E+04	.515	577E-25	.68782E+00	.13175E+04
AA 15 AA 16	16	.11803E+06	.104	33E+03	.68083E+00	.31917E+00	.00000E+00	66462E+04	34813E+04	.780	13E-33	.68406E+00	.13178E+04
AA 17	17	.11768E+06	.104	25E+03	.68091E+00	.31909E+00	.00000E+00	66488E+04	34827E+04	.260	24E-25	.68217E+00	.13179E+04
AA 18	18	.11733E+06	.104	16E+03	.68099E+00	.31901E+00	.00000E+00	66514E+04	34841E+04	.216	29E-26	.68028E+00	.13181E+04
AA 20	20	.11663E+06	.103	99E+03	.68114E+00	.31886E+00	.00000E+00	66563E+04	34866E+04	.778	11E-33	.67648E+00	.13184E+04
AA 21	21	.11628E+06	.103	90E+03	.68120E+00	.31880E+00	.00000E+00	66585E+04	34878E+04	.777	60E-33	.67457E+00	.13186E+04
AA 22 AA 23	22	.11592E+06	.103	81E+03	.68126E+00 68131E+00	.31874E+00 31869E+00	.00000E+00 00000E+00	66604E+04 66621E+04	34888E+04 - 34897E+04	834	09E-33	.67266E+00 67074E+00	.13187E+04 13189E+04
AA 24	24	.11521E+06	.103	64E+03	.68134E+00	.31866E+00	.00000E+00	66635E+04	34904E+04	.290	25E-25	.66881E+00	.13191E+04
AA 25	25	.11485E+06	.103	55E+03	.68135E+00	.31865E+00	.00000E+00	66644E+04	34909E+04	.309	00E-26	.66688E+00	.13192E+04
AA 26 AA 27	26 27	.11450E+06	.103	46E+03 37E+03	.68135E+00	.31869E+00	.00000E+00	66640E+04 66641E+04	34910E+04	.106	067E-25 24E-27	.66300E+00	.13194E+04 .13196E+04
AA 28	28	.11378E+06	.103	28E+03	.68124E+00	.31876E+00	.00000E+00	66626E+04	34899E+04	.343	05E-25	.66106E+00	.13197E+04
AA 29	29	.11342E+06	.103	19E+03	.68112E+00	.31888E+00	.00000E+00	66598E+04	34885E+04	.422	83E-25	.65910E+00	.13199E+04
AA 30 AA 31	31	.11269E+06	.103	01E+03	.68067E+00	.31933E+00	.00000E+00	66486E+04	34826E+04	.497	43E-25	.65517E+00	.13201E+04
AA 32	32	.11233E+06	.102	91E+03	.68030E+00	.31970E+00	.00000E+00	66390E+04	34776E+04	.559	29E-25	.65319E+00	.13204E+04
AA 33 AA 34	33	.11196E+06	.102	82E+03	.67979E+00 67910E+00	.32021E+00 32090E+00	.00000E+00	66258E+04	34707E+04	.475	38E-25	.65120E+00 64920E+00	.13206E+04 13207E+04
AA 35	35	.11122E+06	.102	63E+03	.67818E+00	.32182E+00	.00000E+00	65838E+04	34486E+04	.328	61E-25	.64719E+00	.13209E+04
AA 36	36	.11084E+06	.102	53E+03	.67695E+00	.32305E+00	.00000E+00	65518E+04	34319E+04	.377	04E-25	.64516E+00	.13211E+04
AA 37 AA 38	37	.1104/E+06 11009E+06	.102	44E+03	.67320E+00	.32467E+00 32680E+00	.00000E+00	65098E+04 64550E+04	34099E+04	.388	01E-25 39E-25	.64312E+00 64105E+00	.13213E+04 13214E+04
AA 39	39	.10970E+06	.102	24E+03	.67040E+00	.32960E+00	.00000E+00	63841E+04	33440E+04	.390	39E-25	.63896E+00	.13216E+04
AA 40	40	.10931E+06	.102	14E+03	.66673E+00	.33327E+00	.00000E+00	62928E+04	32962E+04	.432	15E-25	.63683E+00	.13218E+04
AA 41 AA 42	41 42	.10891E+06	.102	93E+03	.65562E+00	.33808E+00	.00000E+00	61763E+04 60287E+04	32352E+04	.390	72E-25	.63243E+00	.13220E+04
AA 43	43	.10807E+06	.101	82E+03	.64737E+00	.35263E+00	.00000E+00	58433E+04	30608E+04	.472	32E-25	.63013E+00	.13224E+04
AA 44	44	.10763E+06	.101	70E+03	.63648E+00	.36352E+00	.00000E+00	56122E+04	29397E+04	.463	22E-25	.62774E+00	.13226E+04
AA 45 AA 46	46	.10667E+06	.101	45E+03	.60242E+00	.39758E+00	.00000E+00	49724E+04	26046E+04	.466	26E-25	.62247E+00	.13231E+04
AA 47	47	.10611E+06	.101	30E+03	.57504E+00	.42496E+00	.00000E+00	45335E+04	23747E+04	.440	69E-25	.61946E+00	.13234E+04
AA 48 AA 49	48 49	.10547E+06	.101	13E+03	.53439E+00 46628E+00	.46561E+00	.00000E+00	39774E+04	20834E+04	.426	97E-25	.61597E+00	.13237E+04 13241E+04
AA 50	50	.10345E+06	.100	58E+03	.31274E+00	.68726E+00	.00000E+00	20450E+04	10712E+04	.432	270E-25	.60498E+00	.13247E+04
@@@@@@@@	000000		200000	000000000	000000000000000					000000	000000000		
		OLUME - AND	MASS-	BALANCES									
******	*** [KCYC,ITER]	= [7	79, 3]	****			THE TIME	IS .2700	0E+05	SECONDS	, OR .3125	0E+00 DAYS
PHASES				GAS	AQU	EOUS	NAPL	TOT	'AL				
VOLUMES	S ,	(m**3)	.4708	5488E-03	.24486	012E-03	.0000000E+0	0.71571	500E-03				
ENERGY	((J)	.7872	3830E+03	.10126	690E+02	.00000000E+0	.41538	545E+06				
			COMP	ONENTS M	IOLES IN PLA	CE - BY PHAS	SES			COMPC	NENTS IN	N PLACE - OV	ERALL
COMPONE			030		AOTHOUS	DUACE	NTA 171	3500	DDED	TOT 3	T MOT DO		
WATER	TNT 2		GAS .1741	2990E-01	AQUEOUS	590E+02	NAPL .00000000F+0	ADSC	NKBED	.1300	101ES	2 .23433	ызь (кд) 599E+00
AIR			.8497	2793E-11	.74893	187E-13	.00000000E+0	00		.8572	1725E-11	L .24825	011E-12
trichlo	proeth	ylene	.5036	1300E-24	.44506	762E-25	.0000000E+0	00000.0000	000E+00	.5481	1977E-24	4 .72016	908E-25
LULAL V	JUCS		. 5036	13008-24	.44506	1026-20	.00000000±+0	.00000	0000000000	.5481	.191/1-24	· ./2016	200E-20
******	*****	********	*****	******	******	**********	**********	**********	*******	*****	******	********	*****

Figure 10.4.6. Portion of printed output for part 3 of problem 4 (continued).

rtcem3on ... TMVOC: STEAMFLOODING OF A TCE BANK; two gases 02+N2 ROCKS----1----*----2----*----4----*---5----*---6----*----8 1 2650. .385 1.6E-11 1.6E-11 1.6E-11 3.1 DIRT1 1000. 0.e-8 0. 2.85 0.0 NCGAS----1----*----2----*----3----*----4----*---5----*---6----*----7-----8 2 02 N2 SELEC----1----*----2----*----4----*---5----*---6----*----8 0 1 0 MULTI----1----*----2----*----3----*----4----*---5----*---6----*----7----* 4 5 3 6 START----1----*----2----*----3----*----4----*----5----*----6----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*----2----*----3----*----4----*----5----*----6----*-----8 1999000000000000 4 00 1 00 9 31999 27000.00 9.8060 -1. 2000 20. 1.E-5 1.E02 1.e-06 1.e+4 2 1.0133e5 0.00 0.0 0.00 22.0 . . . GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 AA 50PRO 1 DELV 3.5917E-12 1.0140E+5 AA 1INJ 1 COM1 3.5341E-05 1.562e6 INCON -- INITIAL CONDITIONS FOR 50 ELEMENTS AT TIME 0.180000E+05 0.38500000E+00 2 AA 1 0.1114636655746E+06 0.8158296419253E-29 0.1198556210339E-57 0.3028362729482E-50 0.220000000000E+02 0.38500000E+00 2 AA 2 0.1112749780664E+06 0.5118535448057E-28 0.3488757153340E-56 0.7558901557495E-49 0.220000000000E+02 . . . AA 17 0.3850000E+00 2 0.1084446621118E+06 0.1157836716945E-04 0.2487581434748E-44 0.9809412499562E-31 0.220000000000E+02 0.38500000E+00 6 AA 18 0.1084882999873E+06 0.9997160425154E+00 0.3274627458466E-44 0.9635236966728E+00 0.220000000000E+02 AA 19 0.38500000E+00 6 0.1083226745125E+06 0.9997160425154E+00 0.9996402142056E-44 0.9492034916908E+00 0.220000000000E+02 0.38500000E+00 6 AA 20 0.1081011692024E+06 0.9997160425154E+00 0.2936987404656E-43 0.9475224954773E+00 0.220000000000E+02 AA 21 0.38500000E+00 6 0.1078834980482E+06 0.9997160425154E+00 0.8267559599359E-43 0.9441820776932E+00 0.220000000000E+02

Figure 10.4.7. Portion of TMVOC input file for the steamflood in the $O_2 + N_2$ variation of problem 4.

******** VOLUME- ANI	O MASS-BALANCES ********	****	*****	*****	****	*****	* * * * * * * * * *
********* [KCYC,ITER]] = [41, 0] *****			THE TIME IS	.18000E+05 SECONDS	, OR .2083	3E+00 DAYS
PHASES	GAS AQU	JEOUS	NAPL	TOTAL			
VOLUMES (m**3) MASS (moles) ENERGY (J)	.00000000E+00 .7024 .00000000E+00 .38894 .00000000E+00 .6461	7801E-03 .1 1342E+02 .1 7254E+05 .4	3236991E-04 4694853E+00 0155240E+03	.71571500E-0 .39041291E+0 .13167232E+0	3 22 6		
	COMPONENTS MOLES IN PLA	ACE - BY PHASES			COMPONENTS I	N PLACE - OV	ERALL
COMPONENTS WATER O2 N2 trichloroethylene total VOCs	GAS PHASE AQUEOUS .00000000E+00 .38890 .0000000E+00 .73144 .0000000E+00 .4400 .0000000E+00 .38446 .0000000E+00 .38446	5 PHASE 0497E+02 .4 9917E-30 .2 0923E-15 .0 0038E-02 .1 3038E-02 .1	NAPL 1727135E-04 7511404E-35 0000000E+00 4690680E+00 4690680E+00	ADSORBED .00000000E+C .00000000E+C	TOTAL MOLES .38890539E+0 .73146193E-3 .14000923E-1 00 .15075161E+0 .15075161E+0	TOTAL M 2 .70065 0 .23406 5 .39415 0 .19807 0 .19807	ASS (kg) 195E+00 050E-31 624E-17 103E-01 103E-01
AA 2(42, 5) ST = AA 2(43, 3) ST = AA 2(44, 3) ST = 	.180200E+05 DT = .20000 .180400E+05 DT = .20000 .180800E+05 DT = .40000	DE+02 DX1=88 DE+02 DX1= .81 DE+02 DX1= .77	4237E+04 DX2= 0861E+01 DX2= 2248E+01 DX2=	.178524E-21 1 178524E-21 1 .127930E-17 1	C = 22.588 P = 1 C = 23.657 P = 1 C = 27.104 P = 1	02433. S = 02441. S = 02448. S =	.000000E+00 .000000E+00 .000000E+00
rtcem3on TMVOC:	STEAMFLOODING OF A TCE BA	NK; two gases (02+N2				
OUTPUT DATA A	AFTER (592, 3)-2-TIME ST 3000000000000000000000000000000000000	EPS 1000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	ଢଢଢଢଢଢଢଢଢଢଢଢ	THE T DODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	'IME IS .26 @@@@@@@@@@@@@@	620E+00 DAYS @@@@@@@@@@@@@
TOTAL TIME KCYC .23000E+05 592	ITER ITERC KON 3 4333 2			M	MAX. RES. NER 49764E-05 43	KER 1	DELTEX .11094E+02
DX1M DX2M	DX3M DX4M	DX5M	DX6M	DX7M I	DX8M DX9M	DX10M	DX11M
.50448E+02 .86034E-0 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@)1 .653/6E-15 .10902E-01 300000000000000000000000000000000000	31190E+01	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	୶ଵଵଵଵଵଵଵଵଵଵଵ	000000000000000000000000000000000000000	୶ଵଵଵଵଵଵଵଵଵଵ	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
ELEM. INDEX P (Pa)	T SG (Deg-C)	SW	SO	PCwg PCc (Pa) (Pa	og XVOCw 1) (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
AA 2 .11976E+00 AA 3 .11941E+00 AA 5 5 .11872E+00 AA 5 5 .11872E+00 AA 18 18 .11401E+00 AA 19 19 .11363E+00 AA 19 19 .11363E+00 AA 20 20 .11325E+00 AA 21 21 .11286E+00 AA 22 22 .11208E+00 AA 23 23 .11208E+00 AA 24 24 .11168E+00 AA 25 25 .11128E+00 AA 26 26 .11087E+00 AA 26 26 .11002E+00 AA 27 27 .11045E+00 AA 30 30 .10913E+00 AA 32 32 .10818E+00 AA 33 31 .10767E+00 AA 34 .4 .1072E+00 AA 34 .1072E+00 <t< td=""><td></td><td>.32018E+00 . 32021E+00 . 32024E+00 . 32029E+00 . 32423E+00 . 32515E+00 . 3263E+00 . 32763E+00 . 32763E+00 . 33128E+00 . 33128E+00 . 34012E+00 . 34430E+00 . 34933E+00 . 35541E+00 . 35541E+00 . 36294E+00 . 36294E+00 . 37253E+00 . 3628E+00 .</td><td>00000E+00 6 00000E+00 5 00000E+00 4</td><td>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</td><td>10E+104 .78209E-33 88E+04 .78160E-33 15E+04 .78110E-33 10E+04 .78110E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77087E-33 10E+04 .77087E-33 10E+04 .77087E-33 10E+04 .77087E-33 14E+04 .76902E-33 18E+04 .76902E-33 18E+04 .76932E-33 18E+04 .76632E-33 14E+04 .76632E-33 14E+04 .76632E-33 14E+04 .76632E-33 13E+04 .76430E-33 14E+04 .76558E-33 13E+04 .76304E-33 14E+04 .76304E-33 14E+04 .76304E-33</td><td>. 69339E+00 . 69151E+00 . 68963E+00 . 68774E+00 . 66026E+00 . 65026E+00 . 65611E+00 . 65400E+00 . 65187E+00 . 64752E+00 . 64529E+00 . 64302E+00 . 63334E+00 . 63370E+00 . 63370E+00 . 62496E+00 . 62170E+00</td><td>13170E+04 13173E+04 13175E+04 13175E+04 13198E+04 13200E+04 13200E+04 13203E+04 13203E+04 13207E+04 13213E+04 13217E+04 13212E+04 13212E+04 13222E+04 13222E+04 13222E+04</td></t<>		.32018E+00 . 32021E+00 . 32024E+00 . 32029E+00 . 32423E+00 . 32515E+00 . 3263E+00 . 32763E+00 . 32763E+00 . 33128E+00 . 33128E+00 . 34012E+00 . 34430E+00 . 34933E+00 . 35541E+00 . 35541E+00 . 36294E+00 . 36294E+00 . 37253E+00 . 3628E+00 .	00000E+00 6 00000E+00 5 00000E+00 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	10E+104 .78209E-33 88E+04 .78160E-33 15E+04 .78110E-33 10E+04 .78110E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77319E-33 10E+04 .77087E-33 10E+04 .77087E-33 10E+04 .77087E-33 10E+04 .77087E-33 14E+04 .76902E-33 18E+04 .76902E-33 18E+04 .76932E-33 18E+04 .76632E-33 14E+04 .76632E-33 14E+04 .76632E-33 14E+04 .76632E-33 13E+04 .76430E-33 14E+04 .76558E-33 13E+04 .76304E-33 14E+04 .76304E-33 14E+04 .76304E-33	. 69339E+00 . 69151E+00 . 68963E+00 . 68774E+00 . 66026E+00 . 65026E+00 . 65611E+00 . 65400E+00 . 65187E+00 . 64752E+00 . 64529E+00 . 64302E+00 . 63334E+00 . 63370E+00 . 63370E+00 . 62496E+00 . 62170E+00	13170E+04 13173E+04 13175E+04 13175E+04 13198E+04 13200E+04 13200E+04 13203E+04 13203E+04 13207E+04 13213E+04 13217E+04 13212E+04 13212E+04 13222E+04 13222E+04 13222E+04
AA 36 36 .10583E+06 AA 37 37 .10497E+06 AA 38 38 .10371E+06 AA 39 39 .10271E+06 AA 40 40 .10264E+06 AA 41 41 .10244E+06 AA 42 42 .10206E+06 AA 43 43 .10160E+06 AA 44 44 .10157E+06 AA 45 .10154E+06 A	j .10122E+03 .53079E+00 j .10099E+03 .45937E+00 j .9804E+02 .29612E+00 j .71631E+02 .00000E+00 j .46227E+02 .00000E+00 j .3546E+02 .00000E+00 j .27653E+02 .00000E+00 j .24866E+02 .00000E+00 j .23457E+02 .00000E+00 j .22741E+02 .00000E+00	.46921E+00 .54063E+00 .70388E+00 .69022E+00 .70831E+00 .76444E+00 .89757E+00 .99731E+00 .10000E+01 .10000E+01	00000E+00 - 3 00000E+00 - 3 00000E+00 - 3 29169E+00 - 9 23556E+00 - 9 23556E+00 - 4 26859E-02 - 1 00000E+00 0	9324E+042059 1647E+041657 9514E+041627 8411E+03 .000C 4226E+03 .000C 3345E+03 .000C 4683E+02 .000C 0000E+00 .000C	18E+04 .32599E-20 7E+04 .22699E-16 .22E+04 .20305E-03 00E+00 .1096E-02 00E+00 .10993E-02 00E+00 .10994E-02 00E+00 .10995E-02 00E+00 .10995E-02 00E+00 .10995E-02 00E+00 .10995E-02	.61795E+00 .61326E+00 .14786E+01 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .54087E-01 .50391E-01	.13235E+04 .13239E+04 .13370E+04 .13763E+04 .14192E+04 .14192E+04 .14400E+04 .14540E+04 .14563E+04 .14574E+04

Figure 10.4.8. Portion of printed output for the steamflood in the $O_2 + N_2$ variation of problem 4.

10.5 Problem No. 5 (*rbt*) - Steam Displacement of a Benzene-Toluene Mixture in a Laboratory Column

This is a variation of sample problem no. 4, corresponding to a different experiment of Hunt et al. (1988) in which instead of trichloroethylene a two-component mixture of benzene and toluene was injected over a period of 120 s. The input file as shown in Fig. 10.5.1 is essentially identical to the one for the TCE problem (Fig. 10.4.1), except that (i) CHEMP data were changed to toluene and benzene, (ii) in MULTI we set NK = NEQ = 4 (water, air, toluene, benzene), (iii) initial conditions now require NK+1 = 5 parameters, and (iv) injection specifications were modified. At prevailing conditions of (T, P) = (22 °C, 1.013e5 Pa) the densities of benzene and toluene are, respectiveley, 878.94 and 865.06 kg/m³. Injection rates were set in such a way that 9 ml of each would be injected in 120 s. Following Adenekan (1992), we also increased the irreducible gas saturation from a value of .001 used in the TCE problem no. 4 to .01. The results of the VOC injection run are generally similar to what was obtained for the TCE problem and are shown, in part, in Fig. 10.5.2.

VOC emplacement is followed again by a waterflood which in this case consists of two parts, a high-rate part in which 9 pore volumes of water are injected at a Darcy velocity of 15 m/day, and a low-rate part in which 1.2 pore volumes are injected at a Darcy velocity of 0.4 m/day. The 15 m/day Darcy velocity corresponds to a volumetric water injection rate of 15*20.428e-4/86400 =3.5465e-7 m³/s, which at ambient water density of 997.649 kg/m³ translates into a mass rate of 3.5382e-4 kg/s. This rate is maintained for 18.162e3 seconds, corresponding to injection of 9 pore volumes. Subsequently injection rate is changed to 9.4352e-6 kg/s, corresponding to a Darcy velocity of 0.4 m/day, and injection continues for another 90.809e3 seconds, so that at the final time of 108.971 e3 seconds a total of 10.2 pore volumes have been injected. The SAVE file of the first run segment is used as data block INCON in the input file for waterflooding, part of which is shown in Fig. 10.5.3. Note that we set MOP(12)=2, to rigorously maintain desired total water injection across the step change in water rate after 9 pore volumes, corresponding to t = 18.162e3 s. Fig. 10.5.4. shows part of the printout generated by this run. It is seen that, due to the higher solubility of benzene as compared to toluene, the NAPL plume is depleted of benzene at the upstream end. The mass balances indicate that 81.5 % of the initial benzene inventory of .1013 moles have been removed by the waterflood, while of the initial toluene inventory of .08450 mole only 21.3 % were removed. NAPL phase saturations at the beginning of the waterflood, and after injection of 1.2, 9, and 10.2 pore volumes, are shown in Fig. 10.5.5. Time series of benzene and toluene mole fractions in the aqueous phase at the outlet (grid block AA 50) were generated by means of the FOFT data block, using a modified version of subroutine FGTAB in which the first 5 primary variables are written out, as follows:

The mole fractions of VOCs were converted to mass fractions according to

79

$$X^{\kappa} = \frac{x^{\kappa} M_{\kappa}}{\sum_{j} x^{j} M_{j}} \cong x^{\kappa} M_{\kappa} / 18.016 \qquad (10.5.1)$$

and are shown in Fig. 10.5.6. Here, upper-case X denotes mass fraction, lower-case x denotes mole fraction. M_{κ} is the molecular weight of component κ . For dilute aqueous solutions, the sum appearing in the denominator may be approximated by just retaining the water contribution.

In the third part of the simulation, the benzene/toluene mixture is mobilized by a steamflood. The input file as shown (in part) in Fig. 10.5.7 includes INCON data generated from the waterflood. Steam injection specifications are the same as in *rtcem3*. Fig. 10.5.8 shows part of the printout from this run, including volume and mass balances at initialization, and one-line printouts for the first few time steps. Temperatures near the steam injection point (block AA 1) are rising rapidly, and time steps get reduced due to the severe non-linearities as a gas phase evolves. After the phase change time steps grow again, until a gas phase evolves in the next downstream block. This cyclic behavior continues as the steam front progresses. After 5,000 s of steam injection, the NAPL bank is located in grid blocks AA 39 to AA 42 (INDEX = 6, corresponding to two-phase water-NAPL conditions), similar to the results of the *rtcem3* problem. Upstream from the NAPL bank we have INDEX = 4 (gas-water), downstream we have INDEX = 2 (single-phase water). Benzene is depleted in the NAPL plume relative to toluene, especially in the upstream end, because it is more soluble and more volatile. The final simulation time of 9,000 s is reached after K = 1381 time steps. At this time all VOCs have been completely removed from the system. Results for pressures, temperatures, and phase saturations are very similar to problem *rtce3*.

Fig. 10.5.9 shows the internal version identification messages, as written during program execution to a special disk file VERS, which is copied to the output file at the end of a TMVOC run. Each program unit writes a message when it is called the first time, so that the order in which the messages appear in Fig. 10.5.9 reflects the calling sequence during execution.

rbt1 INJECTION OF TOLUENE AND BENZENE INTO A COLUMN ROCKS----1--------2----*----3----*----4----*----5----*----6----*-----8 1.6E-11 1.6E-11 3.1 1000. DIRT1 1 .385 1.6E-11 2650. 2.85 0.0 0.e-8 Ο. CHEMP----1----*----2----*----3----*----4----*----5-----*----6----*-----8 2 toluene 41.0 0.263 0.263 591.8 0.4 383.8 -7.28607 1.38091 -2.83433 -2.79168 92.141-.2435E+020.5125E+00-.2765E-030.4911E-07 867. 293.00 0.880E-05 303.10 1.41 -.5878E+010.1287E+040.4575E-02-.4499E-05 316.0 0.101E-03 0.000E+00 0.000E+00 0.000E+00 0. 0. 0. benzene 48.2 0.271 0.212 562.2 0.0 353.2 -6.98273 1.33213 -2.62863 -3.33399 78.114-.3392E+020.4739E+00-.3017E-030.7130E-07 885. 289.00 0.770E-05 273.10 1.52 0.4612E+010.1489E+03-.2544E-010.2222E-04 259.0 0.411E-03 0.000E+00 0.000E+00 0.000E+00 0. 0. 0. NCGAS---1---*---2---*---4----*---5----*---6----*----8 1 AIR SELEC----1----*----2----*----3----*----4----*----5----*----6----*----8 1 0 1 MULTI----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 4 4 3 6 START----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*----6----*----7----*----8 PARAM---1---*---2---*---3---**---4---*---5----*---6---*---7---**---8 201000300000000 4 0001000 4 20 120.00 9.8060 2. 120. 1.000E-8 1.E-5 1.E02 1.e4 2 1.013e5 0.0 0.0 0.0 22.0 RPCAP---1---*---2---*---3---**---4---*---5----*---6---*---7---**---8 .150 .05 .01 0.000 1.84 10. 3. 6 10. 11. 8 ELEME----1----*----2----*----3----*----4----*----5----*----6----*----7----*----8 AA 1 49 1DIRT1 3.7179E-5 CONNE----1----*----2----*----3----*----4----*----5----*----6----*----8 AA 1AA 2 48 1 1 1 .0091 .0091 2.0428E-3 0 0 GENER----1----*----2----*----3----*----4----*----5-----*----6----*----8 AA lend 1 DELV 3.5917E-12 1.0140E+5 AA 50end 2 DELV 3.5917E-12 1.0140E+5 AA 15tol 1 6.488e-5 COM3 AA 15ben 2 COM4 6.592e-5 INCON---1---*---2---*---3---**---4---*---5----*---6---*---7---**---8 ENDCY---1---*---2---*---3---**---4---*---5----*---6---*---7---**---8

Figure 10.5.1. TMVOC input file for part 1 of problem 5 (injection of benzene and toluene into a laboratory column).

	1, 1] DELTE	X = .200000E+01	MAX. RES. =	.453951E+00 A1	r element aa 1	5 EQUATION	4	
\$\$\$ 2> 6 \$\$\$ NAPL TTERATING AT [EVOLVES AT ELEMENT	*AA 15* \$\$\$ xsu x = 200000E+01	MAX RES =	56E+02 487433E+03 Δ1	Γ ΕΙ.ΕΜΕΝΤ ΔΔ		1	
ITERATING AT [1, 3] DELTE	X = .200000E+01	MAX. RES. =	.378773E+00 AT	r element aa 1	5 EQUATION	3	
ITERATING AT [1, 4] DELTE	X = .200000E+01	MAX. RES. =	.792066E-01 AT	r element aa 1	5 EQUATION	4	
ITERATING AT [1, 5] DELTE	X = .200000E+01	MAX. RES. =	.626606E-03 AT	r element aa 1	5 EQUATION	4	
AA 15(1, 6) ST =	.200000E+01 DT =	.200000E+01 DX1= .	109079E+04 DX	(2= .474520E+00	T = 22.000	P = 102391.	S =	.000000E+00
TTERATING AT [2, 1] DELIE. 2 2] DELTE	X = .200000E+01 X = 200000E+01	MAX. RES. =	18432984E+00 A	L ELEMENI AA 1 P ELEMENT AA 1	5 EQUATION	4	
ITERATING AT [2, 3] DELTE	X = .200000E+01	MAX. RES. =	.310028E-04 AT	F ELEMENT AA 1	5 EQUATION	4	
AA 15(2, 4) ST =	.400000E+01 DT =	.200000E+01 DX1= .	852798E+02 DX	<pre>K2=992515E-02</pre>	2 T = 22.000	P = 102476.	S =	.000000E+00
ITERATING AT [3, 1] DELTE	X = .400000E+01	MAX. RES. =	.905938E+00 A1	r element aa 1	5 EQUATION	4	
ITERATING AT [3, 2] DELTE	X = .400000E+01	MAX. RES. =	.262379E-01 A1	r element aa 1	5 EQUATION	4	
A 15 (2 4) CT -	3, 3] DELTE.	X = .400000E+01	MAX. RES. =	.9//450E-04 A	1 ELEMENT AA 1	D = 102615	4 c _	0000002+00
ITERATING AT [4. 11 DELTE	X = .80000E+01	MAX. RES. =	.996059E+00 A	r element aa 1	5 EQUATION	4	.000000±+00
\$\$\$ 2> 6 \$\$\$ NAPL	EVOLVES AT ELEMENT	*AA 14* \$\$\$ xsu	moil= .1899	98E+01			-	
\$\$\$ 2> 6 \$\$\$ NAPL	EVOLVES AT ELEMENT	*AA 16* \$\$\$ xsu	moil= .1727	/9E+01				
ITERATING AT [4, 2] DELTE	X = .800000E+01	MAX. RES. =	.785098E-01 AT	r element aa 1	4 EQUATION	4	
ITERATING AT [4, 3] DELTE	X = .800000E+01	MAX. RES. =	.791996E-01 A1	F ELEMENT AA 1	4 EQUATION	1	
AA = 16(4, 5) ST =	4, 4] DELIE. 160000E+02 DT =	800000E+01 DX1=	MAX. RES. = 599063E+02 DX	.24/085E-02 A	T = 22000	P = 102267	4 S =	000000E+00
ITERATING AT [5, 1] DELTE	X = .800000E+01	MAX. RES. =	.480126E+00 AT	r element aa 1	5 EOUATION	4	.0000001.00
ITERATING AT [5, 2] DELTE	X = .800000E+01	MAX. RES. =	.123396E+00 AT	r element aa 1	4 EQUATION	3	
ITERATING AT [5, 3] DELTE	X = .800000E+01	MAX. RES. =	.180628E-01 AT	r element aa 1	6 EQUATION	4	
ITERATING AT [5, 4] DELTE	X = .800000E+01	MAX. RES. =	.363176E-04 AT	r element aa 1	6 EQUATION	4	
AA 14(5, 5) ST =	.240000E+02 DT =	.800000E+01 DX1= .	764895E+02 D2	(2=752827E-0)	L T = 22.000	P = 102288.	S =	.000000E+00
TTERATING AT [6 21 DELTE	X = .800000E+01 X = .800000E+01	MAX RES. =	603239E-01 A	Γ ELEMENT AA 1	4 FOUATION	4	
ITERATING AT [6, 31 DELTE	X = .800000E+01	MAX. RES. =	.124017E-02 AT	L ELEMENT AA 1	4 EOUATION	4	
AA 16(6, 4) ST =	.320000E+02 DT =	.800000E+01 DX1= .	982460E+02 DX	2=176610E-01	1 T = 22.000	P = 102454.	S =	.000000E+00
ITERATING AT [7, 1] DELTE	X = .160000E+02	MAX. RES. =	.874979E+00 AT	r element aa 1	4 EQUATION	4	
ITERATING AT [7, 2] DELTE	X = .160000E+02	MAX. RES. =	.124924E+00 A1	r element aa 1	.6 EQUATION	1	
555 2> 6 555 NAPL	Z 21 DELTE	^AA 13^ \$\$\$ XSU Y - 160000±02	MAY PEC -	100257〒_01 ハº	ר הד האהאידי אא 1		4	
ITERATING AT [7, 4] DELTE	X = 160000E+02 X = 160000E+02	MAX RES =	501325E-01 A	r element aa 1	3 EQUATION	1	
ITERATING AT [7, 5] DELTE	X = .160000E+02	MAX. RES. =	.365922E-04 AT	r element aa 1	2 EQUATION	4	
AA 13(7, 6) ST =	.480000E+02 DT =	.160000E+02 DX1= .	813775E+01 DX	K2= .662241E+00	T = 22.000	P = 102100.	S =	.000000E+00
ITERATING AT [8, 1] DELTE	X = .160000E + 02	MAX. RES. =	.636306E+00 A1	r element aa 1	4 EQUATION	3	
\$\$\$ 2> 6 \$\$\$ NAPL	EVOLVES AT ELEMENT	*AA 17* \$\$\$ xsu	moil= .3613	31E+01			1	
ITERATING AT [8, 2] DELTE.	X = .160000E+02	MAX. RES. =	.204858E+00 A	L'ELEMENT AA I	7 FOUNTION	1	
ττέρλττνία δτ [8 3 DELTE	A = .1000000102		2 I I FNFN 2 R III I I I I I I I I I				
ITERATING AT [ITERATING AT [8, 3] DELTE 8, 4] DELTE	X = .160000E + 02	MAX. RES. =	.154221E-02 AT	C ELEMENT AA 1	8 EQUATION	1 4	
ITERATING AT [ITERATING AT [AA 17(8, 5) ST =	8, 3] DELTE 8, 4] DELTE .640000E+02 DT =	X = .160000E+02 .160000E+02 DX1= .	MAX. RES. = 789883E+02 DX	.154221E-02 AT	Γ ELEMENT AA 1 D T = 22.000	P = 102314.	4 S =	.000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE:	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02	MAX. RES. = 789883E+02 DX MAX. RES. =	.154221E-02 AT 22= .526525E+00 .410718E+00 AT	F ELEMENT AA 1 D T = 22.000 F ELEMENT AA 1	P = 102314. $E = 102314.$	1 4 S = 4	.000000E+00
ITERATING AT [ITERATING AT [AA 17(8,5)ST = ITERATING AT [ITERATING AT [8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 0, 2] DELTE:	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02	MAX. RES. = 789883E+02 DX MAX. RES. = MAX. RES. =	.154221E-02 AT .154221E-02 AT (2= .526525E+0(.410718E+00 AT .124558E+00 AT	Γ ELEMENT AA Γ = 22.000 Γ ELEMENT AA Γ ELEMENT AA Γ ELEMENT AA Γ ELEMENT AA Γ	8 EQUATION P = 102314. 6 EQUATION 3 EQUATION	4 S = 4 3	.000000E+00
ITERATING AT [ITERATING AT [AA 17(8,5) ST = ITERATING AT [ITERATING AT [ITERATING AT [8, 3] DELTE: 8, 4] DELTE: 640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 3] DELTE:	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02	MAX. RES. = 789883E+02 DX MAX. RES. = MAX. RES. = MAX. RES. =	.154221E-02 AT .154221E-02 AT (2= .526525E+00 .410718E+00 AT .124558E+00 AT .108176E-01 AT	$ \begin{array}{cccc} \Gamma & \text{ELEMENT} & \text{AA} & 1 \\ \end{array} $	$\begin{array}{l} & \text{EQUATION} \\ \text{P} = & 102314. \\ \text{6} & \text{EQUATION} \\ \text{3} & \text{EQUATION} \\ \text{7} & \text{EQUATION} \\ \text{7} & \text{EQUATION} \end{array}$	$\begin{array}{c} 1\\4\\S\\4\\3\\4\\4\end{array}$.000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [8, 3] DELTE: 8, 4] DELTE: 640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 800000E+02 DT =	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 L60000E+02 DX1= .	MAX. RES. = 789883E+02 DX MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 DX	.154221E-00 AT .154221E-02 AT .124558E+00 AT .124558E+00 AT .135142E-04 AT .122 - 215799E-05	$ \begin{array}{rcrr} & \text{ELEMENT} & \text{AA} & \text{J} \\ & \text{T} & = & 22.000 \\ & \text{F} & \text{ELEMENT} & \text{AA} & \text{J} \\ & \text{F} & \text{ELEMENT} & \text{AA} & \text{J} \\ & \text{F} & \text{ELEMENT} & \text{AA} & \text{J} \\ & \text{F} & \text{ELEMENT} & \text{AA} & \text{J} \\ & \text{F} & \text{ELEMENT} & \text{AA} & \text{J} \\ & \text{F} & \text{F} & 22.000 \\ \end{array} $	$\begin{array}{l} \text{B} \text{EQUATION} \\ \text{P} = 102314 \\ \text{.6} \text{EQUATION} \\ \text{.3} \text{EQUATION} \\ \text{.7} \text{EQUATION} \\ \text{.7} \text{EQUATION} \\ \text{P} = 102233 \\ \text{.} \end{array}$	1 4 5 = 4 3 4 4 5 =	.000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: .800000E+02 DT = 10, 1] DELTE:	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02	MAX. RES. = 789883E+02 DX MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 DX MAX. RES. =	154221E-02 A (2= .526525E+00 .124558E+00 A .124558E+00 A .108176E-01 A .135142E-04 A (2= .215799E-05 .413528E+00 A	$ \begin{array}{l} \label{eq:constraint} \Gamma & \text{ELEMENT} & \text{AA} & \Pi \\ \Gamma & \text{ELEMENT} & \text{ELEMENT} & \text{AA} & \Pi \\ \Gamma & \text{ELEMENT} & $	<pre>8 EQUATION P = 102314. 6 EQUATION 3 EQUATION 7 EQUATION 7 EQUATION 7 EQUATION 9 = 102233. 3 EQUATION</pre>	$\begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ S \\ 4 \\ 5 \\ 4 \end{array}$.000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [8, 3] DELTE: 8, 4] DELTE: 640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 800000E+02 DT = 10, 1] DELTE: 10, 2] DELTE:	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02	MAX. RES. = 789883E+02 DX MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 DX MAX. RES. = MAX. RES. = MAX. RES. =	154221E-02 AT 154221E-02 AT (2= .526525E+00 .10718E+00 AT .124558E+00 AT .135142E-04 AT (2= .215799E-05 .413528E+00 AT .679688E-01 AT	$ \begin{array}{l} \label{eq:constraint} \mathbf{F} & \mathbf{ELEMENT} & \mathbf{AA} & \mathbf{J} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} & \mathbf{F} \\ \mathbf{F} & \mathbf{F} & \mathbf{F} & $	$\begin{array}{l} & \text{EQUATION} \\ \text{B} & \text{EQUATION} \\ \text{P} & = 102314. \\ \text{6} & \text{EQUATION} \\ \text{6} & \text{EQUATION} \\ \text{7} & \text{EQUATION} \\ \text{7} & \text{EQUATION} \\ \text{9} & = 102233. \\ \text{3} & \text{EQUATION} \\ \text{3} & \text{EQUATION} \end{array}$	$\begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ S \\ 4 \\ 3 \end{array}$.000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [8, 3] DELTE: 8, 4] DELTE: 640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 4] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 3] DELTE: 10	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. =	154221E-02 AT 154221E-02 AT (2= .526525E+00 .104176E-01 AT .135142E-04 AT (2= .215799E-01 .413528E+00 AT .679688E-01 AT .118587E-02 AT	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	<pre>B EQUATION P = 102314. 6 EQUATION 3 EQUATION 7 EQUATION 7 EQUATION 7 EQUATION 9 = 102233. 3 EQUATION 3 EQUATION 7 EQUATION</pre>	$\begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4$.000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [AA 13(10, 4) ST =	8, 3] DELTE: 8, 4] DELTE: 640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 4] DELTE: 800000E+02 DT = 10, 1] DELTE: 10, 3] DELTE: 9, 3] DELTE: 9, 3] DELTE: 10, 3] DELTE: 9, 4] D	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . .160000E+02 DX1= .	MAX. RES. = 789883E+02 DV MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 DV MAX. RES. = MAX. RES. = MAX. RES. = 123046E+03 DV MAX. RES. =	15421E-02 AT 154221E-02 AT (2= .526525E+00 AT 124558E+00 AT 108176E-01 AT 135142E-04 AT (2= .15799E-00 413528E+00 AT .679688E-01 AT .118587E-02 AT (2= .695716E-0)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 5 \\ 2 \\ \end{array} =$.000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [AA 13(10, 4) ST = ITERATING AT [SSS 2> 6 SSS NAPL	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 4] DELTE: 800000E+02 DT = 10, 2] DELTE: 10, 2] DELTE: .960000E+02 DT = 11, 1] DELTE: .90000E AT ELEMENT	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 D2 MAX. RES. = MAX. RES. = 123046E+03 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = 2346	15421E-02 AX 154221E-02 AX 124558E+00 AX 124558E+00 AX 108176E-01 AX 135142E-04 AX 122 - 215799E-00 413528E+00 AX .679688E-01 AX .118587E-02 AX 122695716E-02 .832972E+00 AX .5E+01	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 5 \\ 3 \end{array} =$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 2] DELTE: 10, 3] DELTE: .960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE:	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .240000E+02 *AA 12* \$\$\$ xsux X = .240000E+02	MAX. RES. = 789883E+02 DX MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 123046E+03 DX MAX. RES. = moil= .2346 MAX. RES. =	15421E=02 AT 154221E=02 AT 124558E=00 AT 124558E=00 AT 138176E=01 AT 135142E=04 AT (2= 2.15799E=00 AT 679688E=01 AT 118587E=02 AT (2=695716E=00 832972E+00 AT 55E+01 133132E+00 AT	T ELEMENT AA J T = 22.000 T ELEMENT AA I E ELEMENT AA I Z T = 22.000 T ELEMENT AA I Z T = 22.000 T ELEMENT AA I T ELEMENT AA I	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT [8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 3] DELTE: .960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: EVOLVES AT ELEMENT	X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 18* \$\$\$ xsu	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = mnoil= .2346 MAX. RES. =	15421E-02 AT 154221E-02 AT (2= .526525E+00 .10718E+00 AT .124558E+00 AT .135142E-04 AT (2= .215799E-01 .413528E+00 AT .679688E-01 AT .18587E-02 AT .18587E-02 AT .133132E+00 AT .5E+01 .133132E+00 AT	$ \begin{array}{c} \mbox{Figure 1} $	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [AA 13(10, 4) ST = ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT [ITERATIN	8, 3] DELTE: 8, 4] DELTE: 640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 3] DELTE: 11	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = 123046E+03 D2 MAX. RES. = moil= .2346 MAX. RES. = moil= .2105 MAX. RES. =	15421E-02 AT 154221E-02 AT (2= .526525E+00 A10718E+00 AT .124558E+00 AT .135142E-04 AT (2= .215799E-01 .413528E+00 AT .679688E-01 AT .679688E-01 AT .118587E-02 AT (2=695716E-01 .832972E+00 AT .5E+01 .13132E+00 AT .9E+01 .342379E+00 AT	$ \begin{array}{c} \mbox{F} = \mbox{Lement} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 1 \\ 1 \end{array}$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [AA 13(0, 4) ST = ITERATING AT [AA 13(10, 4) ST = ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING	8, 3] DELTE: 8, 4] DELTE: 640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: 11, 3] DELTE: 11, 4] DELTE: 11,	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 18* \$\$\$ xsu X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02</pre>	MAX. RES. = 789883E+02 DV MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 DV MAX. RES. = MAX. RES. = MAX. RES. = moil= .2346 MAX. RES. = moil= .2105 MAX. RES. = MAX. RES. = MAX. RES. =	15421E-02 AT 154221E-02 AT (2= .526525E+00 AT 124558E+00 AT 108176E-01 AT 108176E-01 AT 135142E-04 AT (2= .15799E-00 413528E+00 AT .679688E-01 AT .18587E-02 AT .832972E+00 AT .5E+01 .342379E+00 AT .44543E+00 AT .544543E+00 AT .5455454 .5555454 .5455454 .555545454 .555545454 .555545454 .555554545454 .555545	T ELEMENT AA 1 T = 22.000 1 T = 22.000 T ELEMENT AA 1 T ELEMENT AA 1 T ELEMENT AA 1 5 T = 22.000 T ELEMENT AA 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [AA 13(10, 4) ST = ITERATING AT [\$\$ 2> 6 $$$$ NAPL ITERATING AT [\$\$ 2> 6 $$$$ NAPL ITERATING AT [ITERATING	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 4] DELTE: 800000E+02 DT = 10, 1] DELTE: 10, 2] DELTE: .960000E+02 DT = 11, 1] DELTE: .960000E+02 DT = 11, 2] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: 11, 4] DELTE: 11, 5] DELTE: 11, 6] DELTE: 11,	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .240000E+02 *AA 12* \$\$ xsu X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02</pre>	MAX. RES. = 789883E+02 DY MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 DY MAX. RES. = 123046E+03 DY MAX. RES. = 123046E+03 DY MAX. RES. = mnoil= .2105 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. =	115421E-02 AX 115421E-02 AX 124558E+00 AX 124558E+00 AX 124558E+00 AX 1315142E-04 AX 125799E-01 113528E+00 AX 679688E-01 AX 118587E-02 AX 125E+01 133132E+00 AX 5E+01 132379E+00 AX 1345332E-02 AX 1326432E+00 AX 1326452E+00 AX 1326452E+00 AX 1326452E+00 AX 1326452E+00	F ELEMENT AA J T = 22.000 J T = 22.000 T ELEMENT AA 1	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: .960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+03 DT =	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 X = .240000E+02</pre>	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = moil= .2106 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. =	15421E-02 AT 154221E-02 AT 124558E+00 AT 124558E+00 AT 124558E+00 AT 135142E-01 AT 135142E-04 AT 13528E+00 AT 679688E-01 AT 118587E-02 AT 118587E-02 AT 133132E+00 AT 1345379E+00 AT 144543E+00 AT 144543E+00 AT 132643E-03 AT 22= 618762E+00	F ELEMENT AA J T = 22.000 J T = 22.000 F ELEMENT AA J T ELEMENT AA J F ELEMENT AA J T ELEMENT AA J T Z Z Z	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ = \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ = \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ = \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [\$\$\$\$ 2> 6 \$\$\$ NAPLITERATING AT [ITERATING AT [ITERATING]	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 3] DELTE: 10, 3] DELTE: .960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: .120000E+03 DT =	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 18* \$\$\$ xsu X = .240000E+02 X = .240000E+02</pre>	MAX. RES. = 789883E+02 DX MAX. RES. = MAX. RES. = moil= .2105 MAX. RES. = moil= .2105 MAX. RES. = MAX. RES. =	115421E=02 AT 115421E=02 AT 124558E=00 AT 124558E=00 AT 124558E=00 AT 135142E=04 AT (2= .15799E=00 AT .67968E=01 AT .67968E=01 AT .118587E=02 AT .125458E=00 AT .55E=01 .133132E=00 AT .59E+01 .143543E=00 AT .254532E=02 AT .132643E=03 AT .22= .618762E=00	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ = \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ = \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ = \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 3] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+03 DT = T	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 123046E+03 D2 MAX. RES. = moil= .2346 MAX. RES. = moil= .2105 MAX. RES. = MAX. RES. =	1154221F00 A. 1154221E-02 A. (2= .526525E+00 .124558E+00 A. .135142E-04 A. (2= .215799E-01 .4135142E-04 A. (2= .215799E-01 .413528E+00 A. .679688E-01 A. .679688E-01 A. .632972E+00 A. .55E+01	$ \begin{array}{c} \mbox{F} = \mbox{Lement} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{llllllllllllllllllllllllllllllllllll$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [AA 13(10, 4) ST = ITERATING AT [AA 13(10, 4) ST = ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 3] DELTE: .960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: 11, 3] DELTE: 11, 4] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+03 DT = T (Deg-C)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MAX. RES. = 789883E+02 DY MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 DY MAX. RES. = MAX. RES. = MAX. RES. = moil= .2346 MAX. RES. = moil= .2105 MAX. RES. = MAX. RES. =	15421E-02 AX 154221E-02 AX 124558E+00 AX 124558E+00 AX 124558E+00 AX 135142E-04 AX (2= .215799E-01 413528E+00 AX .679688E-01 AX .679688E-01 AX .679688E-01 AX .18587E-02 AX .22= .695716E-00 .332972E+00 AX .133132E+00 AX .5E+01 .144543E+00 AX .254532E-02 AX .132643E-03 AX .254532E-04 AX .132643E-03 AX .254532E-04 AX .132643E-03 AX .254532E-04 AX .132643E-03 AX .254532E-04 AX .132643E-04 AX .254532E-04 AX .132643E-04 AX .254532E-04 AX .254532E-04 AX .132643E-03 AX .254532E-04 AX .132643E-03 AX .254532E-04 AX .132643E-04 AX .254532E-04 AX .132643E-04 AX .254532E-04 AX .254532E-04 AX .132643E-04 AX .254532E-04 AX .132643E-04 AX .254532E-04 AX .132643E-04 AX .132643E-04 AX .132643E-04 AX .132643E-04 AX .254532E-04 AX .25454444444444444444444444444444444444	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{llllllllllllllllllllllllllllllllllll$.000000E+00 .000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3)
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [AA 13(10, 4) ST = ITERATING AT [AA 13(10, 4) ST = ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING	8, 3] DELTE: 8, 4] DELTE: 640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 3] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: 11, 2] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+03 DT = T (Deg-C) 6 .22000E+02 .0000	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 SG SW 00E+00 .10000E+01</pre>	MAX. RES. = 789883E+02 DY MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 DY MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = mmoil= .2105 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = M	1154221E-00 A: 1154221E-02 A: (2=.526525E+00 A: 1124558E+00 A: 1135142E-04 A: (2=.215799E-0) A: (2=.215799E-0) A: (679688E-01 A: (2=.695716E-0) A: (2=.695716E-0) A: (33132E+00 A: (342379E+00 A: (134543E+00 A: (134543E+00 A: (2=.618762E-2) A: (2=.618762E-0) A: (20000E+0) A:	F ELEMENT AA 0 T = 22.000 0 T = 22.000 1 ELEMENT AA 1 1 1 ELEMENT AA 1 1 1 ELEMENT AA 1 1 5 T = 22.000 1 ELEMENT AA 1 2 T = 2.000 2 Q Q 1 2 Q (mass 0 0 .72	8 EQUATION 8 EQUATION 9 102314. 6 EQUATION 3 EQUATION 7 EQUATION 7 EQUATION 7 EQUATION 3 EQUATION 3 EQUATION 3 EQUATION 2 EQUATION 2 EQUATION 2 EQUATION 2 EQUATION 2 EQUATION 4 EQUATION 8 EQUATION 9 EQUATION <td></td> <td>.000000E+00 .000000E+00 .000000E+00 </td>		.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [S\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT [8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 4] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 11, 6] DELTE: 120000E+03 DT = T (Deg-C) 6 .22000E+02 .0000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 123046E+03 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = moil= .2105 MAX. RES. = MAX. RES. =	1154221E-02 A. 1154221E-02 A. (2=.526525E+00 A. 1124558E+00 A. 1135142E-04 A. (2=.215799E-00) A. (2=.215799E-00) A. (679688E-01 A. (18576-02 A. (18587E-02 A. (2=.695716E-02) 832972E+00 (342379E+00 A. (342379E+00 A. (342379E+00 A. (134543E+00 A. (2=.618762E+00) A. (2=.618762E+00) A. (2=.618762E+00) A. (2=.618762E+00) A. (2=.618762E+00) A. (2=.618762E+00) A. (PCwg I (PA) M. .000000E+00 .00	F ELEMENT AA D T = 22.000 D T = 22.000 F ELEMENT AA 1 T	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [\$sss 2> 6 \$ss NAPL ITERATING AT [\$sss 2> 6 \$ss NAPL ITERATING AT [ITERATING AT [ITERATING] AT [I	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: .960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 11, 6] DELTE: 11, 6] DELTE: 11, 6] DELTE: 120000E+03 DT = T (Deg-C) 6 .22000E+02 .0000 6 .22000E+02 .0000	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 SG SW 00E+00 .10000E+01 00E+00 .10000E+01</pre>	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 123046E+03 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = moil= .2106 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. =	1194221+00 A. 1154221E-02 A. (2= .526525E+00 1124558E+00 A. 1135142E-04 A. (2= .15799E-01 .135142E-04 A. (2= .15799E-01 .413528E+00 A. .679688E-01 A. .18587E-02 A. .125E+01 A. .133132E+00 A. .525E+01	$ \begin{array}{l} \label{eq:result} {\rm F} \ {\rm ELEMENT} \ {\rm AA} \ 1 \\ {\rm O} \ {\rm T} \ = \ 22.000 \\ {\rm F} \ {\rm ELEMENT} \ {\rm AA} \ 1 \\ {\rm O} \ {\rm T} \ = \ 22.000 \\ {\rm Cog} \ {\rm XVO} \ ({\rm Pa}) \ ({\rm mass} {\rm S} \ 0 \ 0 \ 0 \ .729 \\ 0 \ 0 \ 0 \ .729 \ 0 \ 0 \ .729 \ 0 \ .729 \ 0 \ .729 \ 0 \ .729 \ 0 \ .729 \ 0 \ .729 \ 0 \ .729 \ 0 \ .729 $	$\begin{array}{llllllllllllllllllllllllllllllllllll$.000000E+00 .000000E+00 .000000E+00
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT [ITE	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: 960000E+02 DT = 11, 2] DELTE: 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+02 0000 6 22000E+02 0000 6 22000E+02 0000	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 X = .24000E+02 X = .240000E+02 X = .24000E+02 X = .24000E+02 X = .24000E+02 X = .24000E+02 X = .24000E+02 X = .24000E+02 X = .240000E+02 X = .24000E+02 X = .2400E+02 X = .2400E+02 X</pre>	MAX. RES. = 789883E+02 DX MAX. RES. = MAX. RES. = moil= .2105 MAX. RES. = moil= .2105 MAX. RES. = MAX. RES. = (A RES. RES. = (A RES. RES. = (A RES. RES. RES. = (A RES. RES. RES. RES. RES. RES. RES. RES.	1194221+00 A. 1154221E-02 A. (2= .526525E+00 .124558E+00 A. .135142E-04 A. (2= .15799E-01 .135142E-04 A. (2= .15799E-01 .13528E+00 A. .679688E-01 A. .18587E-02 A. .18587E-02 A. .18587E-02 A. .132972E+00 A. .55E+01	F ELEMENT AA D T = 22.000 F ELEMENT AA I COG XVG (Pa) (mass 0000E+00 .722 0000E+00 .722 0000E+00 .471 0000E+00 .264	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 8 \\ 3 \\ 4 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87080E+03
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [AA 18(11, 7) ST = ELEM. INDEX P (Pa) AA 1 1 .10143E+0 AA 2 2 .10148E+0 AA 11 11 .10196E+0 AA 12 12 .10208E+0	8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 2] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 11, 6] DELTE: 11, 6] DELTE: 11, 6] DELTE: 11, 6] DELTE: 120000E+03 DT = T (Deg-C) 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MAX. RES. = 789883E+02 DV MAX. RES. = MAX. RES. = moil= .2105 MAX. RES. = MAX. RES. = MAX	1154221+00 A. 1154221E-02 A. (2= .526525E+00 A. 1124558E+00 A. .124558E+00 A. 1135142E-04 A. .135142E-04 A. (2= .215799E-00 A. .679688E-01 A. .135142E-04 A. .22 .15799E-01 A. .679688E-01 A. .13528+00 A. .55E+01 .133132E+00 A. .254532E-02 A. .342379E+00 A. .254532E-02 A. .254532E-02 A. .132643E-03 A. .224532E-02 A. .224532E-02 A. .224 .618762E+00 A. .224532E-02 A. .224532E-02 A. .224 .618762E+00 .00 .00 .00 .00 .00 .00000E+00 .00 .00 .00 .00 .00 .00 .00000E+00 .00 .00 .00 .00 .00 .00 .00	F ELEMENT AA D T = 22.000 D T = 22.000 T ELEMENT AA 1 T ELEMENT AA 1 T ELEMENT AA 1 5 T = 22.000 T ELEMENT AA 1 Cogg XVQ (mass 0000E+00 .722 0000E+00 .726 0000E+00 .264 0000E+00 .264 0000E+00 .264 0000E+00 .264	8 EQUATION 8 EQUATION 9 102314. 6 EQUATION 3 EQUATION 7 EQUATION 7 EQUATION 7 EQUATION 3 EQUATION 3 EQUATION 7 EQUATION 2 EQUATION 2 EQUATION 2 EQUATION 2 EQUATION 2 EQUATION 3 EQUATION 4 EQUATION 9 EQUATION 8 EQUATION 9 EQUATION <td>$\begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1$</td> <td>.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87127E+03</td>	$ \begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 4 \\ 3 \\ 4 \\ 5 \\ 3 \\ 4 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87127E+03
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [AA 13(10, 4) ST = ITERATING AT [\$\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT [IT	<pre>8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: 960000E+02 DT = 11, 2] DELTE: 11, 3] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+03 DT = T (Deg-C) 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000 7 .2000E+02 .0000</pre>	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 SG SW 00E+00 .10000E+01 00E+00 .10000E+01 00E+00 .99555E+00 00E+00 .86785E+00 00E+00 .86785E+00</pre>	MAX. RES. = 789883E+02 DY MAX. RES. = MAX. RES. = MAX.	1154221E-00 A. 1154221E-02 A. (2=.526525E+00 A. 1124558E+00 A. 1135142E-04 A. (2=.215799E-0) A. (2=.215799E-0) A. (2=.215799E-0) A. (2=.215799E-0) A. (2=.695716E-02 A. (2=.695716E-02) A. (33132E+00 A. (342379E+00 A. (134543E+00 A. (2=.618762E-02) A. (134543E+00 A. (2=.618762E-04) A. (00000E+00 .00 .00000E+00 .00 .00000E+00 .00 .00000E+00 .00 .10114E+04 .00	F ELEMENT AA D T = 22.000 C T = 22.000 F ELEMENT AA 1 T ELEMENT AA 1 D T 22.000 CO (mass) 1 0000E+00 .725 0000E+00 .267 0000E+00 .267 0000E+00 .121	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ S \\ s \\ 4 \\ 3 \\ 4 \\ 4 \\ s \\ s \\ 4 \\ s \\ s \\ 4 \\ s \\ s$.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87195E+03 .87195E+03 .87195E+03
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATINGAT [<pre>8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 800000E+02 DT = 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: 10, 3] DELTE: 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: 11, 4] DELTE: 11, 4] DELTE: 11, 6] DELTE: 11, 6] DELTE: 11, 6] DELTE: 120000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000</pre>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 132395E+02 D2 MAX. RES. = MAX. RES. = 123046E+03 D2 MAX. RES. = MAX. RES. =	1154221E-02 A. 1154221E-02 A. (2=.526525E+00 A. 11245585E+00 A. 1135142E-04 A. (2=.15799E-01 A. (2=.515799E-02 A. (679688E-01 A. (118576-02 A. (1245382E+00 A. (5E+01 A. (342379E+00 A. (342379E+00 A. (342379E+00 A. (134543E+00 A. (2= -618762E+00 (2= -618762E+00 (2= -618762E+00 (2= -618762E+00 (2= -618762E+00 (Pa) 0 .00000E+00 .00 .00000E+00 .00 .00000E+00 .00 .1340E+03 .00 .1340E+03 .00 .1340E+04 .00	F ELEMENT AA D T = 22.000 D T = 22.000 F ELEMENT AA 1 T ELEMENT AA 1 D000E+00 .724 0000E+00 .724 0000E+00 .264 0000E+00 .126 0000E+00 .126 0000E+00 .126 0000E+00 .126	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ S \\ s \\ 4 \\ 3 \\ 4 \\ 4 \\ s \\ s \\ 4 \\ 4 \\ s \\ s \\ s \\ s$.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87127E+03 .87127E+03 .87127E+03 .87127E+03 .87127E+03 .87127E+03 .87129E+03
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT [AA 18(11, 7) ST = ELEM. INDEX P (Pa) AA 1 1.10143E+0 AA 2 2.10148E+0 AA 11 11.10196E+0 AA 12 12.10208E+0 AA 13 13.10261E+0 AA 14 14.10322E+0 AA 15 15.10366E+0 AA 16 16.10329E+0	<pre>8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: 10, 3] DELTE: 11, 1] DELTE: EVOLVES AT ELEMENT 11, 2] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000 6 .22000E+02 .0000</pre>	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .240000E+02 *AA 12* \$\$ xsu X = .240000E+02 X = .240000E+01 00E+00 .10000E+01 00E+00 .10000E+01 00E+00 .86785E+00 00E+00 .68822E+00 00E+00 .70690E+00</pre>	MAX. RES. = 789883E+02 D2 MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 123046E+03 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = 123046E+03 D2 MAX. RES. = MAX. RES.	1194221+00 A. 1154221E-02 A. (2=.526525E+00) A. 1124558E+00 A. (124558E+00) A. (124558E+00) A. (2=.15799E-01) A. (135142E-04) A. (2=.15799E-01) A. (679688E-01) A. (18587E-02) A. (2=.695716E-03) A. (2=.695716E-03) A. (2=.618762E+00) A. (342379E+00) A. .254532E-02) A. .133132E+00) A. .254532E-02) A. .132643E-03) A. (2=.618762E+00) A. .00000E+00 .00 .01145E+04	$ \begin{array}{l} \label{eq:result} {\rm F} \ {\rm ELEMENT} \ {\rm AA} \ 1 \\ {\rm O} \ {\rm T} \ = \ 22.000 \\ {\rm F} \ {\rm ELEMENT} \ {\rm AA} \ 1 \\ {\rm O} \ {\rm O} \ {\rm EL} \ {\rm O} \ 0 \\ {\rm OOOE} \ {\rm OOOEOE} \ {\rm OOOOE} \ {$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ S \\ s \\ 4 \\ 3 \\ 4 \\ 4 \\ s \\ s \\ 4 \\ 4 \\ s \\ s \\ 3 \\ 4 \\ s \\ s \\ 4 \\ 1 \\ s \\ s \\ m^{*} * 3 \\ 1 \\ 1 \\ 1 \\ s \\ s \\ m^{*} * 3 \\ 1 \\ 1 \\ 1 \\ s \\ s \\ s \\ s \\ s \\ s \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87195E+03 .87195E+03 .87195E+03 .87199E+03
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [AA 13(10, 4) ST = ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT [ITE	<pre>8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 1] DELTE: 10, 2] DELTE: 10, 3] DELTE: 10, 3] DELTE: 960000E+02 DT = 11, 1] DELTE: 960000E+02 DT = 11, 2] DELTE: 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+02 0000 6 .22000E+02 0000 7 .22000E+02 0000 7 .22000E+02 0000</pre>	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 18* \$\$\$ xsu X = .240000E+02 X = .240000E+02 00E+00 .10000E+01 00E+00 .10000E+01 00E+00 .90555E+00 00E+00 .59132E+00 00E+00 .59132E+00 00E+00 .90125E+00</pre>	MAX. RES. = 789883E+02 DY MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 123046E+03 DY MAX. RES. = 123046E+03 DY MAX. RES. = moil= .2105 MAX. RES. = MAX. RES. = 175459E+02 DY SO .00000E+00 .00000E+00 .00000E+00 .00000E+00 .13215E+00 - .31178E+00 - .29310E+00 - .98754E-01 -	1194221+00 A. 1154221E-02 A. (2= .526525E+00 .124558E+00 A. .135142E-04 A. (2= .15799E-01 .135142E-04 A. (2= .15799E-01 .13528E+00 A. .679688E-01 A. .18587E-02 A. .18587E-02 A. .18587E-02 A. .55E+01 .133132E+00 A. .55E+01 .133132E+00 A. .254532E-02 A. .132643E-03 A. .254532E-02 A. .132643E-03 A. .22= .618762E+00 PCwg I .100000E+00 .00 .00000E+00 .00 .00000E+00 .00 .51340E+03 .00 .10114E+04 .00 .95396E+03 .00 .42373E+03 .00	F ELEMENT AA D T = 22.000 D T = 22.000 F ELEMENT AA 1 T ELEMENT AA 1 CO T 22.000 CO T 2000 CO CO .72 O0000E+00 .12 000	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ S \\ s \\ 4 \\ 3 \\ 4 \\ 4 \\ s \\ s \\ 4 \\ 4 \\ 3 \\ 4 \\ s \\ s \\ 4 \\ 4 \\ 1 \\ s \\ s \\ m^{*} * 3 \\ 1 \\ 1 \\ 1 \\ s \\ s \\ m^{*} * 3 \\ 1 \\ 1 \\ 1 \\ s \\ s \\ s \\ r \\ s \\ r \\ - 0 \\ 3 \\ r \\ s \\ r \\ - 0 \\ 3 \\ r \\ r \\ - 0 \\ 3 \\ r \\ r$.000000E+00 .000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87127E+03 .87127E+03 .87129E+03 .87129E+03 .87199E+03 .87199E+03 .87199E+03
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [AA 18(11, 7) ST = ELEM. INDEX P (Pa) AA 1 1 .10143E+0 AA 2 2 .10148E+0 AA 11 11 .10196E+0 AA 12 12 .10208E+0 AA 13 13 .10261E+0 AA 14 14 .10322E+0 AA 15 15 .10366E+0 AA 16 16 .10329E+0 AA 18 18 .10229E+0 AA 18 18 .10229E+0	<pre>8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 3] DELTE: 9, 4] DELTE: 10, 2] DELTE: 10, 2] DELTE: 10, 3] DELTE: 10, 3] DELTE: 10, 3] DELTE: 10, 3] DELTE: 11, 1] DELTE: EVOLVES AT ELEMENT 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 120000E+03 DT = T (Deg-C) 6 .22000E+02 .0000 6 .22000E+02 .0000</pre>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	MAX. RES. = 789883E+02 DY MAX. RES. = MAX. RES. = MAX	211002±100 Ar. 1154221±-02 Ar. (2= .526525±+00 Ar. 1245585±+00 Ar. 1124558±+00 Ar. 135142±-04 Ar. (2= .15799±-0') (135142±-04 Ar. (2= .15799±-0') .135142±-04 Ar. (2= .695716±-02) .832972±+00 Ar. .55±+01 .133132±+00 Ar. .342379±+00 Ar. .342379±+00 Ar. .132643±-03 Ar. .132643±-03 Ar. .254532±-02 Ar. .132643±-03 Ar. .224543±+00 Ar. .000000±+00 Ar. .00000±+00 Ar. .00000±+00 Ar. .00000±+00 Ar. .00000±+00 Ar. .0114±543±04 Ar. .00000±+00 Ar. .00000±+00 Ar. .0114±+04 Ar. .02536±+03 Ar. .13518±+04 Ar. .42373±+03 Ar. .13518±+03 Ar. .24237±+03 Ar. .13514±+04 Ar. .13514±+04 Ar. .13514±+04 Ar. .14253±+04 Ar. .13514±+04 Ar. .24237±+04 Ar. <tr< td=""><td>F ELEMENT AA D T = 22.000 D T = 22.000 F ELEMENT AA 1 D T = 22.000 COO T = 22.000 COO T = 22.000 COO .0 .725 D T = 22.000 COO .0 .726 D <</td><td>B EQUATION B EQUATION A EQUATION 3 EQUATION 3 EQUATION 7 EQUATION 7 EQUATION 7 EQUATION 3 EQUATION 3 EQUATION 3 EQUATION 9 102397. 3 EQUATION 2 EQUATION 2 EQUATION 2 EQUATION 8 EQUATION 9 EQUATION 9 EQUATION 8 EQUATION 9 EQUATION 10 S056-10 10 5056 11 5059 128E-02 0000</td><td>$\begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 8 \\ 4 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 5 \\ 8 \\ 3 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$</td><td>.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87195E+03 .87195E+03 .87195E+03 .87195E+03 .87199E+03 .87199E+03 .87199E+03 .87199E+03 .87199E+03 .87199E+03</td></tr<>	F ELEMENT AA D T = 22.000 D T = 22.000 F ELEMENT AA 1 D T = 22.000 COO T = 22.000 COO T = 22.000 COO .0 .725 D T = 22.000 COO .0 .726 D <	B EQUATION B EQUATION A EQUATION 3 EQUATION 3 EQUATION 7 EQUATION 7 EQUATION 7 EQUATION 3 EQUATION 3 EQUATION 3 EQUATION 9 102397. 3 EQUATION 2 EQUATION 2 EQUATION 2 EQUATION 8 EQUATION 9 EQUATION 9 EQUATION 8 EQUATION 9 EQUATION 10 S056-10 10 5056 11 5059 128E-02 0000	$ \begin{array}{c} 1 \\ 4 \\ S \\ 4 \\ 3 \\ 4 \\ 4 \\ 5 \\ 8 \\ 4 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 4 \\ 3 \\ 4 \\ 5 \\ 8 \\ 3 \\ 4 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 5 \\ 8 \\ 1 \\ 1 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87195E+03 .87195E+03 .87195E+03 .87195E+03 .87199E+03 .87199E+03 .87199E+03 .87199E+03 .87199E+03 .87199E+03
ITERATING AT [ITERATING AT [AA 17(8, 5) ST = ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [ITERATING AT [AA 18(9, 5) ST = ITERATING AT [ITERATING AT [AA 13(10, 4) ST = ITERATING AT [\$\$\$ 2> 6 \$\$\$ NAPL ITERATING AT [ITERATING AT [ITE	<pre>8, 3] DELTE: 8, 4] DELTE: .640000E+02 DT = 9, 1] DELTE: 9, 2] DELTE: 9, 4] DELTE: 9, 4] DELTE: 800000E+02 DT = 10, 1] DELTE: 10, 2] DELTE: 960000E+02 DT = 11, 1] DELTE: 960000E+02 DT = 11, 2] DELTE: 960000E+02 DT = 11, 3] DELTE: 11, 4] DELTE: 11, 6] DELTE: 11, 6] DELTE: 120000E+03 DT = 11, 6] DELTE: 120000E+03 DT = 11, 6] DELTE: 120000E+02 .0000 6 .22000E+02 .0000 7 .22000E+02 .00000 7 .22000E+02 .00000 7 .22000E+02 .0000000 7 .22000E+02 .00000000000000000000000000000000000</pre>	<pre>X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 .160000E+02 DX1= . X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .160000E+02 X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 *AA 12* \$\$\$ xsu X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 X = .240000E+02 SG SW 00E+00 .10000E+01 00E+00 .10000E+01 00E+00 .10000E+01 00E+00 .86785E+00 00E+00 .68822E+00 00E+00 .59132E+00 00E+00 .99915E+00 00E+00 .99915E+00 00E+00 .99915E+00</pre>	MAX. RES. = 789883E+02 DY MAX. RES. = MAX. RES. = MAX	115421E+00 A. 115421E+02 A. (2=.52655E+00 A. 1124558E+00 A. 1135142E+04 A. (2=.15799E+00) A. (2=.215799E+00) A. (679688E+01) A. (11857E+02) A. (2=.695716E+02) A. (33132E+00) A. (342379E+00) A. (342379E+00) A. (134543E+00) A. (2=.618762E+00) A. (2=.618762E+00) A. (9a) G. .00000E+00 .00 .00000E+00 .00 .00000E+00 .00 .1312642E+03 .00 .1312642E-03 .00 .00000E+00 .00 .00000E+00 .00 .00000E+00 .00 .13182E+04 .00 .1318E+04 .00 .27289E+02 .00 .00000E+00 .00	F ELEMENT AA D T = 22.000 D T = 22.000 F ELEMENT AA 1 D T 22.000 COG XV((mass) 0000E+00 .26 0000E+00 .12 0000E+00 .12 0000E+00 .12 0000E+00 .12 0000E+00	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c} 1 \\ 4 \\ S \\ s \\ 4 \\ 3 \\ 4 \\ 4 \\ s \\ s \\ 4 \\ 4 \\ s \\ s \\ 3 \\ 4 \\ s \\ s \\ s \\ 4 \\ 1 \\ s \\ s$.000000E+00 .000000E+00 .000000E+00 DNAPL (kg/m**3) .87015E+03 .87017E+03 .87195E+03 .87195E+03 .87195E+03 .87199E+03 .87199E+03 .87199E+03 .87193E+03 .86977E+03 .86989E+03

Figure 10.5.2. Portion of printout of part 1 of problem 5.

rbt2 WATERFLOOD FOLLOWING INJECTION OF BENZENE AND TOLUENE INTO A COLUMN -------1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*---2----*----3----*----4----*---5----*---6----*----8 2 100 100100000 00 0202 4 00 1 00 108.971e3 2. 8000. 9.8060 1.E02 1.000e-8 1.E-51.e4 2 0.0 0.0 1.013e5 0.0 22.0 SOLVR----1----*----2----*----4----*---5----*---6----*----8 5 Z1 OO 8.0e-1 1.0e-7 RPCAP----1----*----2----*----3-----*----4-----*----5-----*----6-----*----8 .05 6 .150 .01 3. 8 0.000 1.84 10. 11. . . . GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 DELV 3.5917E-12 1.0140E+5 AA 50PRO 1 AA 1INJ 1 COM1h 3 108.971e3 0. 18.162e3 3.5382E-4 9.4352e-6 9.4352e-6 9.2332E4 9.2332E4 9.2332E4 TIMES----1----*----2----*----3----*----4----*---5----*----6----*----7----*----8 4 2.4216e3 15.3368e3 18.162e3 108.971e3 FOFT ----1----*----2----*----3----*----4----*----5----*----6----*----8 AA 50 COFT ----1----*----2----*----3----*----4----*---5----*----6----*-----8 AA 49AA 50 INCON -- INITIAL CONDITIONS FOR 50 ELEMENTS AT TIME .120000E+0338500000E+00 2 AA 11 .1019581644678E+06 .1319033032434E-04 .4537411426046E-04 .2857286371463E-15 .220000000000E+02 .38500000E+00 6 AA 12 .5076101332413E+00 .4921059092740E+00 .9955537133006E+00 .1020833308484E+06 .220000000000E+02 .38500000E+00 6 AA 13 .1026111382101E+06 .4585286594948E+00 .5411873830205E+00 .8678547664117E+00 .220000000000E+02 .38500000E+00 6 AA 14 .1032223263813E+06 .4558709461159E+00 .5438450963995E+00 .6882181111558E+00 .220000000000E+02 .3850000E+00 6 AA 15 .1036608206603E+06 .4548634496830E+00 .5448525928324E+00 .5913245703090E+00 .220000000000E+02 AA 16 .3850000E+00 6 .1032875276398E+06 .4560593766307E+00 .5436566658847E+00 .7068959245514E+00 .220000000000E+02 . . . ENDCY----1----*----2----*----4----*---5----*---6----*----8

Figure 10.5.3. TMVOC input file for part 2 of problem 5 (waterflood).

*******	VOLUME- AND	MASS-BALANCES	*****	*****	* * * * * * * * * * * * * * * * * * * *	*****	*****
*******	[KCYC,ITER]	= [0, 0] *	* * * *		THE TIME IS .00	000E+00 SECONDS, OR	.00000E+00 DAYS
PHASES		GAS	AQUEOUS	NAPL	TOTAL		
VOLUMES MASS ENERGY	(m**3) (moles) (J)	.00000000E+00 .00000000E+00 .00000000E+00	.69782561E-03 .38646392E+02 .64205541E+05	.17889385E-04 .18456471E+00 .54076685E+03	.71571500E-03 .38830957E+02 .13139982E+06		
		COMPONENTS MC	DLES IN PLACE - BY PI	HASES		COMPONENTS IN PL	ACE - OVERALL
COMPONENTS WATER AIR toluene benzene total VOCs		GAS PHASE .0000000E+00 .0000000E+00 .0000000E+00 .0000000E+00	AQUEOUS PHASE .38645141E+02 .92996539E-13 .24601345E-03 .10056445E-02 .12516579E-02	NAPL .52408532E-04 .12600223E-14 .84250577E-01 .10026173E+00 .18451231E+00	ADSORBED .00000000E+00 .00000000E+00 .00000000E+00	TOTAL MOLES .38645193E+02 .94256562E-13 .84496590E-01 .10126737E+00 .18576396E+00	TOTAL MASS (kg) .69623180E+00 .27296700E-14 .77856003E-02 .79103996E-02 .15696000E-01
********	*****	* * * * * * * * * * * * * * * * *	******	* * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *	*****	******
ITERATIN ITERATIN ITERATIN AA 13(1, ITERATIN ITERATIN ITERATIN ITERATIN ITERATIN AA 18(3, ITERATIN ITERATIN ITERATIN ITERATIN ITERATIN		1, 1] DF 1, 2] DF 1, 3] DF 2, 00000E+01 DT 2, 1] DF 2, 2] DF 4, 2] DF 3, 2] DF 3, 2] DF 3, 3] DF 800000E+01 DT 4, 1] DF 4, 2] DF 4, 3] DF	LITEX = .200000E+01 LITEX = .20000E+01 LITEX = .20000E+01 LITEX = .20000E+01 LITEX = .20000E+01 LITEX = .20000E+01 LITEX = .20000E+01 LITEX = .40000E+01 LITEX = .40000E+01 LITEX = .40000E+01 LITEX = .80000E+01 LITEX = .80000E+01 LITEX = .80000E+01	MAX. RES. = MAX. RES. =	635044E-01 AT ELEM 814291E-01 AT ELEM 104307E-04 AT ELEM 104307E-04 AT ELEM 005061E-03 AT ELEM 609961E-03 AT ELEM 178082E+00 AT ELEM 509336E-02 AT ELEM 945002E-04 AT ELEM =24242E-01 T = 297803E+00 AT ELEM =2418838E-01 T = 297803E+00 AT ELEM 340290E-01 AT ELEM 340290E-01 AT ELEM	ENT AA 1 EQUATION ENT AA 15 EQUATION ENT AA 13 EQUATION ENT AA 14 EQUATION 22.000 P = 11056 ENT AA 17 EQUATION 22.000 P = 10757 ENT AA 17 EQUATION ENT AA 18 EQUATION ENT AA 18 EQUATION ENT AA 17 EQUATION ENT AA 17 EQUATION ENT AA 18 EQUATION ENT AA 18 EQUATION ENT AA 18 EQUATION	$1 \\ 1 \\ 3 \\ 3 \\ 5 \\ 4 \\ 0. \\ 3 \\ 4 \\ 8. \\ 8 \\ 5 \\ 8 \\ 4 \\ 4 \\ 0.000000E+00 \\ 4 \\ 3 \\ 4 \\ 4 \\ 0.000000E+00 \\ 4 \\ 3 \\ 4 \\ 4 \\ 0.000000E+00 \\ 4 \\ 3 \\ 4 \\ 0.000000E+00 \\ 4 \\ 0.00000E+00 \\ 0.0000E+00 \\ 0.00000E+00 \\ 0.0000E+00 \\ 0.0000E+00 \\ 0.0000E+00 \\ 0.00000E+00 \\ 0.0000E+00 \\ 0.000E+00 \\ 0.0000E+00 \\ 0.0000E+0 \\ 0.0000E+0 \\ 0.0000E+0 \\ 0.0000E+0 \\ 0.0000E+0 \\ 0.000E+0 \\ 0.0$
AA 19(4, ITERATIN ITERATIN AA 18(5, ITERATIN ITERATIN	4) ST = IG AT [IG AT [IG AT [4) ST = IG AT [IG AT [.160000E+02 DT 5, 1] DE 5, 2] DE 5, 3] DE .320000E+02 DT 6, 1] DE 6, 2] DE	= .800000E+01 DX1= LITEX = .160000E+02 LITEX = .160000E+02 LITEX = .160000E+02 = .160000E+02 DX1= LITEX = .320000E+02 VITEY = .320000E+02	499346E-01 DX2 MAX. RES. = . MAX. RES. = . MAX. RES. = . 131292E+03 DX2 MAX. RES. = . MAX. RES. = .	= .568089E-05 T = 386451E+00 AT ELEM 101071E+00 AT ELEM 376500E-02 AT ELEM = .205465E-01 T = 104407E+01 AT ELEM 52058E+00 AT ELEM	22.000 P = 10734 ENT AA 17 EQUATION ENT AA 18 EQUATION 18 TA 18 EQUATION 22.000 P = 10777 TENT AA 18 EQUATION A 18 EQUATION	1. S = .000000E+00 4 1 4 6. S = .000000E+00 4 1
ITERATIN ITERATIN AA 19(6, ITERATIN ITERATIN ITERATIN AA 20(7,	IG AT [IG AT [IG AT [6) ST = IG AT [IG AT [IG AT [IG AT [4) ST =	6, 2] DE 6, 4] DE 6, 5] DE 640000E+02 DT 7, 1] DE 7, 2] DE 7, 3] DE 960000E+02 DT	LITEX = 320000E+02 LITEX = 320000E+02 LITEX = 320000E+02 LITEX = 320000E+02 LITEX = 320000E+02 LITEX = 320000E+02 LITEX = 320000E+02 = 320000E+02 DX1=	MAX. RES. = MAX. RES. = MAX. RES. = 467677E+02 DX2: MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. =	687798E-O1 AT ELEM 309425E+00 AT ELEM 271432E-02 AT ELEM = .509759E+00 T = 616791E+00 AT ELEM 187907E+00 AT ELEM 955892E-02 AT ELEM = .801196E-05 T =	LENT AA 19 EQUATION LENT AA 19 EQUATION LENT AA 19 EQUATION 22.000 P = 10738 LENT AA 18 EQUATION LENT AA 19 EQUATION LENT AA 19 EQUATION 22.000 P = 10715	4 4 8. S = .000000E+00 3 1 2. S = .000000E+00

. . .

*rbt2 WATERFLOOD FOLLOWING INJECTION OF BENZENE AND TOLUENE INTO A COLUMN

KCYC = 60 - ITER = 3 - TIME = .10897E+06

ELEM	. INDEX	Xwat	2 AIR	3 toluene	4 benzene	** SUMmolef
 AA 1	8 2	.28396E-03	.30116E-31	.26211E-01	.23894E-06	.00000E+00
AA 1	9 6	.28396E-03	.11102E-15	.99930E+00	.41844E-03	.00000E+00
AA 2	0 6	.28396E-03	.00000E+00	.99805E+00	.16693E-02	.00000E+00
AA 2	1 6	.28396E-03	.00000E+00	.99489E+00	.48248E-02	.00000E+00
AA 2	2 6	.28396E-03	.00000E+00	.98798E+00	.11741E-01	.00000E+00
AA 2	36	.28396E-03	.11102E-15	.97409E+00	.25622E-01	.00000E+00
AA 2	4 6	.28396E-03	.33307E-15	.94856E+00	.51153E-01	.00000E+00
AA 2	5 6	.28396E-03	.77716E-15	.90340E+00	.96312E-01	.00000E+00
AA 2	66	.28396E-03	.15543E-14	.83382E+00	.16590E+00	.00000E+00
AA 2	76	.28396E-03	.18874E-14	.74773E+00	.25199E+00	.00000E+00
AA 2	8 6	.28396E-03	.14433E-14	.66382E+00	.33590E+00	.00000E+00
AA 2	96	.28396E-03	.77716E-15	.59792E+00	.40180E+00	.00000E+00
AA 3	0 6	.28396E-03	.11102E-15	.55385E+00	.44586E+00	.00000E+00
AA 3	16	.28396E-03	.00000E+00	.52959E+00	.47013E+00	.00000E+00
AA 3	2 2	.28396E-03	.10000E-29	.52880E+00	.47091E+00	.00000E+00

Figure 10.5.4. Portion of printout of part 2 of problem 5.

Figure 10.5.5. NAPL bank before waterflood, and after injection of 1.2, 9, and 10.2 pore volumes of water.

Figure 10.5.6. Benzene and toluene mass fractions at outlet (grid block AA 50) during waterflood.

rbt3 STEAMFLOOD OF BENZENE AND TOLUENE BANK FOLLOWING WATERFLOOD first VOC is toluene, the less volatile ! . . . MULTI----1----*----2----*----3----*----4----*----5----*----6----*----7-----8 4 5 3 6 START----1----*----2----*----3----*----4----*----5----*----6----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*----2----*----3----*----4----*----5----*----6----*-----8 19991000300000202 4 00 1 00 21999 9.e3 2. 2000. 9.8060 1.E02 1.000e-8 1.E-5 1.e+4 2 1.013e5 0.0 0.0 0.0 22.0 SOLVR----1----*----2----*----3----*----4----*----5----*----6----*----8 1.0e-7 5 Z1 O0 8.0e-1 RPCAP----1----*----2----*----3----*----4----*---5----*----6----*-----8 .150 .05 0.000 1.84 б .01 3. 8 10. 11. ELEME----1----*----2----*----3----*----4----*----5----*----6----*----8 1DIRT1 3.7179E-5 AA 1 49 CONNE----1----*----2----*----4----*---5----*---6----*----8 AA 1AA 2 48 1 1 1 .0091 .0091 2.0428E-3 0 0 GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 DELV 3.5917E-12 1.0140E+5 AA 50PRO 1 AA 1INJ 1 COM1 3.5341E-05 1.562e6 . . . INCON -- INITIAL CONDITIONS FOR 50 ELEMENTS AT TIME .108971E+06 .38500000E+00 6 AA 27 .1017932226398E+06 .7477291645795E+00 .2519868779359E+00 .9526954058678E+00 .220000000000E+02 .38500000E+00 6 AA 28 .1017906614922E+06 .6638198479568E+00 .3358961945586E+00 .9516768325772E+00 .220000000000E+02 .38500000E+00 6 AA 29 .1017872427058E+06 .5979170037600E+00 .4017990387553E+00 .9509027701144E+00 .220000000000E+02 .38500000E+00 6 AA 30 .1017815941334E+06 .5538524966174E+00 .4458635458980E+00 .9507931440888E+00 .220000000000E+02 AA 31 .38500000E+00 6 .1017509996762E+06 .5295881068954E+00 .4701279356200E+00 .9580123487215E+00 .220000000000E+02 ENDCY---1----*---2----*---3----*---4----*---5----*---6----*----7----*

Figure 10.5.7. TMVOC input file for part 3 of problem 5 (steamflood).

*****	VOLUME- AND	MASS-B	ALANCES *	*****	* * * * * * * * * * * * * * * * * *	****	******	***********	*****	*****
*****	[KCYC,ITER]	= [0, 0] **	* * *		THE TIME IS	.00000E+00	SECONDS, OR	.000	00E+00 DAYS
PHASES		G	AS	AQUEOUS	NAPL	TOTAL				
VOLUMES MASS ENERGY	(m**3) (moles) (J)	.00000 .00000 .00000	000E+00 000E+00 000E+00	.70746304E-03 .39161981E+02 .65062134E+05	.82519626E-05 .79968328E-03 .24924204E+03	.71571500E-(.39241950E+(.13196489E+(03 02 06			
		COMPO	NENTS MOL	ES IN PLACE - BY P	HASES		COMP	ONENTS IN PLA	ACE - O	VERALL
COMPONENTS WATER AIR toluene benzene total VOCs	******	GAS P1 .00000 .00000 .00000 .00000 .00000	HASE 000E+00 000E+00 000E+00 000E+00 000E+00	AQUEOUS PHASE .39156711E+02 .11026079E-12 .16175920E-02 .36531916E-02 .52707836E-02	NAPL .22707605E-04 .91877281E-15 .64885834E-01 .15059786E-01 .79945620E-01	ADSORBED	TOT .391 .111 00 .665 00 .187 00 .852	AL MOLES 56733E+02 17956E-12 03426E-01 12978E-01 16404E-01	TOTAL 1 .7054 .3219 .6127 .1461 .7589	MASS (kg) 4771E+00 7601E-14 6922E-02 7456E-02 4377E-02
ITERATIN ITERATIN AA 1(1, ITERATIN ITERATIN	IG AT [IG AT [3) ST = IG AT [IG AT [1, 1 1, 2 .200000 2, 1 2, 2] DEL'] DEL' E+01 DT =] DEL'] DEL'	TEX = .200000E+01 TEX = .200000E+01 .200000E+01 DX1= TEX = .400000E+01 TEX = .400000E+01	MAX. RES. = MAX. RES. = .752822E+03 DX MAX. RES. = MAX. RES. =	.409993E-01 AT 1 .113095E-03 AT 1 :2= .949664E-21 2 .746522E-01 AT 1 .323629E-04 AT 1	ELEMENT AA ELEMENT AA I = 22.856 ELEMENT AA ELEMENT AA	1 EQUATION 2 EQUATION P = 102413 1 EQUATION 1 EQUATION	5 5 5 5 5	.000000E+00
AA 1(2, ITERATIN ITERATIN	3) ST = IG AT [IG AT [.600000 3, 1 3, 2	E+01 DT =] DEL'] DEL'	.400000E+01 DX1= TEX = .800000E+01 TEX = .800000E+01	.256845E+01 DX MAX. RES. = MAX. RES. =	2= .507170E-21 1 .136824E+00 AT 1 .148319E-03 AT 1	r = 24.542 Element AA Element AA	P = 102416 1 EQUATION 1 EQUATION	5.S= 5 5	.000000E+00
AA 2(3, ITERATIN ITERATIN	3) ST = IG AT [IG AT [.140000 4, 1 4, 2	E+02 DT =] DEL'] DEL'	.800000E+01 DX1= TEX = .160000E+02 TEX = .160000E+02	.368491E+01 D2 MAX. RES. = MAX. RES. =	2= .000000E+00 1 .234031E+00 AT 1 .802509E-03 AT 1	r = 22.229 Element AA Element AA	P = 102401 1 EQUATION 1 EQUATION	. S = 5 1	.000000E+00
AA 2(4, ITERATIN ITERATIN	3) ST = IG AT [IG AT [.300000 5, 1 5, 2	E+02 DT =] DEL'] DEL'	.160000E+02 DX1= TEX = .320000E+02 TEX = .320000E+02	.580288E+01 D2 MAX. RES. = MAX. RES. =	2= .000000E+00 1 .361042E+00 AT 1 .407328E-02 AT 1	r = 22.928 Element AA Element AA	P = 102407 1 EQUATION 1 EQUATION	7. S = 5 1	.000000E+00
AA 2(5, ITERATIN ITERATIN	3) ST = IG AT [IG AT [.620000 6, 1 6, 2	E+02 DT =] DEL'] DEL'	.320000E+02 DX1= TEX = .640000E+02 TEX = .640000E+02 TEX = .640000E+02	.750071E+01 DX MAX. RES. = MAX. RES. =	22= .000000E+00 5 .488902E+00 AT 1 .172338E-01 AT 1	r = 25.309 ELEMENT AA ELEMENT AA	P = 102414 1 EQUATION 2 EQUATION 2 EQUATION	ł. S = 5 5	.000000E+00
AA 2(6, ITERATIN	4) ST = IG AT [IG AT [.126000 7, 1 7, 2] DEL E+03 DT =] DEL] DEL	.640000E+02 DX1= TEX = .128000E+03 TEX = .128000E+03	MAX. RES. = .688735E+01 DX MAX. RES. = MAX. RES. =	.334503E-04 A1 3 2= .126565E-21 5 .577735E+00 AT 3 .532568E-01 AT 3	ELEMENT AA F = 32.258 ELEMENT AA ELEMENT AA	P = 102421 1 EQUATION 1 EQUATION	. S = 5 1	.000000E+00
ITERATIN AA 2(7, ITERATIN	IG AT [4) ST = IG AT [7, 3 .254000 8, 1] DEL' E+03 DT =] DEL'	<pre>FEX = .128000E+03 .128000E+03 DX1= FEX = .256000E+03</pre>	MAX. RES. = .241124E+01 DX MAX. RES. =	.165624E-03 AT 1 2= .264625E-19 1 .677115E+00 AT 1	ELEMENT AA T = 48.944 ELEMENT AA	2 = EQUATION $P = 102424$ $2 = EQUATION$	5 1. S = 5	.000000E+00
\$\$\$ 2> ITERATIN ++++++++ e	4 \$\$\$ GAS G AT [excessive re	EVOLVES 8, 2 sidual	AT ELEME] DEL = .33607	NT *AA 1* \$\$\$ FEX = .256000E+03 4E+05	PX = .10240E+0 MAX. RES. =	06 PG = .278261 .336074E+05 AT 1	E+06 ELEMENT AA	2 EQUATION	5	
+++++++++ R ITERATIN \$\$\$ 2>	EDUCE TIME G AT [4 \$\$\$ GAS	8, 1 EVOLVES	(8, 1] DEL AT ELEMEI	2) ++++++++++++++++++++++++++++++++++++	+ NEW DELT = MAX. RES. = PX = .10243E+0	.640000E+02 .169279E+00 AT 1 06 PG = .119281	ELEMENT AA E+06	2 EQUATION	5	
ITERATIN	IG AT [IG AT [8, 2] DEL] DEL'	TEX = .640000E+02 TEX = .640000E+02	MAX. RES. = MAX. RES. =	.141352E+03 AT I	ELEMENT AA	2 EQUATION 2 EQUATION	5	
ITERATIN	IG AT [IG AT [8, 4 8, 5] DEL'	TEX = .640000E+02 TEX = .640000E+02	MAX. RES. = MAX. RES. =	.548582E+01 AT I	ELEMENT AA ELEMENT AA	2 EQUATION 2 EQUATION	5	
ITERATIN	IG AT [IG AT [8, 6 8, 7] DEL'] DEL'	TEX = .640000E+02 TEX = .640000E+02	MAX. RES. = MAX. RES. =	.399707E+01 AT 1 .298861E+00 AT 1	ELEMENT AA ELEMENT AA	1 EQUATION 1 EQUATION	1	
ITERATIN	IG AT [IG AT [8, 8 8, 9] DEL'] DEL'	TEX = .640000E+02 TEX = .640000E+02	MAX. RES. = MAX. RES. =	.367425E-01 AT 1 .789110E-02 AT 1	ELEMENT AA ELEMENT AA	1 EQUATION 1 EQUATION	1 1	
+++++ R	EDUCE TIME G AT [STEP AT 8, 1	(8, 2] DEL	9) ++++++++++++++++++++++++++++++++++++	+ NEW DELT = MAX. RES. =	.160000E+02 .423197E-01 AT 1	ELEMENT AA	2 EQUATION	5	
ITERATIN AA 1(8,	IG AT [3) ST =	8, 2 .270000] DEL' E+03 DT =	<pre>FEX = .160000E+02 .160000E+02 DX1=</pre>	MAX. RES. = .917478E+01 DX	.758309E-04 AT 1 2= .800481E-20	ELEMENT AA I = 95.557	1 EQUATION P = 102439	1 9. S =	.000000E+00
ITERATIN \$\$\$ 2>	IG AT [4 \$\$\$ GAS	9, 1 EVOLVES] DEL' AT ELEMEI	TEX = .320000E+02 NT *AA 1* \$\$\$	MAX. RES. = PX = .10244E+0	.824739E-01 AT 1 06 PG = .108741	ELEMENT AA E+06	2 EQUATION	5	
ITERATIN	IG AT [IG AT [9, 2] DEL'] DEL'	TEX = .320000E+02 TEX = .320000E+02	MAX. RES. = MAX. RES. =	.911235E+02 AT 1 .193422E+02 AT 1	ELEMENT AA ELEMENT AA	1 EQUATION 1 EQUATION	1	
ITERATIN	IG AT [9, 4] DEL'	TEX = .320000E+02	MAX. RES. =	.388879E+01 AT 1	ELEMENT AA	1 EQUATION	1	
ITERATIN	IG AT [IG AT [9, 5 9, 6] DEL:] DEL:	TEX = .320000E+02 TEX = .320000E+02	MAX. RES. = MAX. RES. =	.109658E-01 AT 1	ELEMENT AA	2 EQUATION	1 5	
ITERATIN	IG AT [9, 7] DEL'	TEX = .320000E+02	MAX. RES. =	.197991E-03 AT 1	ELEMENT AA T - 59 850	1 EQUATION	1	0000005+00
ITERATIN	IG AT [10, 1] DEL	TEX = .320000E+02	MAX. RES. =	.274506E+00 AT 1	ELEMENT AA	1 EQUATION	1	.000000100
ITERATIN	IG AT [IG AT [10, 2] DEL'] DEL'	<pre>FEX = .320000E+02 FEX = .320000E+02</pre>	MAX. RES. = MAX. RES. =	.653083E+01 AT 1 .212738E+01 AT 1	ELEMENT AA ELEMENT AA	1 EQUATION 1 EQUATION	1 1	
ITERATIN	IG AT [10, 4] DEL'	TEX = .320000E + 02	MAX. RES. =	.246199E+00 AT 1	ELEMENT AA	1 EQUATION	1	
ITERATIN	IG AT [10, 5] DEL'] DEL'	TEX = .320000E+02 TEX = .320000E+02	MAX. RES. = MAX. RES. =	.198338E-U1 AT 1 .643752E-03 AT 1	ELEMENT AA	1 EQUATION	⊥ 1	
AA 2(10,	7) ST =	.334000	E+03 DT =	.320000E+02 DX1=	907045E+03 D	2=567399E-19	r = 71.044	P = 103969).S=	.000000E+00
ITERATIN	IG AT [11, 1] DEL	TEX = .320000E+02	MAX. RES. =	.395476E-01 AT 1	ELEMENT AA	2 EQUATION	1	
ITERATIN AA 1(11,	IG AT [4) ST =	11, 3 .366000] DEL' E+03 DT =	<pre>TEX = .320000E+02 .320000E+02 DX1=</pre>	MAX. RES. = 133458E+04 DX	.188018E-03 AT 1 2=152841E-19	ELEMENT AA F = 100.992	3 EQUATION P = 104967	5 7.S=	.361338E+00

Figure 10.5.8. Portion of printout for part 3 of problem 5 (steamflood).

rbt3	STEAMFLOOD	OF	BENZENE	AND	TOLUENE	BANK	FOLLOWING	WATERFLOOD
--------	------------	----	---------	-----	---------	------	-----------	------------

@@@@@@	CUO 9009999	PUT DATA AF	TER (690, 3	3)-2-TIME ST @@@@@@@@@@@@@	EPS a@@@@@@@@@@@@@	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	THE T	IME IS .57 a@@@@@@@@@@@@	870E-01 DAYS @@@@@@@@@@@@
TOTAL .500	L TIME 000E+04	КСҮС 690	ITER ITERC 3 4888	KON 2				MAX. RI .459311	ES. NER E-07 39	KER 2	DELTEX .12500E+00
D2 .1180	K1M 04E+02	DX2M .91388E-03	DX3M .13352E-03	DX4M .23027E-03	DX5M .37894E-01	DX6M	DX7M	DX8M	DX9M	DX10M	DX11M
@@@@@@	10000000	000000000000000000000000000000000000000	@@@@@@@@@@@@@	100000000000000000000000000000000000000	4000000000000000	*****	*****	000000000000000000000000000000000000000	400000000000000000000000000000000000000	୶୶୶୶୶୶୶୶୶୶୶୶୶	400000000000000
ELEM.	INDEX	(Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
AA 36 AA 37 AA 38 AA 39 AA 40 AA 41 AA 42 AA 43 AA 44 AA 45 	36 37 38 39 40 41 42 43 44 45	.10470E+06 .10377E+06 .10140E+06 .10145E+06 .10130E+06 .10057E+06 .10056E+06 .10056E+06	.10092E+03 .10067E+03 .94502E+02 .74057E+02 .46558E+02 .34046E+02 .28020E+02 .25022E+02 .23520E+02 .22766E+02	.54616E+00 .46734E+00 .28206E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00	.45384E+00 .53266E+00 .71794E+00 .77681E+00 .93552E+00 .99981E+00 .10000E+01 .10000E+01	.00000E+00 .00000E+00 .28754E+00 .22319E+00 .64481E-01 .19289E-03 .00000E+00 .00000E+00	41278E+04 32406E+04 18645E+04 91604E+03 74812E+03 32401E+03 87556E+01 .00000E+00 .00000E+00	21622E+04 16975E+04 97664E+03 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	.18449E-24 .18381E-07 .17066E-03 .70172E-03 .71834E-03 .72195E-03 .77568E-03 .85457E-03 .92224E-03 .97609E-03	.61176E+00 .60678E+00 .10742E+01 .0000E+00 .00000E+00 .00000E+00 .27822E-01 .24527E-01 .23249E-01	.79251E+03 .79017E+03 .79630E+03 .81739E+03 .84412E+03 .85590E+03 .86551E+03 .8675E+03 .8678E+03 .86883E+03
				>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MOLE FRACTIO	ONS IN THE AQ	QUEOUS PHASE	<<<<<<			
ELEM.	INDEX	Xwat	2 AIR	3 toluene	4 benzene	** SUMmolef					
AA 36 AA 37 AA 38 AA 39 AA 40 AA 41 AA 42 AA 43 AA 44 AA 45	4 4 6 6 6 6 2 2 2 2	.10000E+01 .10000E+01 .99997E+00 .99985E+00 .99985E+00 .99985E+00 .99982E+00 .99982E+00 .99980E+00 .99979E+00	.26153E-17 .53528E-16 .75529E-11 .62583E-06 .43540E-06 .26024E-06 .17714E-06 .11439E-06 .74104E-07	.60684E-26 .25264E-08 .26732E-04 .85733E-04 .84719E-04 .84496E-04 .80224E-04 .68514E-04 .64214E-04	.35392E-25 .12593E-08 .78330E-05 .60805E-04 .65839E-04 .66936E-04 .84381E-04 .11003E-03 .13204E-03 .14955E-03	.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00					
				>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MOLE FRACTIO	ONS IN THE C)IL PHASE <<				
ELEM.	INDEX	Xwat	2 AIR	3 toluene	4 benzene	** SUMmolef					
AA 36 AA 37 AA 38 AA 39 AA 40 AA 41 AA 42 AA 43 AA 44 AA 45	4 4 6 6 6 2 2 2 2	.83908E-02 .83214E-02 .67604E-02 .32190E-02 .10061E-02 .54527E-03 .39669E-03 .30946E-03 .29657E-03	.26153E-17 .53528E-16 .75529E-11 .625838E-06 .43540E-06 .26024E-06 .17714E-06 .11439E-06 .74104E-07	.60083E-22 .25014E-04 .26467E+00 .84884E+00 .83850E+00 .79430E+00 .73187E+00 .67836E+00 .63578E+00	.86113E-22 .30640E-05 .19058E-01 .14794E+00 .16019E+00 .16286E+00 .20531E+00 .32126E+00 .36387E+00	.00000E+00 .0000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00					
			COMPONENTS I	MOLES IN PLA	CE - BY PHAS	SES			COMPONENTS II	N PLACE - OV	ERALL
COMPON WATER AIR toluen benzen total	NENTS ne ne VOCs		GAS PHASE .12874119E-01 .10100385E-09 .22089290E-04 .38788480E-09 .25968138E-04	AQUEOUS 1 .19163 9 .16108 4 .63262 5 .11975 4 .18301	PHASE 794E+02 567E-05 323E-03 548E-02 781E-02	NAPL .15524007E-(.44556134E-(.64250886E-(.11769885E-(.76020771E-(ADSC 03 07 01 .00000 01 .00000 01 .00000	DRBED 0000E+00 0000E+00 0000E+00	TOTAL MOLES .19176823E+0 .16555138E-0 .64905598E-0 .12971319E-0 .77876917E-0	TOTAL M 2 .34548 5 .47943 1 .59804 1 .10132 1 .69937	ASS (kg) 965E+00 680E-07 667E-02 416E-02 083E-02
****	******	********	* * * * * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * * * * * *	* * * * * * * * * * * * * *	*********	* * * * * * * * * * * * * * *	* * * * * * * * * * * * *	* * * * * * * * * *

Figure 10.5.8 Portion of printout for part 3 of problem 5 (continued).

******	* * * * * * * * *	***	* * * * * * * * * * *	* * * * * * *	SUMMARY OF PROGRAM UNITS USED			
, ************************************								
UNIT	VERSION		DATE		COMMENTS			
IO SECOND	1.0 1.0	15 6	APRIL September	1991 1994	OPEN FILES *VERS*, *MESH*, *INCON*, *GENER*, *SAVE*, *LINEQ*, AND *TABLE* CPU timing function for IBM RS/6000			
TOUGH2	2.00	5	September	2001	MAIN PROGRAM special version for conjugate gradient package T2CG2 includes definition of coordinate arrays and radiative heat transfer capability has additional COMMON blocks for TMVOC			
INPUT FLOP	2.0 1.0	4 11	January APRIL	2002 1991	READ ALL DATA PROVIDED THROUGH FILE *INPUT* CALCULATE NUMBER OF SIGNIFICANT DIGITS FOR FLOATING POINT ARITHMETIC			
RFILE	1.5	24	April	2001	INITIALIZE DATA FROM FILES *MESH* OR *MINC*, *GENER*, AND *INCON* also initializes permeability modifiers and coordinate arrays and optionally reads tables with flowing wellbore pressures			
2MIN SINSUB	1.0 1.00	26 1	September October	1997 1999	initialize block-by-block permeability modifiers initialize parameters for the solver package, and generate informative printout			
CYCIT	1.01	20	September	2001	EXECUTIVE ROUTINE FOR MARCHING IN TIME			
EOS	2.00	3	January	2002	*EMVOC* FLUID PROPERTY MODULE FOR WATER/multiple NCGs/multiple VOCs			
SATO	1.00	21	November	2000	CALCULATE HYDROCARBON VAPOR PRESSURE FROM EITHER WACMER OR ANTIONE FOLIATIONS			
RKZ	1.00	9	August	2001	calculate molar volume and departure enthalpy of a gas mixture from the Soave-Redlich-Kwong or Peng-Robinson EOS			
CUBROOT	1.00	25	December	2000	solve general cubic equation			
HOFVAP	1.00	30	October	2000	enthalpy of vaporization for hydrocarbons			
AT	1.0 S	17	SEPTEMBER	1990	STEAM TABLE EQUATION: SATURATION PRESSURE AS FUNCTION OF TEMPERATURE (M. OS.)			
solwat	1.0	30	November	2000	Solubility of water in NAPL as a function of T			
SOLUB	1.00	30	October	2000	CALCULATES AQUEOUS PHASE SOLUBILITIES OF HYDROCARBON COMPONENTS			
ICO	1.00	6	August	1997	CALCULATES HENRYS CONSTANTS FOR HYDROCARBON COMPONENTS			
HENRY	1.0	15	January	2002	Calculates Henrys constant for NCGs as a function of temperature.			
COWAT VISH20	1.0 S	15	SEPTEMBER	2000	LIQUID WATER DENSITY AND INT. ENERGY VERSUS TEMPERATURE AND PRESSURE (M. OS.) VISCOSITY OF LIO WATER OR VADOR VG TEMPERATURE AND DENSITY (ASME 1977)			
PCAP	1.1 !	21	June	2001	CAPILLARY PRESSURE AS FUNCTION OF SATURATION (INCL 3-PHASE)			
COWAT01	1.00	23	August	2001	NOLAR VOLUME AND ENTHALPY OF LIOUID HYDROCARBON MIXTURE			
SRK	1.00	9	August	2001	SRK OF PR EQUATION OF STATE FOR GAS MIXTURES			
RELP	1.11	25	June	2001	RELATIVE PERMEABILITIES AS FUNCTIONS OF SATURATION (INCL 3-PHASE) for IRP = 6 ("STONE I"), take Swr = min(Swr,Sw) for calculating krn			
SRK1	1.00	9	August	2001	calculate the departure enthalpy of hydrocarbon components in the oil phase from the SRK or PR equation of state			
IDEAL1 VISOILL	1.00 1.01	21 21	November November	2000 2000	IDEAL GAS MOLAR ENTHALPY OF A GAS MIXTURE IN VISCOSITY OF A LIQUID MIXTURE OF HYDROCARBONS			
BALLA	2.00	28	August	2001	PERFORM SUMMARY BALANCES FOR VOLUME, MASS, AND ENERGY			
TSTEP	1.0	4	MARCH	1991	ADJUST TIME STEPS TO COINCIDE WITH USER-DEFINED TARGET TIMES			

MULTI	2.0	30 August	2001	ASSEMBLE ALL ACCUMULATION AND FLOW TERMS includes capabilities for radiative heat transfer and diffusion in all phases with local equilibrium phase partitioning between gas and liquid allows block-by-block permeability modification permeability changes from precip. (EWASG) through PAR(NLOC2S+3) TMVOC-compatible version
QU	2.0	30 August	2001	ASSEMBLE ALL SOURCE AND SINK TERMS "rigorous" step rate capability for MOP(12) = 2, and capability for flowing wellbore pressure corrections
PHASD	1.0	14 November	2001	calculate composition, rate and enthalpy for wells on deliverability
AMOLW	2.0	23 August	2001	calculate molecular weight of phase mixtures
WMASSD	2.00	23 August	2001	convert molar densities to mass densities
LINEQ	2.00	4 October	1999	Interface for linear equation solvers T2CG2
		10 0 1	0000	Can call a direct solver or a package of conjugate gradient solvers
MTRAIN	1.1	10 September	r 2000	Routine for z-preprocessing of the Jacobian
CONVER	1.0	19 April	2000	UPDATE PRIMARY VARIABLES AFTER CONVERGENCE IS ACHIEVED
FGTAB	1.00	14 January	2002	Tabulate element, connection, and generation data vs. time for plotting
SUPST	1.0 S	1 February	1991	VAPOR DENSITY AND INTERNAL ENERGY AS FUNCTION OF TEMPERATURE AND PRESSURE (M. OS.)
IDEAL	1.00	25 June -	2001	IDEAL GAS MOLAR ENTHALPY OF GAS MIXTURE MINUS H2O
VISGAS	2.00	21 August	2001	MAIN SUBROUTINE FOR THE VISCOSITY OF THE GAS PHASE
VISNCG	2.0	20 November	2001	VISCOSITY OF NCG AS FUNCTION OF TEMPERATURE
VISCOHC	1.00	22 November	2000	gas viscosities of pure hydrocarbon components
GASNAPL	2.00	21 August	2001	LIASH CALCULATION FOR EVOLVING A NAPL PHASE
RISAFE	1.00	27 June	2001	PART OF NEWTON-RAPHSON ALGORITHM FOR FLASH CALCULATION
FUNCD	2.00	ZI AUGUST	ZUUL	diciliary fourthe for RISAFE
OUT	2.00	21 December	2001	PRINT RESULTS FOR ELEMENTS, CONNECTIONS, AND SINKS/SOURCES
WRIFI	1.0	12 April	2001	AT THE COMPLETION OF A TOUGH2 RUN, WRITE PRIMARY VARIABLES ON FILE *SAVE*
		-		

Figure 10.5.9. Calling sequence of program units in part 3 of problem 5.

10.6 Problem No. 6 (*rad*) – Air Displacement of a NAPL from a Laboratory Column

This problem is an adaptation of the numerical simulation of a laboratory experiment presented by Ho (1995), who used the original M2NOTS code. The flow system is a sand column 18 cm high with a cross sectional area of 3.4×10^{-4} m². The mesh has 18 evenly spaced elements with a spacing of 1 cm; two additional elements, placed on top and bottom of the column, are used to set different boundary conditions. The simulation consists of four parts that involve (1) obtaining a gas-static equilibrium as initial state, (2) injection of a NAPL consisting of a mixture of xylene and toluene, (3) redistribution of NAPL under gravity and capillary forces, and (4) removal of NAPL by airflooding. All simulations are run in isothermal mode, with NEQ = NK specified in data block MULTI.

The first part of the simulation obtains a gas-static equilibrium by specifying constant conditions of $P = 1.01 \times 10^5$ Pa and T = 20 °C for inactive element AJ 1 at the bottom of the column (input file *rad1*; Fig. 10.6.1). Initially, the column contains gas phase only with no VOC present. Gas composition is specified as mole fractions of 20.79 % for oxygen and 78.21 % for nitrogen; the remaining 1% mole fraction corresponds to water vapor. We set NK= 3 in data block MULTI to initialize the system with three-component (water, oxygen, nitrogen) initial conditions, and NEQ = 3 to specify a constant temperature simulation. The pressure-equilibrated conditions obtained are introduced as data block INCON in the input file for the second part of the simulation, Fig. 10.6.2.

The second part of the simulation involves the injection of a liquid mixture of o-xylene (component #4) and toluene (component #5) into the top of the column (grid block A11 1). We set NK = 5 in data block MULTI for this 5-component run, and assign NKIN = 3 to be able to initialize from the VOC-free 3-component initial conditions obtained in the first run segment. Constant boundary conditions are used at both ends of the column, by specifying numerically infinite volumes for the two boundary elements in block ELEME. The NAPL mixture is injected at a constant total rate of 1 ml/min for 216 s, to inject a total volume of 3.6 ml of NAPL. The injected rate is shared between o-xylene and toluene by chosing the COM3 and COM4 options for TYPE in record GENER.1. The various constants used to compute the thermophysical properties of o-xylene and toluene are contained in data block CHEMP, where this time NHC = 2 is assigned. Details of the Stone I three-phase relative permeability functions (IRP = 6 in record RPCAP.1) and Parker's three-phase capillary pressure functions (ICP = 8 in record RPCAP.2) may be found in Appendices G and H, respectively. Molecular diffusion is included for all components in all phases. The desired simulation time of 216 s is reached after 43 time steps. Some of the printed output is shown in Fig. 10.6.3.
The third part of the simulation models redistribution of the injected NAPL under gravity and capillary forces over a two-day period, with both sides of the column closed. These boundary conditions were realized by simply changing the name of the two boundary elements in block CONNE, so that the two connections across the boundary involve unknown elements and will be ignored by TMVOC (Fig. 10.6.4). The initial conditions for this part of the simulation are the conditions at the end of the second part of the simulation. Block GENER has been removed to stop the injection of NAPL. Data block SOLVR was introduced to select matrix solver # 5 with Z1preconditioning. The SAVE file generated by the second part of the simulation was placed into the input file, shown (partly) in Figure 10.6.4. A partial printout of results is given in Figure 10.6.5. It is seen that the NAPL has drained towards the bottom of the column. Composition of NAPL and gas phases is rather uniform throughout.

The fourth and final part of the simulation consists of air injection into the bottom of the column for a time period of 7200 s (120 minutes). The input file is shown (partly) in Figure 10.6.6. Again, the initial conditions for this part of the problem are the conditions at the end of the previous simulation. GENER data specify injection of oxygen and nitrogen at a total rate of 1.2×10^{-5} kg/s and in proportions that correspond to mole fractions of 21 % and 79 %, respectively. Printout is specified at intermediate times of 15, 29, 45 and 100 minutes after start of air injection using data block TIMES. We also include an FOFT data block for generating time series for element A11 1 at the top of the column. A revised version of subroutine FGTAB was used, in which the first 5 primary variables are written out (see sec. 10.5). A large specific heat is used in domain ATMO2, so that the large-volume grid block representing the top boundary condition will be excluded from the summary of volume and mass balances.

Part of the output after 2,700 s of air injection is shown in Figure 10.6.7. The NAPL is seen to have been completely vaporized and removed from the two bottommost elements. The more volatile toluene was removed preferentially, so that the remaining NAPL becomes strongly enriched in o-xylene (compare with Fig. 10.6.5). Fig. 10.6.8 shows profiles of o-xylene and toluene concentrations in the NAPL phase after 1,740 s, indicating the preferential removal of toluene at the bottom of the column, and large compositional gradients. After 2,700 s, 98.3 % of the initial toluene inventory is removed, while only 29.3 % of the o-xylene is removed. The evolution of NAPL saturation and gas phase composition at the top of the column is shown in Fig. 10.6.9. Toluene concentration in the gas phase is five times larger than that of o-xylene initially. Concentrations change little up to 2,500 s, when complete removal of toluene is approached. Increasing o-xylene concentration in the NAPL phase increases the vapor pressure and hence the xylene concentration

in gas in the period from 2,000 to 3,500 s. After NAPL disappears from the outlet element o-xylene concentrations decline. At the final simulation time of 7,200 s all VOCs have been removed from the system.

rad1 ai	r displac	ement of a	NAPL from	a lab. d	column	(prep	. of	initial	state)
ROCKS1	*2-	*3-	*4-	*	5*-	6	*_	7	*8
SAND1 3	2650.	.350	8.4E-11	8.4E-11	1 8.4	ŧΕ−11		3.1	1000.
0.e-8	0.	2.85	0.0						
б	.100	.08	.000	1.2	2				
8	0.100	2.00	40.	20	•				
ATMO2 3	10.	.990	8.4E-11	8.4E-11	1 8.4	lE-09		3.1	50000.
0.e-8	0.	2.85	0.0						
6	.600	.05	.000	3					
9									
CHEMP1	*2-	*3-	*4-	*	5*-	б	*_	7	*8
0									
NCGAS1	*2-	*3-	*4_	*	5*-	6	*_	7	*8
2									
02									
N2									
SELEC1	*2-	*3_	*4_	*	5*_	6	*_	7	*8
0 1	2	5	1	-	5	0		,	0
0 1									
мтт 1	* 0	* 2	* 1	* [5 *	6	*	7	* 0
мошттт	<u>Z</u> -				5	0		/	0
د د ۱	3 O + 0	+)	+ 1	+ 1	- +	C	*	7	* 0
SIARI1			*4-		5°-	6	^_	/	*
*1 MC	JP: 12345	6/89*12345	6/89*1234	*	5*-	6	*-	/	*8
PARAMI	*2-	*3-	*4-	*	5*-	6	*_	/	*8
3 25	2510003	0000000000	4 0001000			1.8			
	21.e12	-1.			9.	8065			
.1	1.	10.	100.	8000	•				
1.E-6	1.E01				1.00)0E-8			1.e4
1									
	1.0e5		0.2079		0.	7821			20.0
DIFFU1	*2-	*3-	*4-	*[5*-	б	*_	7	*8
2.e-5	6.e-10	6.e-10							
2.e-5	6.e-10	6.e-10							
2.e-5	6.e-10	6.e-10							
RPCAP1	*2-	*3-	*4_	*	5*-	6	*_	7	*8
6	.100	.08	.000	1.8	8				
8	0.000	2.00	40.	20					
GENER1	*2-	*3_	*4_	*	• 5*-	6	*_	7	*8
	-	5	-	-	0	Ũ		,	0
ET.EME1	*2-	*3_	*4_	*	5*_	6	*_	7	*8
	2	34008-050	34008-03	-	0 1700)F_010	5000	, 〒-02 (000-
Λ Ι λ11 1	1	3400E 050	.0400E 00		0.1700		5000	E 02 .0 E 02 .0	0000E 00
AII I	T	.3400E-030	.0000E+00		0.1700	010-010	. 5000	E-02	000E-02
••• • • • 1	1.0		24000 02		0 1700		гооо		7505.00
ALL L	10	.3400E-050	.3400E-03		0.1700		.5000	E-021	_/SUE+UU
AU I	2-	.34008+450	.3400E-03		0.1/00	DE-OIO	.5000	E-021	-800E+00
GOUDIE 1	* 0	* 2	.L. A	-t- r	г т	c	JL.	-	* 0
CONNEI	*2-	^3	10000 020		5^-		1000	/	
A IAII I		3	. TOODE-030	.50008-02	20.3400	18-030	. 1000	1111日11日	
					-	-		_	
INCON1	*2-	*3	*4_	*	5*-	6	*_	7	*8
AJ 1		0.99	L						
	1.01e5		0.2079		0.	7821			20.0
ENDCY1	*2-	*3-	*4-	*	5*-	6	*_	7	*8

Figure 10.6.1. TMVOC input file for part 1 of problem 6.

rad2 .. air displacement of a NAPL from a lab. column (injection of NAPL) ROCKS----1----*----2----*----3----*----4----*----5----*----6----*-----8 8.4E-11 SAND1 3 8.4E-11 2650. .350 3.1 8.4E-11 1000. 0. .100 0.0 2.85 0.e-8 .000 6 .08 1.8 2.00 40. 8 0.100 20. ATMO2 3 10. 8.4E-11 8.4E-11 8.4E-09 3.1 50000. Ο. 2.85 0.0 0.e-8 .600 б .05 .000 3. 9 CHEMP----1----*----2----*----3----*----4----*---5----*----6----*----7----*8 2 o-xylene 630.3 37.3 0.262 0.310 0.5 417.6 -7.53357 1.40968 -3.10985 -2.85992 106.168-.1585E+020.5962E+00-.3443E-030.7528E-07 293.00 880. 293.00 0.708E-05 1 93 0.5900 293.000 369.0 0.322E-04 0.000E+00 0.000E+00 0.000E+00 0.550E+00 0.000 toluene 591.8 41.0 0.263 0.263 0.4 383.8 -7.28607 1.38091 -2.83433 -2.79168 92.141-.2435E+020.5125E+00-.2765E-030.4911E-07 293.00 0.880E-05 303.10 867. 1.41 -.5878E+010.1287E+040.4575E-02-.4499E-05 316.0 0.101E-03 0.000E+00 0.000E+00 0.000E+00 0. 0. 0. NCGAS----1----*----2----*----3----*----4----*----5----*----6----*----8 2 02 N2SELEC----1----*----2----*----3----*----4----*----5----*----6----*----8 0 1 NKIN=3 allows to read incon data generated by *rad1* with NK=3 !!! MULTI----1----*----2----*----3----*----4----*---5----*---6----*----8 5 5 3 8 3 START----1----*----3-----*----5-----*----6-----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*----2----*----3----*----4----*----5----*----6----*----7----* 3 100 251000300000000 4 0004000 1.8 216.0 -1. 9.8065 .25e-1 1.E-5 1.E02 1.000E-8 1.e4 1 0.2079 0.7821 1.0e5 20 0 DIFFU----1----*----2----*----3----*----4----*----5----*----6----*-----8 6.e-10 6.e-10 2.e-5 2.e-5 6.e-10 6.e-10 2.e-5 6.e-10 6.e-10 6.e-10 7.3e-5 6.e-10 7.9e-5 6.e-10 6.e-10

Figure 10.6.2. TMVOC input file for part 2 of problem 6 (NAPL injection).

RPCAP1	*	2	*3	-*4	*5	*6-	*7*	8
6		.100	.08	.000	1.8			
8	0.	.000	2.00	40.	20.			
ELEME1	*	2	*3	-*4	*5	*б-	*7*	8
CONNEL 1	÷	2	+ 2	+ 1	+ г	+ C	+ 7 +	0
CONNEI	· ·	2	*3	- ^ 4	^5		*/*	8
INCON INITI	AL	CONDI	TIONS FOR	20 ELEI	MENTS AT TIM	IE .3320	11E+07	
A 1		.9900	0000E+00 1					
.10099788685	211	E+06	.2079000000	00E+00	.782100000	0000E+00	.2000000000000	3+02
A11 1		.3500	0000E+00 1					
.10099794665	75E	E+06	.2079000000)00E+00	.782100000	0000E+00	.20000000000000	1+02
AZI I 10000006303	201	.3500 	20790000000	000.00	782100000	00000	2000000000000	1 1 1
A31 1	1221	3500	0000E+00 1	005+00	./82100000	00005+00	.20000000000000	1+02
.10099818118	91E	.9900 E+06	.20790000000)00E+00	.782100000	0000E+00	.20000000000000	3+02
A41 1		.3500	0000E+00 1					
.10099829845	51I	E+06	.2079000000	000E+00	.782100000	0000E+00	.2000000000000	3+02
A51 1	1 0 -	.3500	0000E+00 1	007.00	600100000			
.10099841572	I Z E	3E00	.20/90000000)00E+00	./82100000	00008+00	.20000000000000	;+02
10099853298	751	.3500 Z+06	20790000000000)00E+00	782100000	0000E+00	20000000000000	2+02
A71 1	,, 51	.3500	0000E+00 1	001.00	.,02100000	0000100	.20000000000000	1.02
.10099865025	39E	E+06	.2079000000	00E+00	.782100000	0000E+00	.20000000000000	3+02
A81 1		.3500	0000E+00 1					
.10099876752	041	E+06	.2079000000)00E+00	.782100000	0000E+00	.20000000000000	3+02
A91 1		.3500	0000E+00 1	0000.00	700100000		200000000000000	1.00
.10099888478) / I I	3500 3500	.20/90000000 0000F+00 1	JOOE+00	./82100000	00008+00	.20000000000000	1+02
.10099900205	391	.9900 5+06	20790000000)00E+00	.782100000	0000E+00	. 20000000000000	2+02
AB1 1		.3500	0000E+00 1			00002.00		
.10099911932	091	E+06	.2079000000	00E+00	.782100000	0000E+00	.2000000000000	3+02
AC1 1		.3500	0000E+00 1					
.10099923658	801	E+06	.2079000000)00E+00	.782100000	0000E+00	.20000000000000	1+02
ADI I	E OT	.3500 .3500	0000E+00 I		702100000		20000000000000	2.02
.100999555555 AE1 1	12021	3500	.20790000000 0000E+00 1	006+00	./82100000	00006+00	.20000000000000	1402
.10099947112	251	.9900 E+06	.20790000000)00E+00	.782100000	0000E+00	.20000000000000	2+02
AF1 1		.3500	0000E+00 1					
.10099958839	001	E+06	.2079000000	00E+00	.782100000	0000E+00	.20000000000000	2+02
AG1 1		.3500	0000E+00 1					
.10099970565	77E	E+06	.2079000000)00E+00	.782100000	0000E+00	.20000000000000	1+02
AHI I 10000082202	541	.3500 7±06	2079000000	005+00	782100000	00005+00	20000000000000	r±02
AI1 1	.5 11	.3500	0000E+00 1	00100	./02100000	0000100	.2000000000000	1102
.10099994019	33E	E+06	.2079000000	000E+00	.782100000	0000E+00	.20000000000000	2+02
AJ 1		.9900	0000E+00 1					
.1010000000	001	E+06	.2079000000	000E+00	.782100000	0000E+00	.2000000000000	3+02
	*	2	* 0	* ^	* Г	* ~	* 7 -	0
GENER Δ11 1xvl 1		2	3	4- СОМ4	»	300 p3	*/*	8
A11 1tol 2				COM5	7.2012e-6	300.e3		
ENDCY1	*	2	*3	*4	*5	*б-	*7*	8

Figure 10.6.2. TMVOC input file for part 2 of problem 6 (continued).

ITERATING	AT [1, 1]	DELTE	x = .25	0000E-01	MAX.	RES. =	57	4647E-02	AT	ELEMENT	A11	1 1	EQUATION	5	
\$\$\$ 1> 5 \$\$\$	NAPL	EVOLVES .	AT ELEMENT	*A11 1*	\$\$\$ 3	xsumoil	65	5016E+	01							
ITERATING	AT [1, 2]	DELTE	K = .25	0000E-01	MAX.	RES. =	45	4543E-02	AT	ELEMENT	A11	1 1	EQUATION	4	
ITERATING	AT [1, 3]	DELTE	X = .25	0000E-01	MAX.	RES. :	= .16	2590E-03	AT	ELEMENT	A11	1 1	EQUATION	5	
A11 1(1, 4)	ST =	.250000E	-01 DT =	.250000E	-01 DX1=	.2450	90E+01	DX2=	.356221E	2-02	т = 20	.000	P =	101000.	S =	.999730E+00
ITERATING	AT [2, 1]	DELTE	K = .50	0000E-01	MAX.	RES. :	11	2535E-01	AT	ELEMENT	A11	1 1	EQUATION	5	
ITERATING	AT [2, 2]	DELTE	x = .50	0000E-01	MAX.	RES. =	32	1205E-02	AT	ELEMENT	A11	1 1	EQUATION	5	
All 1(2, 3)	ST =	.750000E	-01 DT =	.500000E	-01 DX1=	2256	37E+01	DX2=	325484E	2-03	т = 20	.000	P =	100998.	S =	.999041E+00
ITERATING	AT [3, 1]	DELTE	x = .10	0000E+00	MAX.	RES. =	22	5896E-01	AT	ELEMENT	A11	1 1	EQUATION	5	
ITERATING	AT [3, 2]	DELTE	K = .10	0000E+00	MAX.	RES. :	15	1966E-02	AT	ELEMENT	A11	1 1	EQUATION	5	
All 1(3, 3)	ST =	.175000E	+00 DT =	.100000E	+00 DX1=	7846	92E-01	DX2=	935554E	2-04	т = 20	.000	P =	100998.	S =	.997656E+00
ITERATING	AT [4, 1]	DELTE	K = .20	0000E+00	MAX.	RES. =	45	1823E-01	AT	ELEMENT	A11	1 1	EQUATION	5	
ITERATING	AT [4, 2]	DELTE	K = .20	0000E+00	MAX.	RES. :	11	2479E-02	AT	ELEMENT	A11	1 1	EQUATION	5	
A11 1(4, 3)	ST =	.375000E	+00 DT =	.200000E	+00 DX1=	1264	04E-01	DX2=	374667E	2-04	т = 20	.000	P =	100998.	S =	.994883E+00

rad2 .. air displacement of a NAPL from a lab. column (injection of NAPL)

Table all displacement of a warb from a fab. column (injection of warb)												
@@@@@@@	OUTPUT DATA AFTER (43, 4)-2-TIME STEPS THE TIME IS .25000E-02 DAYS											
TOTAL .216	TIME 00E+03	КСҮС 43	ITER ITERC 4 227	KON 2				MAX. R .52570	ES. NER E-09 19	KER 4	DELTEX .32250E+01	
DX .1996	1M 9E-01	DX2M .35295E-05	DX3M .15642E-04	DX4M .26435E-05	DX5M .24756E-01	DX6M .00000E+00	DX7M	DX8M	DX9M	DX10M	DX11M	
@@@@@@@	000000	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	
ELEM.	INDEX	2 P (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)	
A 1	1	.10100E+06	.20000E+02	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.10912E-30	.11958E+01	.00000E+00	
A11 1	2	.10100E+06	.20000E+02	.79771E+00	.00000E+00	.20229E+00	11928E+05	21374E+04	.10278E-02	.12466E+01	.87341E+03	
A21 1	3	.10100E+06	.20000E+02	.80061E+00	.00000E+00	.19939E+00	11991E+05	22004E+04	.10130E-02	.12465E+01	.87341E+03	
A31 1	4	.10100E+06	.20000E+02	.80355E+00	.00000E+00	.19645E+00	12058E+05	22681E+04	.99672E-03	.12465E+01	.87341E+03	
A41 1	5	.10100E+06	.20000E+02	.80652E+00	.00000E+00	.19348E+00	12131E+05	23409E+04	.97976E-03	.12464E+01	.87341E+03	
A51 1	6	.10100E+06	.20000E+02	.80951E+00	.00000E+00	.19049E+00	12209E+05	24192E+04	.96274E-03	.12463E+01	.87341E+03	
A61 1	.7	.10100E+06	.20000E+02	.81259E+00	.00000E+00	.18741E+00	12293E+05	25033E+04	.94630E-03	.12463E+01	.87341E+03	
A/L L	8	.10100E+06	.20000E+02	.81590E+00	.00000E+00	.184106+00	12384E+05	25936E+04	.93092E-03	.12462E+U1	.8/341E+U3	
A81 1	10	10100E+06	.20000E+02	.81946E+UU	.00000E+00	.18054E+00	12481E+05	26910E+04	.91695E-U3	.12462E+U1	.8/341E+U3	
A91 1 AA1 1	11	10100E+06	20000E+02	.82333E+00 82755F+00	.00000E+00	.1700/E+00 17245F+00	1258/E+05	2/96/E+04	.90460E-03	12461E+01	.8/341E+03 87341E+03	
AR1 1	12	10100E+06	20000E+02	83220E+00	00000E+00	16780E+00	- 12829E+05	- 30392E+04	88490E-03	12460E+01	87341E+03	
AC1 1	13	10100E+06	20000E+02	83737E+00	00000E+00	16263E+00	- 12971E+05	- 31805E+04	87740E-03	12460E+01	87341E+03	
AD1 1	14	.10100E+06	.20000E+02	.84320E+00	.00000E+00	.15680E+00	13130E+05	33398E+04	.87124E-03	.12459E+01	.87341E+03	
AE1 1	15	.10100E+06	.20000E+02	.84989E+00	.00000E+00	.15011E+00	13313E+05	35227E+04	.86620E-03	.12459E+01	.87342E+03	
AF1 1	16	.10100E+06	.20000E+02	.85778E+00	.00000E+00	.14222E+00	13528E+05	37382E+04	.86201E-03	.12459E+01	.87342E+03	
AG1 1	17	.10100E+06	.20000E+02	.86745E+00	.00000E+00	.13255E+00	13793E+05	40027E+04	.85836E-03	.12458E+01	.87343E+03	
AH1 1	18	.10100E+06	.20000E+02	.88022E+00	.00000E+00	.11978E+00	14142E+05	43516E+04	.85487E-03	.12458E+01	.87344E+03	
AI1 1	19	.10100E+06	.20000E+02	.90501E+00	.00000E+00	.94990E-01	14685E+05	48951E+04	.84874E-03	.12455E+01	.87350E+03	
AJ l	20	.10100E+06	.20000E+02	.10000E+01	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.10912E-30	.11958E+01	.00000E+00	
@@@@@@@	0000000	000000000000000000000000000000000000000	4@@@@@@@@@@@@@	100000000000000	4@@@@@@@@@@@@@	400000000000000	@@@@@@@@@@@@@	000000000000000000000000000000000000000	@@@@@@@@@@@@@	@@@@@@@@@@@@@	@@@@@@@@@@@@@	
· · · *****	**** V	OLUME- AND 1	MASS-BALANCES	3 ********	* * * * * * * * * * * * *	* * * * * * * * * * * *	****	*****	*****	* * * * * * * * * * * *	****	
*****	**** [KCYC,ITER]	= [43, 4]	****			THE TIME	IS .2160	0E+03 SECONDS	, OR .2500	0E-02 DAYS	
PHASES			GAS	AQUE	EOUS	NAPL	TOT	'AL				
VOLUME	S	(m**3)	.17837919E-04	.000000	00E+00	.35820813E-0	5.21420	000E-04				
MASS	(moles)	.73954555E-03	.000000	00E+00	.31679932E-0	1.32419	478E-01				
ENERGY		(J) –	.50921777E+00	.000000	00E+00	.10075464E+0	3.22085	854E+04				
			COMPONENTS N	OLES IN PLAC	CE - BY PHASI	ES			COMPONENTS I	N PLACE - OV	ERALL	
COMPON	ENTS		GAS PHASE	AOUEOUS	PHASE	NAPL	ADSC	RBED	TOTAL MOLES	TOTAL M	ASS (kq)	
WATER			.67936886E-05	.000000	00E+00	.31505989E-0	5		.99442875E-0	5 .17915	628E-06	
02			.15104243E-03	.000000	000E+00	.65354581E-0	7		.15110779E-0	3 .48352	981E-05	
N2			.56820744E-03	.000000	00E+00	.24585779E-0	6		.56845330E-0	3.16003	188E-04	
o-xyle	ne		.22665133E-05	.000000	00E+00	.14942265E-0	1 .00000	000E+00	.14944532E-0	1.15866	310E-02	
toluen	e		.11235481E-04	.000000	00E+00	.16734205E-0	1 .00000	000E+00	.16745440E-0	1.15429	416E-02	
total	VOCs		.13501995E-04	.000000	000E+00	.31676470E-0	1 .00000	000E+00	.31689972E-0	1.31295	727E-02	
	*****	****	* * * * * * * * * * * * * * * * * * * *			*******	****	********	******	*****	****	

Figure 10.6.3. Portion of printed output for part 2 of problem 6 (NAPL injection).

rad3 .. air displacement of a NAPL from a lab. column (redistribut.) ROCKS----1----*----2----*----3----*----4----*----5----*----6----*-----8 .350 3 2650. 8.4E-11 8.4E-11 8.4E-11 3.1 SAND1 1000. 0. 2.85 0.0 0.e-8 .100 .08 .000 б 1.8 8 0.000 2.00 40. 20. 3 8.4E-11 10. .990 8.4E-11 ATMO2 8.4E-09 3.1 50000. Ο. 2.85 0.0 0.e-8 .05 .600 6 .000 3. 9 MULTI----1----*----2----*----4----*---5----*---6----*----7----*----8 5 5 3 8 SELEC----1----*----2----*----3----*----4----*----5----*----6----*----8 0 1 START----1----*----2----*----3-----*----4----*----5-----*----6----*-----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----7----*----8 PARAM----1----*----2----*----3-----*----4----*----5-----*----6----*-----8 1001000300000000 4 0004000 1.8 3 100 1728.e2 9.8065 -1. 1.e+0 1.E02 1.000E-8 1.E-5 1.e4 1 0.00 0.0 1.000e5 0.00 0.99 20.0 SOLVR----1----*----2----*----3----*----4----*----5----*----6----*----8 5 Z1 00 8.0e-1 1.0e-7 . . . CONNE----1----*----2----*----4----*---5----*---6----*----8 3 .1000E-030.5000E-020.3400E-030.1000E+01 AZ 1A11 1 A11 1A21 1 30.5000E-020.5000E-020.3400E-030.1000E+01 . . . 30.5000E-020.5000E-020.3400E-030.1000E+01 AH1 1AI1 1 3 .5000E-02 .1000E-030.3400E-030.1000E+01 AI1 1AJZ 1 GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 INCON -- INITIAL CONDITIONS FOR 20 ELEMENTS AT TIME .216000E+03 .99000000E+00 1 А 1 .1009978868521E+06 .10000000000E-29 .1000000000E-29 .207900000000E+00 .782100000000E+00 .200000000000E+02 .3500000E+00 5 A11 1 .1009979673641E+06 .3059208923492E-02 .1521755161855E-01 .2044499533654E+00 .2022859073864E+00 .20000000000E+023500000E+00 5 AT1 1 .1501589504316E-01 .2041343842693E+00 .1009999987819E+06 .3104467422102E-02 .9498977983169E-01 .20000000000E+02 .9900000E+00 1 АЛ 1 .10100000000E+06 .00000000000E+00 .00000000000E+00 .207900000000E+00 .782100000000E+00 .20000000000E+02 ENDCY---1----*---2----*---3----*---4----*---5----*---6----*----8

Figure 10.6.4. TMVOC input file for part 3 of problem 6 (redistribution).

ITERATING AT [1, 1] DELTEX = .100	000E+01 MAX. RES. =	.803738E-01 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [1, 2] DELTEX = .100	000E+01 MAX. RES. =	.732783E-03 AT	ELEMENT A11 1	EQUATION 4	
A11 1(1, 3) ST =	.100000E+01 DT = .100000E+	01 DX1=627632E+00 D	X2= .187764E-07	T = 20.000 P =	= 100997.S =	.804066E+00
ITERATING AT [2, 1] DELTEX = .200	000E+01 MAX. RES. =	.116189E+00 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [2, 2] DELTEX = .200	000E+01 MAX. RES. =	.124128E-02 AT	ELEMENT A11 1	EQUATION 4	
A11 1(2, 3) ST =	.300000E+01 DT = .200000E+	01 DX1=170409E+00 D	X2= .472769E-08	T = 20.000 P =	= 100997.S =	.811974E+00
ITERATING AT [3, 1] DELTEX = .400	000E+01 MAX. RES. =	.158801E+00 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [3, 2] DELTEX = .400	000E+01 MAX. RES. =	.586284E-02 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [3, 3] DELTEX = .400	000E+01 MAX. RES. =	.155189E-04 AT	ELEMENT AI1 1	EQUATION 4	
AI1 1(3, 4) ST =	.700000E+01 DT = .400000E+	01 DX1=438765E+00 D	X2=285876E-05	T = 20.000 P =	= 101000. S =	.877850E+00
ITERATING AT [4, 1] DELTEX = .800	000E+01 MAX. RES. =	.209680E+00 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [4, 2] DELTEX = .800	000E+01 MAX. RES. =	.216806E-01 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [4, 3] DELTEX = .800	000E+01 MAX. RES. =	.100285E-03 AT	ELEMENT AI1 1	EQUATION 4	
AI1 1(4, 4) ST =	.150000E+02 DT = .800000E+	01 DX1=755285E+00 D	X2=342818E-05	T = 20.000 P =	= 100999.S =	.859051E+00
ITERATING AT [5, 1] DELTEX = .160	000E+02 MAX. RES. =	.268380E+00 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [5, 2] DELTEX = .160	000E+02 MAX. RES. =	.381750E-01 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [5, 3] DELTEX = .160	000E+02 MAX. RES. =	.723208E-04 AT	ELEMENT AI1 1	EQUATION 4	
AH1 1(5, 4) ST =	.310000E+02 DT = .160000E+	02 DX1=113215E+01 D	X2=140569E-05	T = 20.000 P =	= 100998.S =	.837102E+00
ITERATING AT [6, 1] DELTEX = .320	000E+02 MAX. RES. =	.326471E+00 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [6, 2] DELTEX = .320	000E+02 MAX. RES. =	.228972E-01 AT	ELEMENT AI1 1	EQUATION 5	
ITERATING AT [6, 3] DELTEX = .320	000E+02 MAX. RES. =	.138347E-03 AT	ELEMENT AH1 1	EQUATION 5	
A11 1(6, 4) ST =	.630000E+02 DT = .320000E+	02 DX1=116124E+01 D	X2= .323539E-07	T = 20.000 P =	= 100994. S =	.860556E+00

rad3 .. air displacement of a NAPL from a lab. column (redistribut.)

OU	FPUT DATA AF @@@@@@@@@@@@	TER (18, 3 @@@@@@@@@@@@@@	3)-2-TIME STE Baaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	PS @@@@@@@@@@@@@@@@@	800000000000000000000000000000000000000	000000000000000000000000000000000000000	ଌଌଌଌଌଌଌଌଌ	THE TI @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	IME IS .20)000E+01 DAYS a@@@@@@@@@@@@@@
TOTAL TIME .17280E+0	КСҮС 6 18	ITER ITERC 3 62	KON 2				MAX. R .27659	ES. NER E-05 2	KER 1	DELTEX .41729E+05
DX1M .45905E-01	DX2M .91268E-06	DX3M .40575E-05	DX4M .65430E-06	DX5M .43775E-07	DX6M .00000E+00	DX7M	DX8M	DX9M	DX10M	DX11M
@@@@@@@@@@@@	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	200000000000000000000000000000000000000	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	200000000000000000000000000000000000000
ELEM. INDE	X P (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
A 1 1 All 1 3 All 1 4 A41 1 5 A51 1 4 A41 1 5 A51 1 6 A61 1 7 A71 1 8 A81 1 9 A91 1 10 AA1 1 11 AB1 1 12 AC1 1 13 AD1 1 14 AE1 1 15 AF1 1 16 AG1 1 17 AH1 1 18 AI1 1 19 AJ 20 20	.10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06 .10100E+06	.20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02	.10000E+01 .89416E+00 .89011E+00 .88574E+00 .87588E+00 .87029E+00 .86418E+00 .85007E+00 .83275E+00 .82252E+00 .81098E+00 .79787E+00 .78286E+00 .76551E+00 .74252E+00 .72132E+00 .10000E+01	.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	.00000E+00 .10584E+00 .10989E+00 .11426E+00 .12412E+00 .12971E+00 .14253E+00 .14293E+00 .15812E+00 .16725E+00 .17748E+00 .18902E+00 .2013E+00 .23449E+00 .23449E+00 .25475E+00 .00000E+00	$\begin{array}{c} .00000\pm .00\\12082\pm .05\\11997\pm .05\\11911\pm .05\\11826\pm .05\\11740\pm .05\\11655\pm .05\\11569\pm .05\\1138\pm .05\\1138\pm .05\\11227\pm .05\\11227\pm .05\\11227\pm .05\\11026\pm .05\\10970\pm .05\\10970\pm .05\\10970\pm .05\\10714\pm .05\\10714\pm .05\\10714\pm .05\\10628\pm .05\\0000\pm .00\end{array}$.00000E+00 -22971E+04 -22116E+04 -221260E+04 -19550E+04 -19550E+04 -17839E+04 -1628E+04 -15273E+04 -15273E+04 -13563E+04 -13563E+04 -12707E+04 -11852E+04 -1097E+04 -0997E+04 -092862E+03 -84309E+03 -00000E+00	.10912E-30 .91513E-03 .91512E-03 .91512E-03 .91507E-03 .91507E-03 .91507E-03 .91501E-03 .91498E-03 .91498E-03 .91481E-03 .91474E-03 .91467E-03 .91443E-03 .91443E-03 .91443E-03 .91443E-03 .91443E-03 .9142E-30	$\begin{array}{c} .11958E+01\\ .12461E+01\\ .12461E+01\\$	$\begin{array}{c} .00000\pm .00\\ .87341\pm +03\\ .87342\pm -03\\ .87342\pm -03$
@@@@@@@@@@@@	800000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	00000000000000000000000000000000000000	00000000000000000000000000000000000000	BAS PHASE <<	~~~~~~ ~~~~~~	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	200000000000000000000000000000000000000

ELEM. A 1 A11 1 A21 1 A31 1 A31 1 AG1 1 AH1 1 AJ 1	INDEX 1 5 5 5 5 5 5 1	Xwat .10000E-01 .91552E-02 .91552E-02 .91552E-02 .91553E-02 .91553E-02 .10000E-01	2 O2 .20790E+00 .20424E+00 .20424E+00 .20424E+00 .20424E+00 .20424E+00 .20424E+00 .20424E+00	3 N2 .78210E+00 .76833E+00 .76833E+00 .76833E+00 .76835E+00 .76835E+00 .76835E+00 .78210E+00	4 o-xylene .1000E-29 .30605E-02 .30605E-02 .30605E-02 .30652E-02 .30657E-02 .30660E-02 .10000E-29	5 toluene .10000E-29 .15212E-01 .15212E-01 .15212E-01 .15191E-01 .15189E-01 .15187E-01 .10000E-29	** SUMmolef .00000E+00 - 22204E-15 .00000E+00 .00000E+00 .00000E+00 - 11102E-15 .00000E+00	** Z-factor .99973E+00 .99946E+00 .99946E+00 .99946E+00 .99946E+00 .99946E+00 .99946E+00 .99946E+00 .99945E+00
				>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MOLE FRACTIO	NS IN THE (OIL PHASE <-	<<<<<<
ELEM. A 1 A11 1 A21 1 A31 1	INDEX 1 5 5 5 5	Xwat .10943E-03 .10018E-03 .10018E-03 .10018E-03	2 02 .20997E-05 .20627E-05 .20627E-05 .20627E-05	3 N2 .20997E-05 .77598E-05 .77598E-05 .77599E-05	4 o-xylene .15399E-27 .47127E+00 .47127E+00 .47128E+00	5 toluene .34750E-28 .52862E+00 .52862E+00 .52861E+00	** SUMmolef .00000E+00 .00000E+00 .00000E+00 .00000E+00	
AG1 1 AH1 1 AI1 1 AJ 1	5 5 5 1	.10018E-03 .10018E-03 .10018E-03 .10943E-03	.20628E-05 .20628E-05 .20628E-05 .20998E-05	.77601E-05 .77601E-05 .77601E-05 .20998E-05	.47200E+00 .47209E+00 .47214E+00 .15399E-27	.52789E+00 .52780E+00 .52775E+00 .34751E-28	.00000E+00 .00000E+00 .00000E+00 .00000E+00	

Figure 10.6.5. Portion of printed output for part 3 of problem 6 (redistribution).

rad4 .. air displacement of a NAPL from a lab. column (airflooding) ROCKS----1----*----2----*----3----*----4----*---5----*----6----*----7----*8 8.4E-11 2650. .350 8.4E-11 8.4E-11 3.1 SAND1 3 1000. 2.85 0.0 0.e-8 Ο. .100 .000 б .08 1.8 8 0.000 2.00 40. 20. 8.4E-11 10. .990 8.4E-11 ATMO2 3 8.4E-09 3.1 50000. 0. 2.85 0.0 0.e-8 6 .600 .05 .000 3. 9 CHEMP----1----*----2----*----3----*----4----*---5----*----6----*----7----* MULTI----1----*----2----*----3----*----4----*----5----*----6----*----8 3 8 5 5 SELEC----1----*----2----*----3----*----4----*----5----*----6----*-----8 0 1 START----1----*----2----*----3-----*----4----*----5-----*----6-----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*----2----*----3----*----4----*----5----*----6----*-----8 2001000300000000 4 0004000 1.8 3 200 9.8065 7200.e0 -1. 1.e+1 1.000E-8 1.E-5 1.E02 1.e4 1 1.000e5 0.00 0.0 0.00 0.99 20.0 . . . TIMES----1----*----2----*----3----*----4----*---5----*----6----*----7----*----8 5 1740. 2700. 6000. 900. 7200. CONNE----1----*----2----*----3----*----4----*---5----*----6----*----7-----8 3 .1000E-030.5000E-020.3400E-030.1000E+01 1A11 1 А 30.5000E-020.5000E-020.3400E-030.1000E+01 A11 1A21 1 . . . AH1 1AI1 1 30.5000E-020.5000E-020.3400E-030.1000E+01 3 .5000E-02 .1000E-030.3400E-030.1000E+01 AI1 1AJZ 1 FOFT A11 1 INCON -- INITIAL CONDITIONS FOR 20 ELEMENTS AT TIME .172800E+06 .9900000E+00 1 А .1009978868521E+06 .10000000000E-29 .100000000000E-29 .207900000000E+00 .782100000000E+00 .20000000000E+02 .3500000E+00 5 A11 1 .1009958021192E+06 .3060462994415E-02 .1521229572868E-01 .2042400794138E+00 .1058438889443E+00 .200000000000E+02 . . . GENER----1----*----2----*----3----*----4----*----5----*----6----*----8 COM2 .27844e-5 300.e3 AI1 102 1 AI1 1N2 2 COM3 .92155e-5 300.e3 ENDCY---1---*---2---*---3----*---4---*---5----*---6---*---7----*---8

Figure 10.6.6. TMVOC input file for part 4 of problem 6 (airflooding).

ITERATIN ITERATIN \$\$\$ 5> ITERATIN \$\$\$ 7> ITERATIN AIL 1(1, ITERATIN ITERATIN ITERATIN AIL 1(2, *rad4* a OU @@@@@@@@@@@@@@	G AT [G AT [7 \$\$\$ WAT. E G AT [5 \$\$\$ WAT. D IG AT [G AT [G AT [IG AT [IG AT [IG AT [IG AT [5) ST = hir displacem TPUT DATA AF	1, 1] 1 1, 2] 1 VOLVES AT ELI 1, 3] 1 ISAPP. AT ELI 1, 4] 1 1, 5] 1 2, 2] 1 2, 2] 1 2, 3] 1 2, 3] 1 2, 4] 1 200000E+02 D2 ent of a NAPPI TER (93, 4)	DELTEX = .1(DELTEX = .1(EMENT *A11 1: DELTEX = .1(DELTEX = .1(F = .1000001 L from a lab 4)-2-TIME STI 2000000000000000000000000000000000000	00000E+02 1 00000E+02 1 * \$\$\$ PS 1 00000E+02 1 * \$\$\$ PX 1 00000E+02 1 00000E+02 1 00000E+02 1 00000E+02 1 00000E+02 1 00000E+02 1 E+02 DX1= . . column (ai: EPS 20000E00E00E00E00E00E00E00E00E00E00E00E0	MAX. RES. = MAX. RES. = = .49581E+ MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = MAX. RES. = 666474E+00 D rflooding)	.636961E+02 .935746E+01 .04 PSAT= . .357210E+01 .06 SG = . .518428E+00 .5767977E-02 .0X2= .118901 .179820E+00 .102024E-01 .294755E-03 .559897E-03 .X2= .671479	AT ELEMENT AT ELEMENT 23366E+04 AT ELEMENT 241612 AT ELEMENT AT ELEMENT AT ELEMENT AT ELEMENT AT ELEMENT AT ELEMENT EAT ELEMENT EAT ELEMENT	F All 1 EQUAT F All 1 EQUAT F All 1 EQUAT SW =14217i F All 1 EQUAT F All 1 EQUAT F All 1 EQUAT C All 1 EQUAT F All 1 EQUAT C All 1 EQUAT F All 1 EQUAT C All 1 EQUAT T HI 1 EQUAT T All 1 EQUAT O.000 P = 10 THE T THE T	TION 3 TION 3 TION 3 5-02 TION 1 01030.S = TION 5 TION 5 TION 3 TION 3 02168.S = TME IS .31 2000000000000000000000000000000000000	.891001E+00 .778669E+00 250E-01 DAYS @@@@@@@@@@@@@@@
TOTAL TIME .27000E+0	ксус 4 93	ITER ITERC 4 463	KON 2				MAX. RI .753181	ES. NER E-05 3	KER 3	DELTEX .30000E+02
DX1M .83404E-01 @@@@@@@@@@@@	DX2M 13401E-03 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	DX3M .59386E-03 @@@@@@@@@@@@@@	DX4M .96155E-04 @@@@@@@@@@@@@@	DX5M .77439E-02 @@@@@@@@@@@@@	DX6M .00000E+00 @@@@@@@@@@@@@	DX7M))@@@@@@@@@@@@@@@	DX8M	DX9M Baaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	DX10M @@@@@@@@@@@@@	DX11M @@@@@@@@@@@@@
ELEM. INDE	X P (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
A 1 1 All 1 2 A21 1 3 A31 1 4 A41 1 5 A51 1 6 A61 1 7 A71 8 A81 9 A91 1 0 A81 1 9 A91 1 10 A81 1 12 AC1 1 13 AD1 1 14 AE1 1 15 AF1 1 16 AG1 1 17 AH1 1 18 AI1 1 5 A21 1 5 A21 1 5 A21 1 5 A21 1 5 AF1 1 1 1	.10100E+06 .10103E+06 .10109E+06 .10116E+06 .10122E+06 .10134E+06 .10141E+06 .10147E+06 .10153E+06 .10153E+06 .10166E+06 .10172E+06 .10197E+06 .10197E+06 .10203E+06 .10203E+06 .10203E+06 .10100E+06 .00100E+06 .0000E-01 .31479E-03 .48915E-05 .72862E-07 .21551E-09 .21602E-09 .21602E-09 .21702E-09 .21770E-09 .21770E-09 .37303E-11 .68834E-13	20000E+02 20000E	.10000E+01 .96010E+00 .94057E+00 .93946E+00 .93946E+00 .93946E+00 .929781E+00 .929781E+00 .92968E+00 .92024E+00 .91697E+00 .91697E+00 .91637E+00 .91637E+00 .91637E+00 .91637E+00 .91637E+00 .78210E+00 .78210E+00 .78331E+00 .78331E+00 .78494E+00 .78495E+00 .78973E+00 .7901E+00	.00000E+00 .00000E+00 .000	.00000E+00 .39898E-01 .59425E-01 .60541E-01 .62188E-01 .60341E-01 .70317E-01 .70317E-01 .70317E-01 .70764E-01 .82008E-01 .83432E-01 .83600E-01 .83432E-01 .83600E-01 .83622E-01 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .0000E-29 .30314E-02 .26100E-02 .17389E-02 .13362E-04 .57962E-05 .72308E-06 .16643E-06 .10854E-07 .75375E-09	.00000E+00 13696E+05 1321E+05 13216E+05 13148E+05 131095E+05 13095E+05 12028+05 12248E+05 12261E+05 12261E+05 12661E+05 12670E+05 12670E+05 12670E+05 14678E+05 14678E+05 .00000E+00 11102E-15 11102E-15 .00000E+00 11102E-15 .00000E+00 2204E-15 .00000E+00	.00000E+00 39112E+04 3403E+04 3403E+04 3403E+04 3303E+04 3003E+04 32437E+04 30619E+04 28476E+04 28476E+04 28476E+04 28402E+04 2846E+04 28402E+04 48926E+04 .0000E+00 .99965E+00 .99965E+00 .99969E+00 .99979E+00	.10912E-30 .16187E-01 .49195E+00 .92031E+00 .92944E+00 .92833E+00 .92714E+00 .92714E+00 .9265E+00 .92652E+00 .92626E+00 .92612E+00 .92612E+00 .42278E+00 .42278E+00 .46283E-01 .10912E-30	.11958E+01 .12272E+01 .12273E+01 .12263E+01 .12259E+01 .12259E+01 .12261E+01 .12271E+01 .12271E+01 .12290E+01 .12290E+01 .12312E+01 .12312E+01 .12312E+01 .1233E+01 .12138E+01 .12138E+01 .11958E+01	.00000E+00 .87865E+03 .87882E+03 .87918E+03 .87918E+03 .87970E+03 .87970E+03 .87976E+03 .87984E+03 .87984E+03 .87985E+03 .87987E+03 .87987E+03 .87988E+03 .87988E+03 .87988E+03 .87988E+03 .87988E+03 .87988E+03 .00000E+00 .00000E+00 .00000E+00
AU I I	.10000E-01	.20790±+00	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MOLE FRACTION	NS IN THE C)IL PHASE <<	:99973E+00			
ELEM. INDEX A 1 1 All 1 5 A21 1 5 A31 1 5 AC1 1 5 AD1 1 5 AE1 1 5 AF1 1 5 AG1 1 5 AG1 1 5 AG1 1 5 AH1 1 1 AI1 1 1	Xwat .10943E-03 .34457E-05 .53575E-07 .79854E-09 .23750E-11 .23804E-11 .23904E-11 .23904E-11 .41236E-13 .76138E-15	2 02 .20997E-05 .21019E-05 .21045E-05 .21073E-05 .21219E-05 .21232E-05 .21246E-05 .21259E-05 .21246E-05 .2144E-05 .21435E-05	3 N2 .20997E-05 .79086E-05 .79187E-05 .79290E-05 .79841E-05 .79891E-05 .79990E-05 .80039E-05 .21414E-05 .21414E-05	4 o-xylene 15399E-27 .89461E+00 .90921E+00 .93947E+00 .99952E+00 .99991E+00 .99996E+00 .99996E+00 .60500E-01 .38993E-02	5 toluene .34750E-28 .10538E+00 .90782E-01 .60523E-01 .46764E-03 .20298E-03 .78376E-04 .25353E-04 .58388E-05 .38103E-06 .26477E-07	** SUMmolef .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00 .0000E+00				
AJ 1 1 @@@@@@@@@@@@	.10943E-03	.20998E-05 @@@@@@@@@@@@@@	.20998E-05 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	.⊥5399E-27 a@@@@@@@@@@@@	.34751E-28 aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	.UUUU0E+00	000000000000000000000000000000000000000	000000000000000000000000000000000000000		@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@

Figure 10.6.7. Portion of output file for part 4 of problem 6 (air flooding).

Figure 10.6.8. o-xylene and toluene concentrations in the NAPL phase after 1740 s (29 min) of air flooding.

Figure 10.6.9. o-xylene and toluene concentrations in the gas phase and NAPL saturation in the uppermost element as a function of time during the air flooding.

10.7 Problem No. 7 (*r2dl*) - NAPL Spill in the Unsaturated Zone

This simulation demonstrates the application of TMVOC to a flow problem with realistic features as would be encountered in actual field situations. We consider a multicomponent NAPL spill in the unsaturated zone that is followed by redistribution of the NAPL plume within the unsaturated zone and along the water table. Subsequent remediation operations involve VOC recovery from the unsaturated zone by soil vapor extraction close to the spill area and NAPL extraction by pumping from the saturated zone. We include a discussion of the approach for preparing initial and boundary conditions, including atmospheric conditions at the land surface, recharge across the vadose zone due to infiltration at the land surface, and natural flow in the unconfined aquifer.

We consider a two-dimensional vertical section of 1 m thickness that is oriented parallel to the direction of flow in the aquifer. The section is 100 m long and extends from the land surface to a depth of 15 m (Fig. 10.7.1). Depth to water table is 5 m on the left side of the section and 5.5 m

Figure 10.7.1. Conceptual model of 2-D vertical section problem for simulating a multicomponent NAPL spill in the unsaturated zone. Rock domain assignments and boundary conditions are shown together with the position of the spill point, a SVE well, and a downstream extraction well.

on the right side, resulting in flow from left to right in the aquifer with a pore velocity of 18.9 m/yr. A 2-D Cartesian grid is used, consisting of 40 columns and 17 layers for a total of 680 elements. The MESHMAKER data for generating the computational grid and a grid diagram are shown in Figs. 10.7.2 and 10.7.3, respectively. Vertical grid spacing is 0.5 m in the unsaturated zone and in the upper part of the unconfined aquifer. Horizontal grid spacing is 1 m in the region affected by the NAPL spill and the subsequent soil vapor extraction, and gradually increases to 10 m near the left and right boundaries.

MESHM2 XYZ	AKER1	*2	*	3*-	4	*	-5	*б	*	7	*8
NX	1	0.001									
NX	2	10.0									
NX	2	5.0									
NX	4	2.0									
NX	16	1.0									
NX	10	2.0									
NX	1	3.0									
NX	1	5.0									
NX	1	8.0									
NX	1	10.0									
NX	1	0.001									
NY	1	1.0									
NZ	1	0.001									
NZ	12	0.5									
NZ	1	1.0									
NZ	2	2.0									
NZ	1	4.0									
ENDFI-	1	*2	*	3*-	4	*	-5	*б	*	7	*8

Figure 10.7.2. MESHMAKER input data for 2-D vertical section grid.

The problem is run in four segments, (1) generation of steady flow prior to introduction of NAPL, (2) NAPL spill in the unsaturated zone, (3) redistribution of NAPL, and (4) extraction simultaneously in the saturated and unsaturated zones. The preparation of input data for the steady state equilibration run of the 2-D grid consisted of the following steps:

- generation of the 2-D grid using the MESHMAKER facility for Cartesian grids available within TMVOC. Small changes were made in subroutine GXYZ of the MESHMAKER module meshm.f to obtain the domain assignments as shown in Fig. 10.7.1.
- generation of left side boundary conditions using column 1 of the 2-D grid and running to gravity-capillary equilibrium. For this, atmospheric conditions were assigned to the topmost element, and single-phase water conditions with an appropriate pressure were assigned to the first element in the saturated zone in order to fix the water table elevation. The pressure-controlling grid blocks were made inactive for this run.

Figure 10.7.3. Grid diagram for 2-D vertical section model. Note the large vertical exaggeration. The lines shown are connections between nodal points. The water table is near elevation 0.0.

• generation of right side boundary conditions using column 40 of the 2-D grid, following the same procedure as described for the left boundary.

Fig. 10.7.4 shows the input file *r2dl1* used for generating the "natural" state prior to the contamination event. Although soil properties are homogeneous throughout, different portions of the flow domain are assigned to different material domains (Fig. 10.7.1). This was done to facilitate generation of initial conditions for representing steady flow prior to the NAPL spill. Typical parameters were used for porosity (30 %) and permeability ($4x10^{-12} m^2 \approx 4$ darcy horizontally, $1x10^{-12} m^2 \approx 1$ darcy vertically). The capillary pressure functions follow the Parker et al. (1987) model, and relative permeability curves are given by a modified version of the Stone I model (Stone, 1970).

File *r2dl1* includes the INCON data generated for the left (A...1) and right (A..40) boundary columns, and also includes INDOM data for domains SAND1 (unsaturated zone), SAND2 (saturated zone), and ATMO5 (atmosphere). The left and right columns of the grid were made inactive, to maintain constant boundary conditions. The top row of grid blocks belongs to domain ATMO5 and also was made inactive, maintaining constant atmospheric conditions there. The SAND1 and SAND2 INDOM-data simply provide convenient starting values for the run. GENER-data specify a net infiltration of 10 cm/year of water (COM1) across the top of the model (second row of grid blocks). The rates were obtained by converting the 10 cm/yr volumetric rate into a mass rate, using $\rho_w \approx 998.32 \text{ kg/m}^3$ at T = 20 °C and ambient pressure, and taking into

account the footprint areas of the grid blocks. No specification of injection enthalpy is needed because the run is made in isothermal mode (NEQ = NK).

All runs prior to the NAPL spill are performed with NK= 2 specified in data block MULTI, for a flow system with only two fluid components (water and air). No parameters for calculating chemical and transport properties of hydrocarbons are needed for NK = 2, so data block CHEMP consists of just a single record with NHC = 0. We include multicomponent diffusion by specifying NB = 8 in MULTI. Tortuosities in all domains are set to zero, which means that the Millington-Quirk model (Eq. D.5) will be used. Data block DIFFU includes only two records, the first giving diffusivities for water, the second for air.

The *r2dl1* run terminates automatically when steady-state criteria are satisfied. A portion of the printed output is shown in Fig. 10.7.5. The numerically most difficult aspect of this problem is that, because of different water table elevations at the left and right boundaries, some grid blocks in grid layer C are very close to the phase boundary. In our simulation, grid blocks AC1 2 through AC121 remain in single-phase liquid conditions, while grid blocks AC122 through AC139 end up in two-phase conditions, with water saturations declining monotonically from $S_w = .99946$ in AC122 to .66982 in AC139.

The next run segment (*r2dl2*) simulates a NAPL spill, which requires several modifications in the input file (Fig. 10.7.6). Data for six VOCs are introduced through data block CHEMP. In MULTI we now specify NK = 8 components (water, air, and 6 VOCs), and we set NKIN = 2, to be able to initialize the run from the thermodynamic conditions for the two-component water-air system that were obtained in the first run segment. The SAVE file from the first run segment (r2dl1) is used as file INCON, but we first replace the second last line(+++) with a blank line, so that simulation time and time step counter will be reset to zero. In PARAM a maximum simulation time of TIMAX = 31.5576e6 s = 365.25 days = 1 year is specified. Block DIFFU now has 8 records with diffusivities for all fluid components. In block GENER the water sources for infiltration at the land surface are kept, and 6 sources are added for the VOCs that specify different mass rates. VOC injection is made into grid block A3111 (x = 39.5 m, z = 4.25 m). The ordering of these sources is arbitrary. We also include an FOFT-block, to generate time series of parameters in three different grid blocks.

The desired simulation time for the spill problem is reached after 120 time steps. Some of the printed output is shown in Fig. 10.7.7, and Fig. 10.7.8 shows a contour plot of total VOC mass fraction in the aqueous phase at 1 yr. The differences in volatility and solubility of the different

NAPL components give rise to interesting compositional effects. For example, the NAPL phase in the injection grid block A3111 has a much larger concentration of n-pentane than in neighboring grid block A3110, while all other component concentrations are smaller. The total VOC mass fraction dissolved in water is actually slightly larger in the grid blocks that are laterally offset from the source block than in the source block itself. In the vadose zone, the VOCs have spread almost symmetrically around the spill point by gas diffusion, as well as by advection driven by the larger density of NAPL vapors. In the saturated zone a plume of dissolved VOCs is being dragged to the right by the "natural" flow in the aquifer.

The third run segment simulates redistribution of the VOCs, using the SAVE file written at the end of the spill period as INCON. We again replace the second last line of file SAVE with a blank line, to reset time and iteration counters. Minor modifications are required in the input file (Fig. 10.7.9). The specification NKIN = 2 in MULTI is removed, because the run is now initialized with data for NK = 8 components. Some different iteration and time step controls are used in block PARAM, including maximum number of iterations NOITE = 4, and doubling of time step only when convergence is achieved in no more than 3 iterations (parameter MOP(16)). These modifications are not essential, but were made because test calculations showed that permitting more aggressive time step growth and a larger number of Newtonian iterations seldom resulted in successful time steps. Some printed output is shown in Fig. 10.7.10, and Figs. 10.7.11 and 10.7.12 show contour diagrams of, respectively, mass fractions of VOC dissolved in the aqueous phase, and NAPL phase saturation.

Comparing Fig. 10.7.11 with Fig. 10.7.8 at the end of the spill period, it is seen that the VOC plume has increased in volume, and dissolved VOCs have penetrated deeper into the saturated zone. NAPL saturations in the upper part of the unsaturated zone are now slightly below the irreducible value of 0.05, having first been lowered by gravity drainage and subsequently, after $S_0 = 0.05$ has been reached, by volatilization and dissolution. A NAPL lense is floating on the water table (grid layer C). Total VOC inventory during the redistribution period declines from an initial value of 867.24 kg to a final value of 822.06 kg. This reduction occurs primarily through vapor diffusion across the land surface; small amounts of VOCs also leave the flow system by advection across the right boundary.

The final segment of this problem models extraction of VOCs. GENER-data in the input file (Fig. 10.7.13) were modified to include a soil vapor extraction well "SVE 1", which produces on deliverability against a sandface pressure of 0.9×10^5 Pa from grid layers 4 through 8. Another extraction well produces from the saturated zone (grid blocks AD134 and AE134). We also include

FOFT and GOFT-data to generate time series of selected parameters for plotting. At the end of the simulation, 470.48 kg of VOCs, corresponding to 54.3 % of the original inventory, are remaining in the flow system (Fig. 10.7.14). Approximately 99.8 % of this inventory is present as a free NAPL phase, 0.18 % is dissolved in water, and 0.02 % is in the gas phase. The spatial extent of VOC contamination has been much reduced, compare Figs. 10.7.15 and 10.7.11.

Fig. 10.7.16 shows the evolution of NAPL saturations at selected locations, plotted from the FOFT file generated by the extraction simulation. NAPL inventory in the vadose zone is very effectively reduced by the soil vapor extraction, and NAPL phase disappears from grid blocks A3111 (x = 39.5 m, z = 4.25 m) and A8111 (x = 39.5 m, z = 1.75 m). Saturation of the NAPL lense floating on the water table (near z = -0.25 m) is reduced much more slowly. In the vadose zone, dissolved VOC mass fractions in the aqueous phase decrease rapidly at high elevations, and more slowly near the water table (Fig. 10.7.17). Dissolved VOC concentrations at and below the water table show only very weak reductions.

*r2dl1	*	get steady	state for	2D-secti	on of sat	unsat. s	ystem	with	recharge
RUCKS-	1- 2	2650	200	4-	4 00 12) — — — — " -)	/- 2 1	1000
SANDI	د م	2050.	. 300	4.00-12	4.08-12	1.06-12	5	2.1	1000.
6	.e-0	200	2.05	010	3 0				
0		.200	1 04	.010	11				
	С	0.000	1.04	10.	$\downarrow \downarrow$.	1 0 0 1 1)	2 1	1000
SANDZ	د د	2050.	.300	4.00-12	4.00-12	1.06-12	2	3.1	1000.
0	.e-8	0.	2.85	0.0	2 0				
6		.200	.05	.010	3.0				
8	2	0.000	1.84	10.	1 0 10	1 0 10	`	2 1	F0000
SAND3	3	2650.	.300	4.0e-12	4.0e-12	1.0e-12	2	3.1	50000.
0	.e-8	0.	2.85	0.0					
6		.200	.05	.010	3.0				
8		0.000	1.84	10.	11.				
SAND4	3	2650.	.300	4.0e-12	4.0e-12	1.0e-12	2	3.1	50000.
0	.e-8	0.	2.85	0.0					
6		.200	.05	.010	3.0				
8		0.000	1.84	10.	11.				
ATMO5	3	2650.	.999	4.0E-09	4.0E-09	1.0E-09)	3.1	50000.
0	.e-8	0.	2.85	0.0					
6		.600	.01	.000	3.				
9									
SAND6	3	2650.	.300	4.0e-12	4.0e-12	1.0e-12	2	3.1	50000.
0	.e-8	0.	2.85	0.0					
6		.200	.05	.010	3.0				
8		0.000	1.84	10.	11.				
SAND7	З	2650	300	4 0 e - 12	4 0 e - 12	1 0e-12	2	3 1	50000
0	e-8	0	2 85	0 0	1.00 12	1.00 11	•	3.1	
6		200	05	010	3 0				
8		0 000	1 84	10	11				
0		0.000	1.01	10.					
CHEMP-	1-	*2	*3	*4-	*5-	*6	5*-	7-	8
0									
NCGAS-	1-	*2	*3	*4-	*5-	*6	5*-	7-	8
1									
AIR									
SELEC-	1-	*2	*3	*4-	*5-	*6	5*-	7-	8
0	1								
MULTI-	1-	*2	*3	*4-	*5-	*	5*-	7-	*8
2	2	3 8	-		-				-
START-	1_	*2	*3	*4_	*5-	*6	5*.	7-	*8
*_	1	MOP: 123456	789*123456'	789*1234	*5.	*F	, 5*.	, 7-	*8
DARAM-	1_	*?	*3	*4-	*5.	*6	, *-	, 7-	*8
2 1	20	1201000200		000000	5	1 0	γ 2	,	0
J 1.	20	2 1526F1/	_1	0000000		9 8060)		
1	0 - 0	J.1JJUE14	- <i>⊥</i> .			9.0000	,		
1	.etu	1 500				1 0005))		1
	. ц-р	I.EUZ				т.000ғ-6)		1.6+4
2		1 010 5		0 0		~~ <i>(</i>	`		
0.01.100	-	1.01065	* >	U.9E-/	* -	∠∪.(J - J.	-	* ^
SOLVR-	<u>1</u> -	*2	*3	*4-	*5-	*() * -	'/-	8
5 ZI	00	8.Ue-1	1.Ue-7						

Figure 10.7.4. Portion of TMVOC input file for part 1 of problem 7 (obtaining steady-state conditions prior to NAPL spill).

RPCAP----1----*----2----*----3----*----4----*----5----*----6----*-----8 .100 .05 .001 3.0 6 10. 0.000 8 1.84 11. DIFFU----1----*-----3----*----4----*----5----*----6----*-----8 2.e-5 6.e-10 6.e-10 2.e-5 6.e-10 6.e-10 INDOM----1----*----2----*----3----*----4----*---5----*---6----*----7----*8 SAND1 4 0.1010204333370E+06 0.2000123526968E+00 0.20000000000E+02 SAND2 2 0.1156839936204E+06 0.939999999818E-05 0.200000000000E+02 ATMO5 1 0.101000000000E+06 0.99000000000E+00 0.20000000000E+02 INCON----1----*----2----*----3----*----4----*---5----*----6----*----7----*8 A21 1 .3000000E+00 4 .1010029303117E+06 .2000069202348E+00 .20000000000E+02 .3000000E+00 4 A31 1 .1010087651609E+06 .2000091681103E+00 .20000000000E+023000000E+00 4 AB1 1 .1010554561999E+06 .6340472776461E+00 .200000000000E+02 AC1 1 .3000000E+00 2 .1034470067655E+06 .90000000281E-05 .20000000000E+02 AD1 1 .3000000E+00 2 .1083417960312E+06 .899999999995E-05 .20000000000E+023000000E+00 4 A2140 .1010029303117E+06 .2000073764287E+00 .200000000000E+023000000E+00 4 AB140 .1010554561999E+06 .3039224987121E+00 .20000000000E+02 AC140 .3000000E+00 4 .1010612941108E+06 .6332639228686E+00 .200000000000E+02 AD140 .3000000E+00 2 .1034470075043E+06 .900000028229E-05 .20000000000E+02 GENER----1----*----2----*----3----*----4----*----5----*----6----*-----8 A21 2RAI02 COM1 3.1650E-05 A21 3RAI03 COM1 3.1650E-05 A21 4RAI04 COM1 1.5825E-05 . . . COM1 6.3300E-06 A2135RAI35 COM1 9.4950E-06 A2136RAI36 A2137RAI37 COM1 1.5825E-05 A2138RAI38 COM1 2.5320E-05 A2139RAI39 COM1 3.1650E-05 ENDCY----1----*----2----*----4----*---5----*---6----*----8

Figure 10.7.4. Portion of TMVOC input file for part 1 of problem 7 (continued).

ITERATING AT [ITERATING AT] \$\$\$ 2> 4 \$\$\$ GAS \$\$\$ 2> 4 \$\$\$ GAS \$\$\$ 2> 4 \$\$\$ GAS	1, 1] DELTEX = .100000E+01 1, 2] DELTEX = .100000E+01 EVOLVES AT ELEMENT *AC1 3* \$\$\$ P? EVOLVES AT ELEMENT *AC1 8* \$\$\$ P? EVOLVES AT ELEMENT *AC1 9* \$\$\$ P?	$\begin{array}{rcl} \text{MAX. RES.} &=& .148154\text{E}-02 & \text{AT ELEMENT AB1 2 EQUATION} \\ \text{MAX. RES.} &=& .668547\text{E}-03 & \text{AT ELEMENT AC122 EQUATION} \\ \text{X} &=& .93282\text{E}+05 & \text{PG} &=& .97653\text{E}+05 \\ \text{X} &=& .94033\text{E}+05 & \text{PG} &=& .95009\text{E}+05 \\ \text{X} &=& .94033\text{E}+05 & \text{PG} &=& .95030\text{E}+05 \\ \end{array}$	1 2	
\$\$\$ 2> 4 \$\$\$ GAS \$\$\$ 2> 4 \$\$\$ GAS ITERATING AT [\$\$\$ 2> 4 \$\$\$ GAS \$\$\$ 2> 4 \$\$\$ GAS	EVOLVES AT ELEMENT *AC138* \$\$\$ P2 EVOLVES AT ELEMENT *AC139* \$\$\$ P2 1, 3] DELTEX = .100000E+01 EVOLVES AT ELEMENT *AC1 4* \$\$\$ P2 EVOLVES AT ELEMENT *AC1 5* \$\$\$ P3	X = .93289E+05 PG = .97629E+05 X = .93895E+05 PG = .95580E+05 MAX. RES. = .100043E-03 AT ELEMENT AC1 3 EQUATION X = .93170E+05 PG = .98049E+05 X = .93108E+05 PG = .98266E+05	2	
ITERATING AT [AC1 5(1, 5) ST = ITERATING AT [S\$\$ 2> 4 \$\$\$ GAS	1, 4] DELTEX = .100000E+01 .100000E+01 DT = .100000E+01 DX1= - 2, 1] DELTEX = .100000E+01 EVOLVES AT ELEMENT *ACI 2* SSS P:	MAX. RES. = .117789E-03 AT ELEMENT AC1 5 EQUATION 214409E+05 DX2= .999973E+00 T = 20.000 P = 94243. MAX. RES. = .541521E-03 AT ELEMENT AC122 EQUATION X = .93134E+05 PG = .11984E+06	2 S = 2	.179116E-04
ITERATING AT [2, 2] DELTEX = .100000E+01	MAX. RES. = .610349E-03 AT ELEMENT AC1 2 EQUATION	2	.968211E-04
ITERATING AT [2, 3] DELTEX = .100000E+01	MAX. RES. = .267091E-05 AT ELEMENT AC1 2 EQUATION	2	
AC1 2(2, 4) ST =	.200000E+01 DT = .100000E+01 DX1=	.466769E+04 DX2= .999891E+00 T = 20.000 P = 99000.	S =	
ITERATING AT [3, 1] DELTEX = .200000E+01	MAX. RES. = .819678E-03 AT ELEMENT AB139 EQUATION	1	.799696E+00
ITERATING AT [3, 2] DELTEX = .200000E+01	MAX. RES. = .513404E-05 AT ELEMENT AB139 EQUATION	1	
AB139(3, 3) ST =	.400000E+01 DT = .200000E+01 DX1=	.425121E+02 DX2= .192203E-03 T = 20.000 P = 100493.	S =	
ITERATING AT [4, 1] DELTEX = .400000E+01	MAX. RES. = .192939E-02 AT ELEMENT AB1 2 EQUATION	1	.000000E+00
ITERATING AT [4, 2] DELTEX = .400000E+01	MAX. RES. = .186150E-05 AT ELEMENT AB1 2 EQUATION	1	
AE122(4, 3) ST =	.800000E+01 DT = .400000E+01 DX1=	.263861E+04 DX2= .265513E-13 T = 20.000 P = 109200.	S =	
ITERATING AT [5, 1] DELTEX = .800000E+01	MAX. RES. = .389779E-02 AT ELEMENT AB1 2 EQUATION	1	.000000E+00
ITERATING AT [5, 2] DELTEX = .800000E+01	MAX. RES. = .368643E-05 AT ELEMENT AB139 EQUATION	1	
AD127(5. 3) ST =	.160000E+02 DT = .800000E+01 DX1=	917369E+03 DX2231469E-09 T = .20.000 P = 104799	S =	
			~	

r2dll ... get steady state for 2D-section of sat.-unsat. system with recharge

@@@@@@	OUI 000000	'PUT DATA AF' @@@@@@@@@@@@@	TER (106, @@@@@@@@@@@@@	1)-2-TIME ST	EPS aaaaaaaaaaaaaaa	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	86666666666666	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	THE TI	IME IS .79 000000000000	683E+07 DAYS @@@@@@@@@@@@@
TOTAL .688	TIME 46E+12	КСҮС 106	ITER ITERC 1 505	KON 2				MAX. R .37615	ES. NER E-06 291	KER 2	DELTEX .13744E+12
DX .0000	1M 0E+00	DX2M .00000E+00	DX3M .00000E+00	DX4M	DX5M	DX6M	DX7M	DX8M	DX9M	DX10M	DX11M
@@@@@@	@@@@@@@	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	200000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	800000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	30000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
ELEM.	INDEX	С Р (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
A21 2 A31 2 A41 2 A51 2 A71 2 A81 3 A2139 A3139 A4139 A4139 A3139 A3139 A3139 A3139 A3139 A3139 A3139 A3139 A3139 A3139 A3139	$\begin{array}{c}1\\1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\112\\13\\115\\16\\7\\5995\\5990\\55990\\601\end{array}$	(144) .10100E+06 .10102E+06 .10102E+06 .10103E+06 .10103E+06 .10104E+06 .10105E+06 .10105E+06 .10323E+06 .10323E+06 .13015E+06 .14973E+06 .14973E+06 .10100E+06 .10102E+06 .10102E+06 .10104E+06 .10104E+06 .10104E+06 .10104E+06 .10105E+06	20000E+02 20000E+02	$\begin{array}{c} .74568\pm+00\\ .74592\pm+00\\ .74615\pm+00\\ .74637\pm+00\\ .74658\pm+00\\ .74658\pm+00\\ .74658\pm+00\\ .74657\pm+00\\ .68675\pm+00\\ .39251\pm+00\\ .39251\pm+00\\ .00000\pm+00\\ .00000\pm+00\\ .00000\pm+00\\ .00000\pm+00\\ .00000\pm+00\\ .00000\pm+00\\ .00000\pm+00\\ .00000\pm+00\\ .74541\pm+00\\ .74568\pm+00\\ .74568\pm+00\\ .74637\pm+00\\ .74637\pm+00\\ .74660\pm+00\\ .74684\pm+00\\ .74576\pm+00\\ .74576\pm+00\\ .74576\pm+00\\ .73677\pm+00\\ \end{array}$	$\begin{array}{c} .25432E+00\\ .25438E+00\\ .25385E+00\\ .25385E+00\\ .25335E+00\\ .25335E+00\\ .26153E+00\\ .31325E+00\\ .31325E+00\\ .10000E+01\\ .10000E+01\\ .10000E+01\\ .10000E+01\\ .10000E+01\\ .10000E+01\\ .10000E+01\\ .25459E+00\\ .25432E+00\\ .25363E+00\\ .25363E+00\\ .25340E+00\\ .25320E+00\\ .25316E+00\\ .25316E+00\\ .25316E+00\\ .25320E+00\\ .25320E+00\\ .25316E+00\\ .25320E+00\\ .25420E+00\\ .25420E+00\\ .25420E+00\\ .25420E+00\\ .25420E+00\\$.00000E+00 .0000E+00 .0000E+00 .0000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	-92725E+04 -92831E+04 -92937E+04 -93041E+04 -93135E+04 -93135E+04 -93170E+04 -89528E+04 -71154E+04 -27079E+04 -27079E+04 -00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 -92599E+04 -92725E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04 -93254E+04	48570E+04 48626E+04 48681E+04 48735E+04 48735E+04 48803E+04 48803E+04 48803E+04 48802E+04 46896E+04 37271E+04 14184E+04 0000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .48504E+04 48570E+04 48588E+04 46515E+04	(IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	(19) m 9) .11900E+01 .11902E+01 .11902E+01 .11904E+01 .11904E+01 .11904E+01 .11905E+01 .11905E+01 .11905E+01 .35955E+00 .30059E+00 .30059E+00 .11900E+01 .11902E+01 .11902E+01 .11904E+01 .11904E+01 .11905E+01 .11905E+01	.00000E+00 .00000E+00
AB139 AC139 AD139 AE139 AF139 AG139 AH139	602 603 604 605 606 607 608	.10106E+06 .10106E+06 .10373E+06 .11107E+06 .12575E+06 .14532E+06 .17469E+06	.20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02 .20000E+02	.67421E+00 .32597E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	.32579E+00 .67403E+00 .10000E+01 .10000E+01 .10000E+01 .10000E+01	.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	67625E+04 22195E+04 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	35422E+04 11626E+04 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00	.11907E+01 .11907E+01 .11105E+01 .81118E+00 .50015E+00 .37997E+00 .30852E+00	.00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00 .00000E+00

Figure 10.7.5. Portion of printout for part 1 of problem 7.

r2dl2 ... multicomponent NAPL spill in unsaturated zone ROCKS----1----*----2----*----4----*---5----*---6----*----7----*----8 3 2650. 4.0e-12 SAND1 .300 4.0e-12 1.0e-12 3.1 1000. 2.85 0.0 0.e-8 0. .200 .05 б .010 3.0 8 0.000 1.84 10. 11. CHEMP----1----*----2----*----3----*----4----*----5----*----6----*----8 6 n-DECANE 0.249 617.700 21.200 0.489 0.00 -8.56523 1.97756 -5.81971 -0.29982 447.300 142.286 -7.913E+0 9.609E-1 -5.288E-4 1.131E-7 293.000 1.000E-5 730.000 293.000 1.600 0.5900 293.000 603.000 3.799e-7 0.001 7.000 BENZENE 48.2 0.271 0.212 0.0 562.2 353.2 -6.98273 1.33213 -2.62863 -3.33399 MULTI----1----*----2----*----4----*---5----*---6----*----7----*----8 8 8 3 8 2 START----1----*----2----*----3----*----4----*----5----*----6----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*----2----*----3----*----5----*----6----*----8 999100000000000 4 0000000 3 999 1.8 31.5576e6 9.8060 -1. 1.e+1 1.E02 1.E-5 1.000E-8 1.e4 2 0.9E-7 20.0 1.010e5 DIFFU----1----*-----3----*----4----*----5----*----6----*----8 2.e-5 6.e-10 6.e-10 6.e-10 6.e-10 2.e-5 6.e-10 8.0e-6 6.e-10 . . . GENER----1----*----2----*----3----*----4----*---5----*----6----*----7----*----8 COM1 3.1650E-05 A21 2RAI02 . . . A2139RAI39 COM1 3.1650E-05 7.50E-06 A3111HC 1 COM8 3.00E-07 A3111HC 2 COM4 A3111HC 3 COM5 1.80E-06 A3111HC 4 COM6 3.00E-06 A3111HC 5 COM7 3.00E-06 1.44E-05 A3111HC 6 COM3 FOFT ----1----*----2----*----3----*----5----*----6----*----8 A3111 AC111 AC115 ENDCY---1---*---2---*---3----*---4----*---5----*---6---*---7----*---8

Figure 10.7.6. Portion of TMVOC input file for part 2 (NAPL spill) of problem 7.

ITERATING	AT [1, 1] DELTEX = .100000E+02	MAX. RES. = .207897E-04 AT ELEMENT A3111 EQUATION 8	
A3111(1, 2)	ST =	.100000E+02 DT = .100000E+02 DX1=	.143750E+02 DX2= .192620E-03 T = 20.000 P = 101024. S = .7	45406E+00
ITERATING	AT [2, 1] DELTEX = .200000E+02	MAX. RES. = .625337E-04 AT ELEMENT A3111 EQUATION 2	
A3111(2, 2)	ST =	.300000E+02 DT = .200000E+02 DX1=	.704983E+01 DX2= .384571E-03 T = 20.000 P = 101031. S = .7	/45404E+00
ITERATING	AT [3, 1] DELTEX = .400000E+02	MAX. RES. = .164925E-03 AT ELEMENT A3111 EQUATION 2	
ITERATING	AT [3, 2] DELTEX = .400000E+02	MAX. RES. = .165668E-04 AT ELEMENT A3111 EQUATION 2	
A3111(3, 3)	ST =	.700000E+02 DT = .400000E+02 DX1=	.165322E+01 DX2= .744823E+00 T = 20.000 P = 101032. S = .7	45400E+00

... $*r2dl2^{\star}$... multicomponent NAPL spill in unsaturated zone

@@@@@@@	OU1 0000000	PUT DATA AF	TER (120, 9	5)-2-TIME ST @@@@@@@@@@@@	EPS aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	ଉଉଉଉଉଉଉଉଉଉଉ	<u>ଉଉଉଉଉଉଉଉ</u> ଉଉଉ ଅନ୍ତର୍ଭ	0@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	THE T	IME IS .36 @@@@@@@@@@@@	525E+03 DAYS
TOTAL .315	TIME 58E+08	КСҮС 3 120	ITER ITERC 5 767	KON 2				MAX. RI .142141	ES. NER E-10 267	KER 1	DELTEX .50682E+05
DX .7954 @@@@@@	1M 5E+01 @@@@@@@@	DX2M .15241E-03 @@@@@@@@@@@@@@@	DX3M .40619E-05 @@@@@@@@@@@@@@@@	DX4M .23085E-04 eeeeeeeeeeee	DX5M .19861E-04 @@@@@@@@@@@@@	DX6M .62874E-05 @@@@@@@@@@@@@@	DX7M .27470E-02 @@@@@@@@@@@@@	DX8M .17373E-02 @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	DX9M 2 .00000E+00 2@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	DX10M	DX11M
ELEM.	INDEX	K P (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
A21 2	1	.10100E+06	.20000E+02	.74568E+00	.25432E+00	.00000E+00	92725E+04	48570E+04	.51371E-09	.11900E+01	.72423E+03
A2111 A3111 A4111	145 146 147	.10100E+06 .10101E+06 .10102E+06	.20000E+02 .20000E+02 .20000E+02	.73797E+00 .60383E+00 .61279E+00	.26203E+00 .25016E+00 .24842E+00	.00000E+00 .14601E+00 .13879E+00	89313E+04 72367E+04 73628E+04	46783E+04 27292E+04 28158E+04	.25290E-04 .86662E-04 .87063E-04	.12905E+01 .15563E+01 .15531E+01	.73491E+03 .73290E+03 .73331E+03
AA111 AB111 AC111 AD111	153 154 155 156	.10106E+06 .10107E+06 .10277E+06 .10656E+06	.20000E+02 .20000E+02 .20000E+02 .20000E+02	.61564E+00 .44736E+00 .44570E-02 .00000E+00	.26062E+00 .39007E+00 .69022E+00 .10000E+01	.12374E+00 .16257E+00 .30532E+00 .00000E+00	71262E+04 42018E+04 10840E+04 .00000E+00	28442E+04 16675E+04 78421E+02 .00000E+00	.89209E-04 .89309E-04 .89386E-04 .41598E-04	.15364E+01 .15356E+01 .15545E+01 .10511E+01	.73549E+03 .73560E+03 .73576E+03 .73678E+03
A2112 A3112	161 162	.10100E+06 .10101E+06	.20000E+02 .20000E+02	.73968E+00 .65846E+00	.26032E+00 .25459E+00	.00000E+00 .86946E-01	90051E+04 77395E+04	47170E+04 33300E+04	.29232E-04 .95715E-04	.12698E+01 .14493E+01	.74558E+03 .74570E+03
AA112 AB112 AC112	169 170 171	.10106E+06 .10107E+06 .10263E+06	.20000E+02 .20000E+02 .20000E+02	.62772E+00 .46188E+00 .00000E+00	.26462E+00 .39155E+00 .68880E+00	.10767E+00 .14656E+00 .31120E+00	71703E+04 42622E+04 10100E+04	29695E+04 17410E+04 .00000E+00	.91324E-04 .91013E-04 .90325E-04	.15097E+01 .15142E+01 .00000E+00	.73872E+03 .73819E+03 .73724E+03
				>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MOLE FRACTIO	NS IN THE G	AS PHASE <<				
ELEM. A3110 A3111	INDEX 7 7	Xwat .23131E-01 .23131E-01	2 AIR .83655E+00 .77832E+00	3 n-DECANE .56853E-03 .48487E-03	4 BENZENE .13853E-02 .13571E-02	5 Toluene .23035E-02 .20582E-02	6 p-XYLENE .10398E-02 .89598E-03	7 n-propyl .35861E-03 .30681E-03	8 n-pentan .13466E+00 .19345E+00	** SUMmolef .00000E+00 .00000E+00	** Z-factor .99749E+00 .99625E+00
				>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	MOLE FRACTIO	NS IN THE AQ	UEOUS PHASE	<<<<<<			
ELEM. A3110 A3111	INDEX 7 7	Xwat .99997E+00 .99997E+00	2 AIR .11627E-04 .10818E-04	3 n-DECANE .16587E-06 .14146E-06	4 BENZENE .58342E-05 .57154E-05	5 Toluene .80861E-05 .72250E-05	6 p-XYLENE .35796E-05 .30845E-05	7 n-propyl .96414E-06 .82487E-06	8 n-pentan .24031E-07 .34523E-07	** SUMmolef .00000E+00 11102E-15	
ET EM	TNDEV	Yunt	2 3 7 9	2 m DECANE	4 DENZENE	NS IN IHE U	C N VU ENE	7 n nyonyi	9 n nonton	** CIIMmolof	
A3110 A3111	7 7 7	.25315E-03 .25315E-03	.84503E-05 .78622E-05	.43662E+00 .37237E+00	.14195E-01 .13906E-01	.80061E-01 .71535E-01	.12053E+00 .10385E+00	.10731E+00 .91805E-01	.24104E+00 .34627E+00	.00000E+00 .00000E+00	
* * * * * * * * * * * *	/ **** ****	/OLUME- AND [KCYC,ITER]	MASS-BALANCE = [120, 5]	S ********* ****	*******	*****	************ THE TIME	************ IS .31558	**************************************	************ , OR .3652	25E+03 DAYS
PHASES	5		GAS	AQU	EOUS	NAPL	TOT	'AL			
VOLUME MASS ENERGY	s ((m**3) (moles) (J) -	.10894235E+0 .45183030E+0 .16661485E+0	3 .33989 4 .18834 7 .28453	396E+03 877E+08 031E+11	.11636847E+0 .77372382E+0 .33078950E+0	1 .45000 4 .18847 8 .84134	000E+03 133E+08 444E+11			
			COMPONENTS I	MOLES IN PLA	CE - BY PHAS	ES			COMPONENTS II	N PLACE - OV	ÆRALL

COMPONENTS	GAS PHASE	AQUEOUS PHASE	NAPL	ADSORBED	TOTAL MOLES	TOTAL MASS (kg)			
WAIER	.10449623E+03	.18834682E+08	.1958/10/E+01		.18834/88E+U8	.33932/54E+06			
AIR	.43468928E+04	.18673494E+03	.63911505E-01		.45336917E+04	.13129571E+03			
n-DECANE	.35718577E+00	.95357395E-01	.31860295E+04	.0000000E+00	.31864820E+04	.45339178E+03			
BENZENE	.64114614E+00	.26427317E+01	.10752301E+03	.0000000E+00	.11080688E+03	.86555689E+01			
Toluene	.11595416E+01	.38734059E+01	.58899711E+03	.0000000E+00	.59403006E+03	.54734523E+02			
p-XYLENE	.57821708E+00	.18226907E+01	.87949930E+03	.0000000E+00	.88190021E+03	.93629582E+02			
n-propylbenzene	.20989387E+00	.51487214E+00	.78282703E+03	.0000000E+00	.78355180E+03	.94179008E+02			
n-pentane	.63967944E+02	.13219964E-01	.21903397E+04	.0000000E+00	.22543209E+04	.16265151E+03			
total VOCs	.66913928E+02	.89622778E+01	.77352156E+04	.0000000E+00	.78110918E+04	.86724197E+03			

Figure 10.7.7. Portion of printout for part 2 (NAPL spill) of problem 7.

Figure 10.7.8. Contour plot of total VOC mass fraction in the aqueous phase at the end of the NAPL spill period.

r2dl3 ... redistribution of NAPL for 1 year following spill ROCKS----1----*----2----*----3----*----4----*----5----*----6----*----8 4.0e-12 4.0e-12 3 1.0e-12 2650. .300 3.1 SAND1 1000. 0. 2.85 0.0 0.e-8 .05 .200 б .010 3.0 8 0.000 1.84 10. 11. MULTI----1----*----2----*----3----*----4----*----5----*----6----*----8 8 3 8 8 START----1----*----2----*----3----*----4----*----5----*----6----*----8 ----*---1 MOP: 123456789*123456789*1234 ---*---5----*---6----*----8 PARAM----1----*----2----*----3----*----4----*----5----*----6----*----8 4 3 999 9991000000000000 3 0000000 1.8 31.5576e6 -1. 9.8060 1.e+2 1.E-5 1.E02 1.000E-8 1.e4 4 .0000000000000E+00 .00000000000E+00 .00000000000E+00 .2000123526968E+00 .200000000000E+02 SOLVR----1----*----2----*----3----*----4----*----5----*----6----*----8 8.0e-1 1.0e-7 5 Z1 O0 RPCAP----1----*----2----*----3----*----4----*----5----*----6----*----8 .05 .001 3.0 б .100 0.000 1.84 8 10. 11. DIFFU---1---*---2---*---3----*---4---*---5----*---6---*----8 6.e-10 6.e-10 2.e-5 2.e-5 6.e-10 6.e-10 8.0e-6 6.e-10 6.e-10 6.e-10 6.e-10 7.7e-6 6.e-10 6.e-10 8.8e-6 6.e-10 6.e-10 7.1e-6 8.0e-6 6.e-10 6.e-10 6.e-10 6.e-10 7.7e-6 TIMES----1----*----2----*----3----*----4----*----5----*----6----*----8 1 1.5768E7 GENER----1----*----2----*----3----*----4----*----5----*----6----*----8 A21 2RAI02 COM1 3.1650E-05 300.E3 . . . COM1 2.5320E-05 A2138RAI38 300.E3 A2139RAI39 COM1 3.1650E-05 300.E3 FOFT ----1----*----2----*----4----*---5----*---6----*----8 A3111 AC111 AC115 AC120 ENDCY---1---*---2---*---3---*--4---*---5---*---6---*----8

Figure 10.7.9. Portion of TMVOC input file for part 3 (NAPL redistribution) of problem 7.

ITERATING AT [1, 1] DELTEX = .100000E+03 MAX.	RES. = .198675E-03 AT	ELEMENT A3111 EQUATION	8	
A3111(1, 2) ST =	.100000E+03 DT = .100000E+03 DX1=23505	9E+00 DX2= .273703E-04	T = 20.000 P = 101015.	S =	.603859E+00
ITERATING AT [2, 1] DELTEX = .200000E+03 MAX.	RES. = .395836E-03 AT	ELEMENT A3111 EQUATION	8	
A3111(2, 2) ST =	.300000E+03 DT = .200000E+03 DX1=29056	8E-01 DX2= .546485E-04	T = 20.000 P = 101015.	S =	.603914E+00
ITERATING AT [3, 1] DELTEX = .400000E+03 MAX.	RES. = .790640E-03 AT	ELEMENT A3111 EQUATION	8	
A3111(3, 2) ST =	.700000E+03 DT = .400000E+03 DX1=56234	7E-02 DX2= .108943E-03	T = 20.000 P = 101015.	S =	.604023E+00
ITERATING AT [4, 1] DELTEX = .800000E+03 MAX.	RES. = .157779E-02 AT	ELEMENT A3111 EQUATION	8	
A3111(4, 2) ST =	.150000E+04 DT = .800000E+03 DX1=17226	0E-02 DX2= .216485E-03	T = 20.000 P = 101015.	S =	.604239E+00
ITERATING AT [5, 1] DELTEX = .160000E+04 MAX.	RES. = .314181E-02 AT	ELEMENT A3111 EQUATION	8	
A3111(5, 2) ST =	.310000E+04 DT = .160000E+04 DX1=15344	0E-03 DX2= .427468E-03	T = 20.000 P = 101015.	S =	.604667E+00

 $^{*}\text{r2dl3}^{*}$... redistribution of NAPL for 1 year following spill

@@@@@@	OUT 000000	PUT DATA AB	FTER (248, @@@@@@@@@@@@@@@	3)-2-TIME STI @@@@@@@@@@@@@@	EPS 800000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	THE TI	IME IS .36	525E+03 DAYS @@@@@@@@@@@@@
TOTAL .315	TIME 58E+08	КСҮС 248	ITER ITERC 3 1091	KON 2				MAX. F	RES. NER DE-05 347	KER 1	DELTEX .10179E+07
DX .4278	1M 2E+02	DX2M .39948E-03	DX3M .15494E-04	DX4M .24800E-04	DX5M .37783E-04	DX6M .33869E-04	DX7M .24122E-02	DX8M .11299E-0	DX9M 01 .00000E+00	DX10M	DX11M
@@@@@@	0000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	300000000000000000000000000000000000000	100000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
ELEM.	INDEX	P (Pa)	T (Deg-C)	SG	SW	SO	PCwg (Pa)	PCog (Pa)	XVOCw (mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)
A21 2	1	.10100E+06	.20000E+02	.74568E+00	.25432E+00	.00000E+00	92725E+04 -	.48570E+04	.13164E-08	.11900E+01	.74896E+03
A31 2 A41 2	3	.10102E+06	.20000E+02	.74592E+00 .74615E+00	.25385E+00	.00000E+00	92937E+04 -	.48681E+04	.66042E-08	.11902E+01	.74903E+03
A2111 A3111	145 146	.10100E+06 .10101E+06	.20000E+02 .20000E+02	.74222E+00 .70031E+00	.25778E+00 .25475E+00	.00000E+00 .44945E-01	91164E+04 - 83516E+04 -	.47753E+04	.24731E-04 .80715E-04	.12091E+01 .12522E+01	.76186E+03 .76200E+03
A4111 A5111	147 148	.10102E+06 .10102E+06	.20000E+02 .20000E+02	.69786E+00 .69749E+00	.25458E+00 .25450E+00	.47559E-01 .48011E-01	83142E+04 - 83100E+04 -	.39045E+04	.10064E-03 .10716E-03	.12886E+01 .13212E+01	.76276E+03 .76032E+03
A6111 A7111 A8111	149 150 151	.10103E+06 .10104E+06	.20000E+02 .20000E+02	.69714E+00 .69675E+00	.25439E+00 .25429E+00 25443E+00	.48468E-01 .48964E-01 49469E-01	83066E+04 - 83023E+04 - 82884E+04 -	38927E+04 38862E+04 38755E+04	.10819E-03 .10709E-03	.13503E+01 .13758E+01 13974E+01	.75743E+03 .75467E+03 75223E+03
A9111 AA111	152 153	.10105E+06 .10106E+06	.20000E+02 .20000E+02	.69329E+00 .67278E+00	.25675E+00 .27687E+00	.49962E-01 .50350E-01	81931E+04 - 74894E+04 -	.38299E+04	.10359E-03 .10212E-03	.14149E+01 .14288E+01	.75021E+03 .74861E+03
AB111 AC111	154 155	.10106E+06 .10253E+06	.20000E+02 .20000E+02	.51464E+00 .53526E-02	.43149E+00 .76242E+00	.53876E-01 .23223E+00	42454E+04 - 88108E+03 -	.20423E+04	.10051E-03 .91280E-04	.14440E+01 .15327E+01	.74682E+03 .73810E+03
AD111 AE111 AE111	156 157 158	.10654E+06 .11388E+06 12856E+06	.20000E+02 .20000E+02 20000E+02	.00000E+00 .00000E+00	.10000E+01 .10000E+01 10000E+01	.00000E+00 .00000E+00	.00000E+00 .00000E+00	.00000E+00 .00000E+00) .48985E-04) .10195E-04) 70380E-06	.10967E+01 .62338E+00 43387E+00	.73793E+03 .73677E+03 73588E+03
AG111 AH111	159 160	.14813E+06 .17750E+06	.20000E+02 .20000E+02	.00000E+00 .00000E+00	.10000E+01 .10000E+01	.00000E+00 .00000E+00	.00000E+00 .00000E+00	.00000E+00	.25532E-07 .23592E-09	.36436E+00 .30331E+00	.73528E+03 .73484E+03
A2112 A3112	161 162	.10100E+06 .10101E+06	.20000E+02 .20000E+02	.74227E+00 .69989E+00	.25773E+00 .25439E+00	.00000E+00 .45721E-01	91189E+04 - 83523E+04 -	.47766E+04	.24031E-04 .78707E-04	.12085E+01 .12503E+01	.76157E+03 .76182E+03
A4112 A5112	163 164 165	.10102E+06 .10102E+06	.20000E+02 .20000E+02	.69775E+00 .69761E+00	.25400E+00 .25375E+00 25254E+00	.48248E-01 .48644E-01	83252E+04 - 83283E+04 - 83201E+04 -	39028E+04 39004E+04	.98333E-04 .10513E-03	.12856E+01 .13173E+01	.76271E+03 .76045E+03 .75771E+03
A7112 A7112 A8112	166 167	.10103E+00 .10104E+06 .10104E+06	.20000E+02 .20000E+02 .20000E+02	.69718E+00 .69662E+00	.25339E+00 .25351E+00	.49428E-01 .49865E-01	83291E+04 - 83172E+04 -	38933E+04 38841E+04	.10589E-03 .10447E-03	.13705E+01 .13917E+01	.75507E+03 .75272E+03
A9112 AA112	168 169	.10105E+06 .10106E+06	.20000E+02 .20000E+02	.69393E+00 .67383E+00	.25576E+00 .27550E+00	.50306E-01 .50667E-01	82245E+04 - 75293E+04 -	.38403E+04	.10299E-03 .10172E-03	.14089E+01 .14225E+01	.75077E+03 .74922E+03
ABII2 AC112 AD112	170 171 172	.10241E+06 10649E+06	.20000E+02 .20000E+02 20000E+02	.51829E+00 .00000E+00	.42778E+00 .75602E+00 10000E+01	.53932E-01 .24398E+00	42956E+04 - 81199E+03	.20655E+04 .00000E+00	.10039E-03 .91171E-04 .50554E-04	.143/1E+01 .00000E+00 11111E+01	.74754E+03 .73793E+03 73786E+03
	1.1		. 1000001.02								

Figure 10.7.10. Portion of printout for part 3 (NAPL redistribution) of problem 7.

Figure 10.7.11. Contour plot of total VOC mass fraction in the aqueous phase at the end of the NAPL redistribution period.

Figure 10.7.12. NAPL saturations at the end of the redistribution period.

*r2d14	SVE and	water extra	ction fol:	lowing NAPL	redistribu	ition	* 0
SAND1 3 0.e-8 6 8	2650 0 .20 0.00	300 . 2.85 0 .05 0 1.84	4.0e-12 0.0 .010 10	4.0e-12 2 4.0e-12 0 3.0 . 11.	1.0e-12	3.1	1000.
GENER1- A21 2RAI02 A21 3RAI03	*	2*3	СОМ1 СОМ1	4*5 3.1650E-05 3.1650E-05	*б-	*7-	*8
A2139RAI39 A8113SVE 1 A7113SVE 1 A6113SVE 1 A5113SVE 1		5	COM1 DELV DELV DELV DELV	3.1650E-05 1.00E-11 1.00E-11 1.00E-11 1.00E-11		0.5 0.5 0.5 0.5	
A4113SVE 1 AE134WEL 1 AD134WEL 1		2	DELV DELV DELV	1.00E-11 5.00E-12 5.00E-12	0.90E5 1.01E5	0.5 0.5 0.5	
FOFT1- A3111 A8111 AC111 AC115 AC120 AE134 AD134	*	2*3	*	£*5	*6-	*7-	*8
GOFT1- AE134WEL 1 AD134WEL 1	*	2*3	DELV DELV	4*5 5.00E-12 5.00E-12	*6- 1.01E5	*7- 0.5 0.5	*8
ENDCY1-	*	2*3	*	4*5	*6-	*7-	*8

Figure 10.7.13. Portion of TMVOC input file for part 4 (extraction) of problem 7.

********** [KCYC,ITER]	= [0, 0] *****		THE TIME	IS .00000	E+00 SECONDS,	OR .0000	0E+00 DAYS	
PHASES	GAS	QUEOUS 1	NAPL TOT	AL				
VOLUMES (m**3) MASS (moles) ENERGY (J)	.10926797E+03 .33 .45313642E+04 .18 .24675334E+07 .28	63568E+03 .1096 20521E+08 .7157 31344E+11 .3115	53533E+01 .45000 73897E+04 .18832 58402E+08 .84110	0000E+03 2210E+08 0035E+11				
	COMPONENTS MOLES IN 1	LACE - BY PHASES			COMPONENTS IN	PLACE - OV	ERALL	
COMPONENTS WATER AIR n-DECANE BENZENE Toluene 4-p-XYLENE n-propylbenzene n-pentane total VOCs	GAS PHASE AQUE .10479869E+03 .183 .43865636E+04 .183 .42699165E+00 .151 .62314098E+00 .422 .12211053E+01 .633 .66000692E+00 .300 .24613701E+00 .844 .36824514E+02 .165 .40001896E+02 .143	US PHASE 1 20320E+08 .1811 63480E+03 .6133 10276E+00 .3176 92829E+01 .9700 37007E+01 .5633 30992E+01 .8665 54929E+00 .7773 82845E-01 .1677 52918E+02 .7155	NAPL ADSC 19199E+01 35548E-01 55404E+04 .00000 11376E+02 .00000 39194E+03 .00000 36628E+03 .00000 31937E+03 .00000 55165E+04 .00000	RBED 1000E+00 1000E+00 1000E+00 1000E+00 1000E+00 1000E+00 1000E+00	TOTAL MOLES .18820427E+08 .45732598E+04 .31771175E+04 .10186380E+03 .57092674E+03 .87022938E+03 .77840606E+03 .17115278E+04 .72100713E+04	TOTAL M .33906 .13244 .45205 .79569 .52605 .92390 .93560 .12348 .82206	ASS (kg) 881E+06 160E+03 934E+03 889E+01 761E+02 513E+02 516E+02 844E+03 156E+03	
	1 1]	1000007 00 1000	2224252 01					
ITERATING AT [ITERATING AT [A7113(1, 3) ST = ITERATING AT [ITERATING AT [AB116(2, 3) ST =	1, 1] DELTEX = 1, 2] DELTEX = 100000E+02 DT = .1000 2, 1] DELTEX = 2, 2] DELTEX = 300000E+02 DT = .2000	.100000E+02 MAX. .100000E+02 MAX. 00E+02 DX1=68362 .200000E+02 MAX. .200000E+02 MAX. 00E+02 DX1=18534	RES. = .337435E-01 RES. = .432680E+00 20E+04 DX2= .243494 RES. = .118947E-01 RES. = .232348E-01 43E+03 DX2=630216	AT ELEMENT AT ELEMENT E-04 T = 20 AT ELEMENT AT ELEMENT E-05 T = 20	A8113 EQUATI A2113 EQUATI .000 P = 94 A6113 EQUATI A2119 EQUATI .000 P = 100	ON 2 ON 2 200. S = ON 2 ON 2 856. S =	.699088E+00 .557975E+00	
ITERATING AT [\$\$\$ 6> 7 \$\$\$ GAS H \$\$\$ 6> 7 \$\$\$ GAS H	3, 1] DELTEX = EVOLVES AT ELEMENT *AC EVOLVES AT ELEMENT *AC	.400000E+02 MAX. 12* \$\$\$ PX = . 13* \$\$\$ PX = .	RES. = .387284E-02 .10164E+06 PG = .1 .10153E+06 PG = .1	AT ELEMENT 0271E+06 0267E+06	A6112 EQUATI	ON 2		
\$\$\$ 6> 7 \$\$\$ GAS I ITERATING AT [ITERATING AT [AC110(3, 4) ST = ITERATING AT [\$\$\$ 4> 7 \$\$\$ NAPL I	EVOLVES AT ELEMENT *AC: 3, 2] DELTEX = 3, 3] DELTEX = .700000E+02 DT = .4000 4, 1] DELTEX = EVOLVES AT ELEMENT *AB	14* \$\$\$ PX = .400000E+02 MAX. .400000E+02 MAX. 00E+02 DX1=28809 .800000E+02 MAX. 17* \$\$\$ xsumcil=	.10156E+06 PG = .1 RES. = .167617E-01 RES. = .154993E-04 95E+03 DX2= .632337 RES. = .263118E-02 = .16119E+01	0275E+06 AT ELEMENT AT ELEMENT E-04 T = 20 AT ELEMENT	A2123 EQUATI AC110 EQUATI .000 P = 102 A7112 EQUATI	ON 2 ON 1 196.S = ON 2	.354727E-02	
ITERATING AT [AB118(4, 3) ST =	4, 2] DELTEX = .150000E+03 DT = .800	.800000E+02 MAX. 00E+02 DX1=78443	RES. = .423990E-01 33E+03 DX2= .353228	AT ELEMENT BE-03 T = 20	A2126 EQUATI .000 P = 99	ON 2 898. S =	.566067E+00	
*r2dl4 SVE and wate	er extraction following	NAPL redistributio	on					
OUTPUT DATA AN	TER (70, 6)-2-TIME	STEPS			THE TIM	EIS.36	525E+03 DAYS	
TOTAL TIME KCYC .31558E+08 70	ITER ITERC KON 6 427 2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa</u>	MAX. RE .41740E	S. NER -06 187	KER 1	DELTEX .34680E+07	
DX1M DX2M	DX3M DX4M	DX5M	DX6M DX7M	DX8M	DX9M	DX10M	DX11M	
	0.0000000000000000000000000000000000000	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@		000000000000000000000000000000000000000	.000001+00	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@	
ELEM. INDEX P (Pa)	T SG (Deg-C)	SW SC	D PCwg (Pa)	PCog (Pa) (XVOCw mass fract.)	Dgas (kg/m**3)	DNAPL (kg/m**3)	
A21 2 1 .10100E+06	.20000E+02 .74570E+	0 .25430E+00 .000	D00E+0092731E+04	48574E+04	.53954E-11 .	11900E+01	.86017E+03	
A2111 145 .10100E+06 A3111 146 .98878E+05 A4111 147 .96928E+05 A5111 148 .95596E+05 A6111 149 .94802E+05 A7111 150 .94413E+05 A8111 151 .94347E+05 A9111 152 .94562E+05 AA111 153 .94894E+05 AB111 154 .96337E+05 AC111 155 .10019E+06 AD111 156 .10465E+06 	.20000E+02 .76610E+ .20000E+02 .76650E+ .20000E+02 .76550E+ .20000E+02 .76551E+ .20000E+02 .76235E+ .20000E+02 .75809E+ .20000E+02 .72334E+ .20000E+02 .57048E+ .20000E+02 .11668E+ .20000E+02 .94275E- .20000E+02 .00000E+	0 .23390E+00 .000 0 .23340E+00 .000 0 .2350E+00 .000 0 .23565E+00 .000 0 .23755E+00 .000 0 .23735E+00 .000 0 .24191E+00 .000 0 .26389E+00 .127 0 .39611E+00 .334 0 .70528E+00 .176 2 .93911E+00 .514 0 .10000E+01 .000	000E+0010293E+05 000E+0010320E+05 000E+0010314E+05 000E+0010265E+05 000E+0010107E+05 000E+0098703E+04 413E-01485838E+04 413E-0149206E+04 803E+0014790E+04 460E-014334E+03 000E+00 .00000E+00	53913E+04 54055E+04 54026E+04 53771E+04 5371E+04 51702E+04 43685E+04 24390E+04 51979E+03 .10912E+03 .00000E+00	.34549E-18 . .45428E-16 . .66400E-14 . .10696E-11 . .15061E-09 . .17261E-07 . .15598E-05 . .75361E-05 . .17937E-04 . .10485E-03 . .89760E-04 . .12293E-04 .	11900E+01 11648E+01 11416E+01 11257E+01 11163E+01 11127E+01 11205E+01 11269E+01 11269E+01 15019E+01 75531E+00	.73298E+03 .73299E+03 .73277E+03 .73255E+03 .73240E+03 .73217E+03 .73217E+03 .7361E+03 .74048E+03 .76681E+03 .73835E+03 .73811E+03	
	COMPONENTS MOLES IN 1	LACE - BY PHASES			COMPONENTS IN	PLACE - OV	ERALL	
COMPONENTS WATER AIR n-DECANE BENZENE Toluene 4-p-XYLENE n-propylbenzene n-pentane total VOCS	GAS PHASE AQUEX .10754454E+03 .18 .45091472E+04 .18 .78341014E-01 .87 .19309881E-01 .19 .60430493E-01 .31 .48014848E-01 .15 .25717937E-01 .45 .74041723E+00 .71	US PHASE 18 87010E+08 .1007 72199E+03 .3367 21301E-01 .1977 41071E+01 .4325 24654E+01 .2847 76377E+01 .4745 7379E-01 .7416 396944E+01 .3977	NAPL ADSO 72242E+01 3062E-01 32662E+04 .00000 5261E+04 .00000 73350E+03 .00000 5202E+03 .00000 55205E+03 .00000 55205E+03 .00000 57384E+03 .00000 76647E+04 .00000	RBED 1000E+00 1000E+00 1000E+00 1000E+00 1000E+00 1000E+00	TOTAL MOLES .18687118E+08 .46909028E+04 .19796915E+04 .45188104E+02 .28793640E+03 .47613587E+03 .47613587E+03 .74242497E+03 .39858166E+04	TOTAL M .33666 .13584 .28168 .35298 .26530 .50550 .54621 .53566 .47048	ASS (kg) 712E+06 855E+03 239E+03 236E+01 748E+02 393E+02 386E+02 704E+02 144E+03	

Figure 10.7.14. Portion of printed output for part 4 (extraction) of problem 7.

Figure 10.7.15. Contour plot of total VOC mass fraction in the aqueous phase at the end of the extraction period.

Figure 10.7.16. Evolution of NAPL saturation at selected locations, labeled with x, z-values.

Figure 10.7.17. Evolution of VOC mass fractions in aqueous phase at selected locations, labeled with x, z-values.

11. Concluding Remarks

TMVOC is a versatile numerical simulator for multi-phase flows involving aqueous, nonaqueous, and gas phases, which may include several volatile organic compounds, along with water and a variety of non-condensible gases. All possible phase combinations in a water-air-NAPL system are treated, including single-phase gas, aqueous, NAPL; two-phase gas-aqueous, gas-NAPL, and aqueous-NAPL; and three-phase gas-aqueous-NAPL. TMVOC has capabilities for modeling flow and transport processes in variably saturated media at ambient conditions, as well as under non-isothermal conditions such as electric resistance heating or steamflooding. The code is written in standard Fortran77, is part of the TOUGH2 family of codes (Pruess et al., 1999), and maintains cross-compatibility with the T2VOC code (Falta et al., 1995).

The sample problems discussed in this report illustrate code features, and can serve as templates for users developing their own applications. Full documentation on the mathematical model used and the preparation of input data is provided in appendices. There is a tremendous variety of flow problems that can be tackled with TMVOC. The code was designed to be robust and be able to cope with difficult issues of phase change, phase partitioning of components, and compositional variation in fluid phases. Naturally, code performance will depend on process characteristics and parameter choices in specific problems. In some cases, sensitivites can be such that minor changes in problem parameters and gridding can have strong impacts on solution progress. For example, a sensitive situation arises when during a simulation run a grid block comes very close to one or two phase boundaries, such as a block in single-phase liquid conditions being very close to evolving gas and/or NAPL. This can cause severe time stepping limitations, especially when the grid block is in a very "dynamic" situation, i.e., subject to large inflows and outflows from neighboring blocks that nearly cancel each other out. In some cases very minor alterations in parameters and initial conditions can have strong impacts on time stepping and convergence. Code performance on numerically sensitive problems can also be different for different computing platforms with different numbers of significant digits and slightly different roundoff.

Acknowledgement

The TMVOC code is based on the PhD research of Adeyinka Adenekan. The authors are indebted to Stefan Finsterle and Chao Shan for their review and code testing, and for valuable suggestions. This work was supported, in part, by the U.S. Department of Energy through the Office of Basic Energy Sciences under Contract No. DE-AC03-76SF00098. Partial support was also provided by a grant from Aquater S.p.A. (ENI group) to the Lawrence Berkeley National Laboratory in the frame of the REPIS project sponsored by the ENI Research Fund.

References

- Adenekan, A.E. Numerical Modeling of Multiphase Transport of Multicomponent Organic Contaminants and Heat in the Subsurface, PhD thesis, University of California at Berkeley, Berkeley, CA 94720, 1992.
- Adenekan, A.E., T.W. Patzek and K. Pruess. Modeling of Multiphase Transport of Multicomponent Organic Contaminants and Heat in the Subsurface: Numerical Model Formulation, *Water Resour.Res.*, Vol. 29, No. 11, pp. 3727-3740, 1993.
- Battistelli, A., C. Calore and K. Pruess. The Simulator TOUGH2/EWASG for Modeling Geothermal Reservoirs with Brines and Non-Condensible Gas, *Geothermics*, Vol. 26, No. 4, pp. 437 464, 1997.
- Bird, R., W.E. Stewart and E.N. Lightfoot. *Transport Phenomena*, John Wiley & Sons, New York, NY, 1960.
- Cass, A., G.S. Campbell and T.L. Jones. Enhancement of Thermal Water Vapor Diffusion in Soil. Soil Sci. Soc. Am. J., Vol. 48, no. 1, pp. 25 - 32, 1984.
- Coats, K.H. Geothermal Reservoir Modeling, paper SPE-6892, presented at the 52nd Annual Fall Technical Conference and Exhibition of the SPE, Denver, Colorado, October 1977.
- Coats, K.H. and A.B. Ramesh. Effects of Grid Type and Difference Scheme on Pattern Steamflood Simulation Results, paper SPE-11079, presented at the 57th Annual Fall Technical Conference and Exhibition of the Society of Petroleum Engineers, New Orleans, LA, September 1982.
- Coats, K.H. and B.D. Smith. Dead-End Pore Volume and Dispersion in Porous Media, *Soc. Pet. Eng. J.*, 73-84, March 1964.
- de Marsily, G. Quantitative Hydrogeology, Academic Press, Orlando, FL, 1986.
- Duff, I. S. MA28—A Set of FORTRAN Subroutines for Sparse Unsymmetric Linear Equations, AERE Harwell Report R 8730, 1977.
- Edwards, A.L. TRUMP: A Computer Program for Transient and Steady State Temperature Distributions in Multidimensional Systems, National Technical Information Service, National Bureau of Standards, Springfield, VA, 1972.
- Falta, R.W., K. Pruess, I. Javandel and P.A. Witherspoon. Density Driven Flow of Gas in the Unsaturated Zone Due to the Evaporation of Volatile Organic Compounds, *Water. Resour. Res.*, Vol. 25, No. 10, pp. 2159 - 2169, 1989.
- Falta, R.W., K. Pruess, S. Finsterle, and A. Battistelli. T2VOC User's Guide, Lawrence Berkeley Laboratory Report LBL-36400, March 1995.
- Faust, C.R. Transport of Immiscible Fluids Within and Below the Unsaturated Zone: A Numerical Model, *Water Resour. Res.*, Vol. 21, No. 4, pp. 587 596, 1985.
- Graboski, M. S. and Daubert, T.E. A Modified Soave Equation of State for Phase Equilibrium Calculations 1. Hydrocarbon System, *Ind. Eng. Chem. Process Des. Dev.*, Vol. 17, pp. 443-448, 1978.

- Hadgu, T., R.W. Zimmerman and G.S. Bodvarsson. Coupling of a Reservoir Simulator and a Wellbore Simulator for Geothermal Applications, *GRC Transactions*, Vol. 17, pp. 499 - 505, 1993.
- Harvey, C. and S.M. Gorelick. Rate-limited Mass Transfer or Macrodispersion: Which Dominates Plume Evolution at the Macrodispersion Experiment (MADE) Site?, *Water Resour. Res.*, Vol. 36, No. 3, pp. 637 - 650, 2000.
- Ho, C.K. Numerical Simulation of Multicomponent Evaporation and Gas-Phase Transport Using M2NOTS. Proceedings TOUGH Workshop '95, LBNL, Berkeley, CA, March 20-22, 1995.
- Hoot W.F., A. Azarnoosh and J.J. McKetta, Jr. Solubility of Water in Hydrocarbons. *Pet. Refiner*, Vol. 36, pp. 255 256, 1957.
- Hunt, J. R., N. Sitar and K. S. Udell. Nonaqueous Phase Liquid Transport and Cleanup, 2. Experimental Studies. *Water. Res.*, 24 (8), 1259-1269, 1988.
- International Association for the Properties of Steam. *Release on Dynamic Viscosity of Water Substance*, National Bureau of Standards, Washington, DC, 1975 (revised 1983).
- International Formulation Committee. A Formulation of the Thermodynamic Properties of Ordinary Water Substance, IFC Secretariat, Düsseldorf, Germany, 1967.
- Irvine, T.F. Jr and Liley, P.E. *Steam and Gas Tables with Computer Equations*. Academic Press Inc., Orlando, Florida, 185 pp, 1984.
- Jury, W.A., W.F. Spencer and W.J. Farmer. Behavior Assessment Model for Trace Organics in Soil: I. Model Description, J. Environ. Qual., Vol. 12, no. 4, pp. 558 - 564, 1983.
- Karickhoff, S.W., D.S. Brown and T. A. Scott. Sorption of Hydrophobic Pollutants on Natural Sediments, *Water Resour. Res.*, Vol. 13, pp. 241 248, 1979.
- Klinkenberg, L.J. The Permeability of Porous Media to Liquids and Gases, in *API Drilling and Production Practice*, pp. 200–213, 1941.
- Kruger, P. and H.J. Ramey, Jr. Stimulation and Reservoir Engineering of Geothermal Resources, Stanford Geothermal Program Report SGR-TR-1, Stanford University, Stanford, CA, 1974.
- Lam, S.T., A. Hunsbedt, P. Kruger and K. Pruess. Analysis of the Stanford Geothermal Reservoir Model Experiments Using the LBL Reservoir Simulator, *Geothermics*, 17 (4), 595–605, LBL-25957, 1988.
- Leverett, M.C. Capillary Behavior in Porous Solids, *Trans. Soc. Pet. Eng. AIME*, 142, 152-169, 1941.
- Mason, E.A. and A.P. Malinauskas. *Gas Transport in Porous Media: The Dusty Gas Model,* Elsevier, Amsterdam, The Netherlands, 1983.
- McCain, W.D. Jr. *The Properties of Petroleum Fluids*. 2nd edition, PennWell Publishing Company, 548 p., 1990.
- Meyer, C. A., R.B. McClintock, G.J. Silvestri and R.C. Spencer. *ASME Steam Tables*, The American Society of Mechanical Engineers, New York, U.S.A., 329 pp,, 1977.

- Millington, R.J. and J.P. Quirk. Permeability of Porous Solids, *Trans. Faraday Soc.*, 57, 1200-1207, 1961.
- Moridis, G. and K. Pruess. TOUGH Simulations of Updegraff's Set of Fluid and Heat Flow Problems, Lawrence Berkeley Laboratory Report LBL-32611, Berkeley, CA, November 1992.
- Moridis, G. and K. Pruess. Flow and Transport Simulations Using T2CG1, a Package of Conjugate Gradient Solvers for the TOUGH2 Family of Codes, Lawrence Berkeley Laboratory Report LBL-36235, Lawrence Berkeley Laboratory, Berkeley, CA, 1995.
- Moridis, G. and K. Pruess. T2SOLV: An Enhanced Package of Solvers for the TOUGH2 Family of Reservoir Simulation Codes, *Geothermics*, Vol. 27, No. 4, pp. 415 444, 1998.
- Narasimhan, T.N. and P.A. Witherspoon. An Integrated Finite Difference Method for Analyzing Fluid Flow in Porous Media, *Water Resour. Res.*, Vol. 12, No. 1, pp. 57 64, 1976.
- Parker, J.C., R.J. Lenhard and T. Kuppusamy. A Parametric Model for Constitutive Properties Governing Multiphase Flow in Porous Media, *Water Resour. Res.*, Viol. 23, No. 4, pp. 618 -624, 1987.
- Peaceman, D.W. Fundamentals of Numerical Reservoir Simulation, Elsevier, Amsterdam, The Netherlands, 1977.
- Peaceman, D.W. Interpretation of Well-Block Pressures in Numerical Reservoir Simulation with Nonsquare Grid Blocks and Anisotropic Permeability, paper SPE-10528, presented at the Sixth SPE Symposium on Reservoir Simulation of the Society of Petroleum Engineers, New Orleans, LA, January 1982.
- Peng, D.Y. and D.B. Robinson. A New Two-Constant Equation of State, *I.&E.C. Fundamentals*, Vol. 15, No. 1, pp. 59 64, 1976.
- Prausnitz, J. M., R. N. Lichtenthaler, and E. G. de Azevedo. *Molecular Thermodynamics of Fluid-Phase Equilibria*, Prentice-Hall Inc., Englewood Cliffs, N. J., 1986.
- Pritchett, J.W. and S.K. Garg. Determination of Effective Wellblock Radii for Numerical Reservoir Simulators, *Water Resour. Res.*, Vol. 16, No. 4, pp. 665 674, 1980.
- Pruess, K. Heat Transfer in Fractured Geothermal Reservoirs with Boiling, *Water Resour. Res.*, Vol. 19, No. 1, pp. 201 208, 1983a.
- Pruess, K. GMINC A Mesh Generator for Flow Simulations in Fractured Reservoirs, Report No. LBL-15227, Lawrence Berkeley Laboratory, Berkeley, CA, 1983b.
- Pruess, K. and G.S. Bodvarsson. A Seven-Point Finite Difference Method for Improved Grid Orientation Performance in Pattern Steam Floods. *Proceedings*, Seventh Society of Petroleum Engineers Symposium on Reservoir Simulation, pp. 175 - 184, San Francisco, CA, 1983.
- Pruess, K., and T.N. Narasimhan. On Fluid Reserves and the Production of Superheated Steam from Fractured, Vapor-Dominated Geothermal Reservoirs, J. Geophys. Res., 87 (B11), 9329-9339, 1982.
- Pruess, K. and T.N. Narasimhan. A Practical Method for Modeling Fluid and Heat Flow in Fractured Porous Media, *Soc. Pet. Eng. J.*, Vol. 25, No. 1, pp. 14 26, February 1985.

- Pruess, K., C. Oldenburg and G. Moridis. TOUGH2 User's Guide, Version 2.0, Lawrence Berkeley National Laboratory Report LBNL-43134, Berkeley, CA, November 1999.
- Pruess, K., A. Simmons, Y.S. Wu and G. Moridis. TOUGH2 Software Qualification. Lawrence Berkeley National Laboratory Report LBL-38383, February 1996.
- Redlich, O. and J.N.S. Kwong. On the Thermodynamics of Solutions. V An Equation of State. Fugacities of Gaseous Solutions, *Chem. Reviews*, Vol. 44, pp. 233 - 244, 1949.
- Reid, R.C., J.M. Prausnitz, and B.E. Poling. *The Properties of Gases and Liquids*, McGraw-Hill, New York, 1987.
- Schwarzenbach, R.P. and J. Westall. Transport of Non-polar Organic Compounds from Surface Water to Groundwater, Laboratory Sorption Studies, *Environ. Sci. Technol.*, Vol. 15, pp. 1360 - 1375, 1981.
- Sleijpen, G.L.G. and D. Fokkema. BiCGSTAB(m) for Linear Equations Involving Unsymmetric Matrices with Complex Spectrum, *Electronic Transactions on Numerical Analysis*, Vol. 1, pp. 11 - 32, 1993.
- Soave, G. Equilibrium Constants from a Modified Redlich-Kwong Equation of State, *Chem. Eng. Sci.*, Vol. 27, No. 6, pp. 1197 1203, 1972.
- Stone, H.L. Probability Model for Estimating Three-Phase Relative Permeability, *Trans. SPE of AIME*, 249, 214-218, 1970.
- Thomas, G.W. *Principles of Hydrocarbon Reservoir Simulation*. International Human Resources Development Corporation, Boston, 1982.
- van der Vorst, H.A. Bi-CGSTAB: A Fast and Smoothly Converging Variant of BiCG in the Presence of Rounding Errors, *SIAM J. Sci. Statist. Comput.*, Vol. 13, pp. 631 644, 1992.
- van Velzen, D., R.L. Cardozo, and H. Langenkamp. A Liquid Viscosity-Temperature-Chemical Constitution Relation for Organic Compounds, *Ind. Eng. Chem. Fund.*, Vol. 11, No. 1, pp. 20 - 25, 1972.
- Vargaftik, N.B. Tables on the Thermophysical Properties of Liquids and Gases, 2nd Ed., John Wiley & Sons, New York, NY, 1975.
- Vinsome, P.K.W. and J. Westerveld. A Simple Method for Predicting Cap and Base Rock Heat Losses in Thermal Reservoir Simulators, *J. Canadian Pet. Tech.*, Vol. 19, No. 3, pp. 87 90, July-September 1980.
- Walker, W.R., J.D. Sabey, and D.R. Hampton. Studies of Heat Transfer and Water Migration in Soils, Final Report, Department of Agricultural and Chemical Engineering, Colorado State University, Fort Collins, CO, 80523, April 1981.
- Warren, J.E. and P.J. Root. The Behavior of Naturally Fractured Reservoirs, Soc. Pet. Eng. J., Transactions, AIME, 228, 245-255, September 1963.
- Webb, S.W. Gas-Phase Diffusion in Porous Media Evaluation of an Advective-Dispersive Formulation and the Dusty Gas Model for Binary Mixtures, J. Por. Media, Vol. 1, No. 2, pp. 187 - 199, 1998.

- Webb, S.W. and C.K. Ho. Review of Enhanced Vapor Diffusion in Porous Media, in: K. Pruess (ed.), Proceedings of the TOUGH Workshop '98, Lawrence Berkeley National Laboratory Report LBNL-41995, pp. 257 - 262, 1998a.
- Webb, S.W. and C.K. Ho. Pore-Scale Modeling Using TOUGH2, in: K. Pruess (ed.), Proceedings of the TOUGH Workshop '98, Lawrence Berkeley National Laboratory Report LBNL-41995, pp. 288 - 293, 1998b.
- Wilke, C.R. A Viscosity Equation for Gas Mixtures, J. Chem. Phys., Vol. 18, No. 4, pp. 517 519, 1950.
- Yaws, C.L., J.W. Miller, P.N. Shah, G.R. Schorr and P.M. Patel. Correlation Constants for Chemical Compounds, *Chem. Eng. Sci.*, Vol. 83, No. 24, pp. 153 162, 1976.
Appendix A. Mass and Energy Balances

The basic mass- and energy-balance equations solved by TMVOC or any other member of the TOUGH2 family of codes can be written in the general form

$$\frac{\mathrm{d}}{\mathrm{dt}} \int_{\mathrm{V}_{\mathrm{n}}} \mathrm{M}^{\kappa} \,\mathrm{dV}_{\mathrm{n}} = \int_{\Gamma_{\mathrm{n}}} \mathbf{F}^{\kappa} \cdot \mathbf{n} \,\mathrm{d\Gamma}_{\mathrm{n}} + \int_{\mathrm{V}_{\mathrm{n}}} q^{\kappa} \mathrm{dV}_{\mathrm{n}} \tag{A.1}$$

The integration is over an arbitrary subdomain V_n of the flow system under study, which is bounded by the closed surface Γ_n . The quantity M appearing in the accumulation term (left hand side) represents mass or energy per volume, with $\kappa = 1, ..., NK$ labeling the mass components (water, NCGs, volatile organic chemicals), and $\kappa = NK + 1$ the heat "component." **F** denotes mass or heat flux (see below), and q denotes sinks and sources. **n** is a normal vector on surface element $d\Gamma_n$, pointing inward into V_n .

The mass accumulation term for the water and NCG components is

$$M^{\kappa} = \phi \sum_{\beta} S_{\beta} \rho_{\beta} x_{\beta}^{\kappa}$$
(A.2)

The total mass of component κ is obtained by summing over the fluid phases β (= liquid, gas, NAPL). ϕ is porosity, S_{β} is the saturation of phase β (i.e., the fraction of pore volume occupied by phase β), ρ_{β} is the density of phase β , and x_{β}^{κ} is the mole fraction of component κ present in phase β . In TMVOC all mass densities are expressed in molar units (gram-moles per m³); the composition of fluid phases is then expressed in terms of mole fractions of the different components. (Other members of the TOUGH2 family of codes use mass units and mass fractions. The governing equations have the same form, regardless of whether mass or molar units are used.) For the VOCs a more general form of the mass accumulation term is used that includes equilibrium sorption on the solid grains.

$$M^{\kappa} = \phi \sum_{\beta} S_{\beta} \rho_{\beta} x_{\beta}^{\kappa} + (1 - \phi) \rho_{R} \rho_{w} x_{w}^{\kappa} K_{d}$$
(A.3)

Here, ρ_R is the density of the rock grains, ρ_w is the density of the aqueous phase, x_w^{κ} is the mole fraction of VOC component κ in the aqueous phase, and K_d is the aqueous phase distribution coefficient (de Marsily, 1986, p. 256). Similarly, the heat accumulation term in a multiphase system is

$$M^{NK+1} = (1-\phi)\rho_R C_R T + \phi \sum_{\beta} S_{\beta} \rho_{\beta} u_{\beta}$$
(A.4)

where C_R is specific heat of the rock, T is temperature, and u_β is specific internal energy in phase β (in TMVOC, specific internal energy and enthalpy are expressed in units of J/mole).

Advective mass flux is a sum over phases,

$$\mathbf{F}^{\kappa}\Big|_{\mathrm{adv}} = \sum_{\beta} x_{\beta}^{\kappa} \mathbf{F}_{\beta}$$
(A.5)

and indiv.a multiphase version of Darcy's law:

$$\mathbf{F}_{\beta} = \rho_{\beta} \mathbf{u}_{\beta} = -k \frac{k_{r\beta} \rho_{\beta}}{\mu_{\beta}} (\nabla P_{\beta} - \rho_{\beta} \mathbf{g})$$
(A.6)

Here \mathbf{u}_{β} is the Darcy velocity (volume flux) in phase β , k is absolute permeability, $k_{r\beta}$ is relative permeability to phase β , μ_{β} is viscosity, and

$$P_{\beta} = P + P_{c\beta} \tag{A.7}$$

is the fluid pressure in phase β , which is the sum of the pressure P of a reference phase (usually taken to be the gas phase), and the capillary pressure $P_{c\beta} (\leq 0)$. **g** is the vector of gravitational acceleration.

Heat flux includes conductive and convective components

$$\mathbf{F}^{\mathrm{NK}+1} = -\mathrm{K}\,\nabla\mathrm{T} + \sum_{\beta} h_{\beta}\,\mathbf{F}_{\beta} \tag{A.8}$$

where K is thermal conductivity, and h_{β} is specific enthalpy in phase β . Radiative heat transfer according to the Stefan-Boltzmann law can also be modeled (see Eq. E.2).

Absolute permeability of the gas phase increases at low pressures according to the relation given by Klinkenberg (1941)

$$k = k_{\infty} \left(1 + \frac{b}{P} \right) \tag{A.9}$$

where k_{∞} is the permeability at "infinite" pressure, and b is the Klinkenberg parameter. In addition to Darcy flow, mass transport can also occur by diffusion. The diffusive flux of component κ in phase β is given by (see Appendix D)

$$\mathbf{f}_{\beta}^{\kappa} = -\phi \tau_{0} \tau_{\beta} \rho_{\beta} d_{\beta}^{\kappa} \nabla x_{\beta}^{\kappa} \tag{A.10}$$

By applying Gauss' divergence theorem, Eq. (A.1) can be converted into the following PDE

$$\frac{\partial \mathbf{M}^{\kappa}}{\partial t} = -\operatorname{div} \mathbf{F}^{\kappa} + q^{\kappa}$$
(A.11)

which is the form commonly used as the starting point for deriving finite difference or finite element discretization approaches.

Appendix B. Space and Time Discretization

The continuum equations (A.1) are discretized in space using the integral finite difference (IFD) method (Edwards, 1972; Narasimhan and Witherspoon, 1976). Introducing appropriate volume averages, we have

$$\int_{V_n} M \, dV = V_n \, M_n \tag{B.1}$$

where M is a volume-normalized extensive quantity, and M_n is the average value of M over V_n . Surface integrals are approximated as a discrete sum of averages over surface segments A_{nm} :

$$\int_{\Gamma_n} \mathbf{F}^{\kappa} \cdot \mathbf{n} \, d\Gamma = \sum_m A_{nm} F_{nm}$$
(B.2)

Here F_{nm} is the average value of the (inward) normal component of **F** over the surface segment A_{nm} between volume elements V_n and V_m . The discretization approach used in the integral finite difference method and the definition of the geometric parameters are illustrated in Fig. B.1.

Figure B.1. Space discretization and geometry data in the integral finite difference method.

The discretized flux is expressed in terms of averages over parameters for elements V_n and V_m . For the basic Darcy flux term, Eq. (A.6), we have

$$F_{\beta,nm} = -k_{nm} \left[\frac{k_{r\beta} \rho_{\beta}}{\mu_{\beta}} \right]_{nm} \left[\frac{P_{\beta,n} - P_{\beta,m}}{D_{nm}} - \rho_{\beta,nm} g_{nm} \right]$$
(B.3)

where the subscripts (nm) denote a suitable averaging at the interface between grid blocks n and m (interpolation, harmonic weighting, upstream weighting). $D_{nm} = D_n + D_m$ is the distance between the nodal points n and m, and g_{nm} is the component of gravitational acceleration in the direction from m to n. Discretization of diffusive fluxes raises some subtle issues and is discussed separately in Appendix D.

Substituting Eqs. (B.l) and (B.2) into the governing Eq. (A.1), a set of first-order ordinary differential equations in time is obtained.

$$\frac{dM_n^{\kappa}}{dt} = \frac{1}{V_n} \sum_m A_{nm} F_{nm}^{\kappa} + q_n^{\kappa}$$
(B.4)

Time is discretized as a first-order finite difference, and the flux and sink and source terms on the right-hand side of Eq. (B.4) are evaluated at the new time level, $t^{k+l} = t^k + \Delta t$, to obtain the numerical stability needed for an efficient calculation of multiphase flow. This treatment of flux terms is known as "fully implicit," because the fluxes are expressed in terms of the unknown thermodynamic parameters at time level t^{k+l} , so that these unknowns are only implicitly defined in the resulting equations (see, e.g., Peaceman, 1977). The time discretization results in the following set of coupled non-linear, algebraic equations

$$R_{n}^{\kappa,k+1} = M_{n}^{\kappa,k+1} - M_{n}^{\kappa,k} - \frac{\Delta t}{V_{n}} \left\{ \sum_{m} A_{nm} F_{nm}^{\kappa,k+1} + V_{n} q_{n}^{\kappa,k+1} \right\}$$

$$= 0$$
(B.5)

where we have introduced residuals $R_n^{\kappa,k+1}$. For each volume element (grid block) V_n , there are NEQ equations ($\kappa = 1, 2, ..., NEQ$; usually, NEQ = NK + 1), so that for a flow system with NEL grid blocks (B.5) represents a total of NEL x NEQ coupled non-linear equations. The unknowns are the NEL x NEQ independent primary variables { x_i ; $i = 1, ..., NEL \times NEQ$ } which completely define the state of the flow system at time level t^{k+1} . These equations are solved by Newton/Raphson iteration, which is implemented as follows. We introduce an iteration index p and

expand the residuals $R_n^{\kappa,k+1}$ in Eq. (B.5) at iteration step p + 1 in a Taylor series in terms of those at index p.

$$R_{n}^{\kappa,k+1}(x_{i,p+1}) = R_{n}^{\kappa,k+1}(x_{i,p}) + \sum_{i} \frac{\partial R_{n}^{\kappa,k+1}}{\partial x_{i}} \bigg|_{p} (x_{i,p+1} - x_{i,p}) + \dots = 0$$
(B.6)

Retaining only terms up to first order, we obtain a set of NEL x NEQ linear equations for the increments $(x_{i,p+1} - x_{i,p})$:

$$-\sum_{i} \frac{\partial R_{n}^{\kappa,k+1}}{\partial x_{i}} \bigg|_{p} \left(x_{i,p+1} - x_{i,p} \right) = R_{n}^{\kappa,k+1} \left(x_{i,p} \right)$$
(B.7)

All terms $\partial R_n / \partial x_i$ in the Jacobian matrix are evaluated by numerical differentiation. Eq. (B.7) is solved by sparse direct matrix methods (Duff, 1977) or iteratively by means of preconditioned conjugate gradients (Moridis and Pruess, 1995, 1998). Iteration is continued until the residuals $R_n^{\kappa,k+1}$ are reduced below a preset convergence tolerance.

$$\left|\frac{\mathbf{R}_{n,p+1}^{\kappa,k+1}}{\mathbf{M}_{n,p+1}^{\kappa,k+1}}\right| \leq \varepsilon_1 \tag{B.8}$$

The default (relative) convergence criterion is $\varepsilon_1 = 10^{-5}$ (TMVOC input parameter RE1). Eq. (B.8) may be difficult (and unnecessary) to satisfy for mass components that are present in small or trace amounts, as may often be the case for VOCs in contamination problems. To address this issue, a second parameter ε_2 is introduced that allows to relax convergence requirements for components that are present in small quantities. When the accumulation terms are smaller than ε_2 (TMVOC input parameter RE2, default $\varepsilon_2 = 1$), an absolute convergence criterion is imposed.

$$|\mathbf{R}_{n}^{\kappa,k+1}| \le \varepsilon_{1} \bullet \varepsilon_{2} \tag{B.9}$$

Convergence is usually attained in 3 - 4 iterations. If convergence cannot be achieved within a certain number of iterations (default 8), the time step size Δt is reduced and a new iteration process is started.

It is appropriate to add some comments about our space discretization technique. The entire geometric information of the space discretization in Eq. (B.5) is provided in the form of a list of grid block volumes V_n , interface areas A_{nm} , nodal distances D_{nm} and components g_{nm} of gravitational acceleration along nodal lines. There is no reference whatsoever to a global system of coordinates, or to the dimensionality of a particular flow problem. The discretized equations are in fact valid for arbitrary irregular discretizations in one, two or three dimensions, and for porous as well as for fractured media. This flexibility should be used with caution, however, because the accuracy of solutions depends upon the accuracy with which the various interface parameters in equations such as (B.3) can be expressed in terms of average conditions in grid blocks. A general requirement is that there exists approximate thermodynamic equilibrium in (almost) all grid blocks at (almost) all times (Pruess and Narasimhan, 1985). For systems of regular grid blocks referenced to global coordinates (such as r - z, x - y - z), Eq. (B.5) is identical to a conventional finite difference formulation (e.g., Peaceman, 1977; Moridis and Pruess, 1992).

Appendix C. Description of Flow in Fractured Media

Figure C.1 illustrates the classical double-porosity concept for modeling flow in fracturedporous media as developed by Warren and Root (1963). Matrix blocks of low permeability are embedded in a network of interconnected fractures. Global flow in the reservoir occurs only through the fracture system, which is described as an effective porous continuum. Rock matrix and fractures may exchange fluid (or heat) locally by means of "interporosity flow," which is driven by the difference in pressures (or temperatures) between matrix and fractures. Warren and Root approximated the interporosity flow as being quasi-steady, with rate of matrix-fracture interflow proportional to the difference in (local) average pressures.

Figure C.1. Idealized double porosity model of a fractured porous medium.

The quasi-steady approximation is applicable to isothermal single-phase flow of fluids with small compressibility, where pressure diffusivities are large, so that pressure changes in the fractures penetrate quickly all the way into the matrix blocks. However, for multiphase flows, or coupled fluid and heat flows, the transient periods for interporosity flow can be very long (tens of years). In order to accurately describe such flows it is necessary to resolve the driving pressure, temperature, and mass fraction gradients at the matrix/fracture interface. In the method of "multiple

interacting continua" (MINC; Pruess and Narasimhan, 1982, 1985), resolution of these gradients is achieved by appropriate subgridding of the matrix blocks, as shown in Fig. C.2. The MINC concept is based on the notion that changes in fluid pressures, temperatures, phase compositions, etc. due to the presence of sinks and sources (production and injection wells) will propagate rapidly through the fracture system, while invading the tight matrix blocks only slowly. Therefore, changes in matrix conditions will (locally) be controlled by the distance from the fractures. Fluid and heat flow from the fractures into the matrix blocks, or from the matrix blocks into the fractures, can then be modeled by means of one-dimensional strings of nested grid blocks, as shown in Fig. C.2.

Figure C.2. Subgridding in the method of "multiple interacting continua" (MINC).

In general it is not necessary to explicitly consider subgrids in all of the matrix blocks separately. Within a certain reservoir subdomain (corresponding to a finite difference grid block), all fractures will be lumped into continuum # 1, all matrix material within a certain distance from the fractures will be lumped into continuum # 2, matrix material at larger distance becomes continuum # 3, and so on. Quantitatively, the subgridding is specified by means of a set of volume fractions VOL(j), j = 1, ..., J, into which the primary porous medium grid blocks are partitioned. The MINC-process in the MESHMAKER module of TMVOC operates on the element and connection data of

a porous medium mesh to calculate, for given data on volume fractions, the volumes, interface areas, and nodal distances for a secondary fractured medium mesh. The information on fracturing (spacing, number of sets, shape of matrix blocks) required for this is provided by a "proximity function" PROX(x) which expresses, for a given reservoir domain V_0 , the total fraction of matrix material within a distance x from the fractures. If only two continua are specified (one for fractures, one for matrix), the MINC approach reduces to the conventional double-porosity method. Full details are given in a separate report (Pruess, 1983b).

The MINC-method as implemented in the MESHMaker module can also describe global matrix-matrix flow. Fig. C.3 shows the most general approach, often referred to as "dual permeability," in which global flow occurs in both fracture and matrix continua. It is also possible to permit matrix-matrix flow only in the vertical direction. For any given fractured reservoir flow problem, selection of the most appropriate gridding scheme must be based on a careful consideration of the physical and geometric conditions of flow. The MINC approach is not applicable to systems in which fracturing is so sparse that the fractures cannot be approximated as a continuum.

Figure C.3. Flow connections in the "dual permeability" model. Global flow occurs between both fracture (F) and matrix (M) grid blocks. In addition there is F-M interporosity flow.

Appendix D. Multiphase Diffusion

D.1 General Considerations

Molecular diffusion plays a minor role in many subsurface flow processes, but may become a significant and even dominant mechanism for mass transport when advective velocities are small. Diffusive flux is usually written as being proportional to the gradient in the concentration of the diffusing component (Fick's law)

$$\mathbf{f} = -d\nabla \mathbf{C} \tag{D.1}$$

where d is an effective diffusivity, which in general will depend on properties of the diffusing component, the pore fluid, and the porous medium. The concentration variable C may be chosen in a number of different ways (mass per unit volume, moles per unit volume, mass or mole fraction, etc.; Bird et al., 1960; de Marsily, 1986).

The basic Fick's law Eq. D.1 works well for diffusion of tracer solutes that are present at low concentrations in a single phase aqueous solution at rest with respect to the porous medium. However, many subtleties and complications arise when multiple components diffuse in a multiphase flow system. Effective diffusivities in general may depend on all concentration variables, leading to non-linear behavior especially when some components are present in significant (nontracer) concentrations. Additional nonlinear effects arise from the dependence of tortuosity on phase saturations, and from coupling between advective and diffusive transport. For gases the Fickian model has serious limitations even at low concentrations, which prompted the development of the "dusty gas" model that entails a strong coupling between advective and diffusive transport (Mason and Malinauskas, 1983; Webb, 1998), and accounts for molecular streaming effects (Knudsen diffusion) that become very important when the mean free path of gas molecules is comparable to pore sizes. Further complications arise for components that are both soluble and volatile, in which case diffusion in aqueous and gaseous phases may be strongly coupled via phase partitioning effects. An extreme case is the well-known enhancement of vapor diffusion in partially saturated media, that is attributed to pore-level phase change effects (Cass et al., 1984; Webb and Ho, 1998a, b).

D.2 Formulation Used in TMVOC

Because of the difficulties mentioned above, it is not possible to formulate a model for multiphase diffusion that would be accurate under all circumstances. We have used a pragmatic approach in which diffusive flux of component κ in phase β (= gas, water, oil) is written as

$$\mathbf{f}_{\beta}^{\kappa} = -\phi \tau_{0} \tau_{\beta} \rho_{\beta} d_{\beta}^{\kappa} \nabla x_{\beta}^{\kappa}$$
(D.2)

where ϕ is porosity, $\tau_0 \tau_\beta$ is the tortuosity which includes a porous medium dependent factor τ_0 and a coefficient that depends on phase saturation S_β , $\tau_\beta = \tau_\beta(S_\beta)$, ρ_β is density, d_β^κ is the diffusion coefficient of component κ in bulk fluid phase β , and x_β^κ is the mole fraction of component κ in phase β . For later developments it will be useful to define a single diffusion strength factor which combines all material constants and tortuosity factors into a single effective multiphase diffusion coefficient, as follows.

$$\Sigma_{\beta}^{\kappa} = \phi \tau_0 \tau_{\beta} \rho_{\beta} d_{\beta}^{\kappa}$$
(D.3)

For general three-phase conditions, the total diffusive flux is then given by

$$\mathbf{f}^{\kappa} = -\Sigma_{g}^{\kappa} \nabla \mathbf{x}_{g}^{\kappa} - \Sigma_{W}^{\kappa} \nabla \mathbf{x}_{W}^{\kappa} - \Sigma_{O}^{\kappa} \nabla \mathbf{x}_{O}^{\kappa}$$
(D.4)

Here we use the subscript "o" for the NAPL (oil) phase rather than n, to avoid confusion with the customary use of n for numbering grid blocks, see below.

The saturation dependence of tortuosity is not well known at present. For soils the Millington and Quirk (1961) model has frequently been used (Jury et al., 1983; Falta et al., 1989)

$$\tau_0 \tau_\beta = \phi^{1/3} S_\beta^{10/3}$$
 (D.5)

which yields non-zero tortuosity coefficients as long as phase saturation is non-zero. It stands to reason that diffusive flux should vanish when a phase becomes discontinuous at low saturations, suggesting that saturation-dependent tortuosity should be related to relative permeability; e.g. $\tau_{\beta}(S_{\beta}) \approx k_{r\beta}(S_{\beta})$. However, for components that partition between liquid and gas phases more complex behavior may be expected. For example, consider the case of a volatile and water-soluble compound diffusing under conditions of low gas saturation where the gas phase is discontinuous. In this case we have $k_{rg}(S_g) = 0$ (because $S_g < S_{gr}$), and $k_{rw}(S_w = 1-S_g) < 1$, so that a model equating saturation-dependent tortuosity to relative permeability would predict weaker diffusion than in single-phase liquid conditions. For compounds with "significant" volatility this would be unrealistic, as diffusion through isolated gas pockets would tend to enhance overall diffusion relative to single-phase liquid conditions.

D.3 Space Discretization

Space discretization of diffusive flux in multiphase conditions raises some subtle issues. A finite difference formulation for total diffusive flux, Eq. (D.4), may be written as

$$\left(f^{\kappa}\right)_{nm} = -\left(\Sigma_{g}^{\kappa}\right)_{nm} \frac{\left(x_{g}^{\kappa}\right)_{m} - \left(x_{g}^{\kappa}\right)_{n}}{D_{nm}} - \left(\Sigma_{w}^{\kappa}\right)_{nm} \frac{\left(x_{w}^{\kappa}\right)_{m} - \left(x_{w}^{\kappa}\right)_{n}}{D_{nm}} - \left(\Sigma_{o}^{\kappa}\right)_{nm} \frac{\left(x_{o}^{\kappa}\right)_{m} - \left(x_{o}^{\kappa}\right)_{n}}{D_{nm}} \quad (D.6)$$

This expression involves the as yet unknown diffusive strength coefficients $(\Sigma_g^{\kappa})_{nm}$, $(\Sigma_w^{\kappa})_{nm}$ and $(\Sigma_{0}^{\kappa})_{nm}$ at the interface, which must be expressed in terms of the strength coefficients in the participating grid blocks. Invoking conservation of diffusive flux across the interface between two grid blocks leads in the usual way to the requirement of harmonic weighting of the diffusive strength coefficients. However, such weighting may in general not be applied separately to the diffusive fluxes in gas and liquid phases, because these may be strongly coupled by phase partitioning effects. This can be seen by considering the extreme case of diffusion of a watersoluble and volatile compound from a grid block in single-phase gas conditions to an adjacent grid block which is in single-phase liquid conditions. Harmonic weighting applied separately to liquid and gas diffusive fluxes would result in either of them being zero, because for each phase effective diffusivity is zero on one side of the interface. Thus total diffusive flux would vanish in this case, which is unphysical. In reality, tracer would diffuse through the gas phase to the gas-liquid interface, would establish a certain mass fraction in the aqueous phase by dissolution, and would then proceed to diffuse away from the interface through the aqueous phase. Similar arguments can be made in the less extreme situation where liquid saturation changes from a large to a small value rather than from 1 to 0, as may be the case in the capillary fringe, during infiltration events, or at fracture-matrix interfaces in variably saturated media.

TMVOC features a fully coupled approach in which the space-discretized version Eq. (D.6) of the total multiphase diffusive flux Eq. (D.4) is re-written in terms of an effective multiphase diffusive strength coefficient and a single mole fraction gradient. Choosing the water phase mole fraction for this we have

$$\left(f^{\kappa}\right)_{nm} = -\left\{\Sigma_{w}^{\kappa} + \Sigma_{g}^{\kappa} \frac{\left(x_{g}^{\kappa}\right)_{m} - \left(x_{g}^{\kappa}\right)_{n}}{\left(x_{w}^{\kappa}\right)_{m} - \left(x_{w}^{\kappa}\right)_{n}} + \Sigma_{o}^{\kappa} \frac{\left(x_{o}^{\kappa}\right)_{m} - \left(x_{o}^{\kappa}\right)_{n}}{\left(x_{w}^{\kappa}\right)_{m} - \left(x_{w}^{\kappa}\right)_{n}}\right\}_{nm} \frac{\left(x_{w}^{\kappa}\right)_{m} - \left(x_{w}^{\kappa}\right)_{n}}{D_{nm}}$$
(D.7)

where the gas and oil phase mole fraction gradients have been absorbed into the effective diffusive strength term (in braces). As is well known, flux conservation at the interface then leads to the

requirement of harmonic weighting for the full effective strength coefficient. In order to be able to apply this scheme to the general case where not all phases may be present on both sides of the interface, we always define the water phase mole fractions in all grid blocks, regardless of whether water phase is present or not. Mole fractions are assigned in such a way as to be consistent with what would be present in an evolving water phase. This procedure is applicable to all possible phase combinations, including the extreme case where conditions at the interface change from single phase gas to single phase oil. Note that, if the diffusing tracer exists in just a single phase, harmonic weighting of the strength coefficient in Eq. (D.7) will reduce to harmonic weighting of either Σ_g^{κ} , Σ_w^{κ} or Σ_o^{κ} .

The simpler scheme of separate harmonic weighting for individual phase diffusive fluxes is retained as an option, see below.

D.4 User Options

The treatment of multiphase diffusion requires parameter specifications in several different data blocks. In order to engage diffusion, the user must set the number of secondary parameters NB = 8 in data block MULTI; the alternative value NB = 6 will give a "no diffusion" calculation. Diffusivities are input through a new data block DIFFU.

Diffusion coefficients for gases depend on pressure and temperature as (Vargaftik, 1975; Walker et al., 1981)

$$d_{\beta}^{\kappa}(P,T) = d_{\beta}^{\kappa}(P_0,T_0) \frac{P_0}{P} \left[\frac{T+273.15}{273.15}\right]^{\theta}$$
(D.8)

At standard conditions of $P_0 = 1$ atm = 1.01325 bar, $T_0 = 0$ °C, the diffusion coefficient for vaporair mixtures has a value of 2.13 x 10⁻⁵ m²/s; parameter θ for the temperature dependence is 1.80. TMVOC can model a temperature dependence of gas phase diffusion coefficients according to Eq. (D.8) by specifying parameter θ = TEXP in the first record of data block PARAM (see p. 158). Presently there are no provisions for inputting different values for the parameter θ of temperature dependence for different gas phase components. Aqueous and NAPL phase diffusion coefficients are taken as constants, with no provisions for temperature dependence of these parameters.

Tortuosity effects have a porous medium-dependent part τ_0 and a saturation-dependent part τ_β , see Eq. (D.2). The following three alternative formulations are available.

1. Relative permeability model.

For domains for which a tortuosity parameter $\tau_0 = \text{TORTX} \neq 0$ is specified in data block ROCKS, tortuosity will be taken as $\tau_0 \tau_\beta(S_\beta) = \tau_0 k_{r\beta}(S_\beta)$.

- Millington-Quirk model.
 For domains in which TORTX = 0, the Millington-Quirk model as given in Eq. (D.5) will be used.
- 3. Constant diffusivity.

When diffusivities d_{β}^{κ} are specified as negative numbers, $\tau_0 \tau_{\beta} = S_{\beta}$ will be used. Diffusivities will be taken to be the absolute values of the user inputs.

Alternative 3 corresponds to the formulation for gas diffusion in earlier versions of TOUGH2. In the absence of phase partitioning and adsorptive effects, it amounts to effective diffusivity being approximately equal to d_{β}^{κ} , independent of saturation. This can be seen by noting that the accumulation term in the phase β contribution to the mass balance equation for component κ is given by $\phi S_{\beta} \rho_{\beta} x_{\beta}^{\kappa}$, approximately canceling out the $\phi S_{\beta} \rho_{\beta}$ coefficient in the diffusive flux.

A crude (saturation-independent) enhancement of vapor diffusion can be chosen by specifying a suitable value, typically of order 1, for the parameter group $B = \phi \tau_0 \tau_\beta$. This is to be entered as parameter BE in the first record in data block PARAM (see p. 158).

As had been discussed above, two alternative discretization schemes for diffusion are implemented in TMVOC. The default option is selected for MOP(24) = 0 and applies harmonic weighting to the full multiphase effective diffusion strength (see Eq. D.7). This includes contributions from gas, water, and oil phases, accounts for coupling of diffusion with phase partitioning effects, and can cope with the most general case of diffusion across a phase boundary. As an alternative, by setting MOP(24) = 1, harmonic weighting can be performed separately for the diffusive fluxes in gas, water, and oil phases.

Appendix E. TMVOC Input Formats

This appendix gives a complete reference for TMVOC input data. Data formats are identical to TOUGH2, Version 2.0, except for (1) the presence of new data blocks CHEMP and NCGAS with property data for the organic chemicals and non-condensible gases, respectively, and (2) slight differences in the formats for initial condition data. Input data for the MESHMAKER module are discussed in Appendix F.

TMVOC input data are organized in fixed-format blocks that are marked by keywords. Many of the data blocks may have variable length, some are optional. The main problem sizedependent data may be supplied by means of separate disk files rather than through the input file. Geometry data (computational grid) may be internally generated, or supplied through data blocks ELEME and CONNE, or provided by means of a file called MESH with data formats identical to blocks ELEME and CONNE. Initial conditions are supplied through data block INCON (and/or INDOM, PARAM.4-5) or through a disk file called INCON. Sink and source data are read from a data block GENER or from a disk file GENER.

The ordering of the data blocks is generally flexible; however, data block MULTI must precede data blocks PARAM, INDOM, and INCON. Block ELEME must precede CONNE.

- TITLE is the first record of the input file, containing a header of up to 80 characters, to be printed on output. This can be used to identify a problem. If no title is desired, leave this record blank.
- **MESHM** introduces parameters for internal mesh generation and processing. The MESHMaker input has a modular structure which is organized by keywords. Detailed instructions for preparing MESHMaker input are given in Appendix F.

Record MESHM.1

Format(A5) WORD

WORD enter one of several keywords, such as RZ2D, RZ2DL, XYZ, MINC, to generate different kinds of computational meshes.

<u>Record MESHM.2</u> A blank record closes the MESHM data block.

ENDFI is a keyword that can be used to close a TMVOC input file when no flow simulation is desired. This will often be used for a mesh generation run when some hand-editing of the mesh will be needed before the actual flow simulation.

ROCKS introduces material parameters for up to 27 different reservoir domains.

Record ROCKS.1

	Format (A5, I5, 7E10.4) MAT, NAD, DROK, POR, (PER (I), I = 1,3), CWET, SPHT					
MAT	material name (rock type).					
NAD	if zero or negative, defaults will take effect for a number of parameters (see below);					
	\geq 1: will read another data record to override defaults.					
	\geq 2: will read two more records with domain-specific parameters for relative permeability and capillary pressure functions.					
DROK	rock grain density (kg/m ³)					
POR	default porosity (void fraction) for all elements belonging to domain "MAT" for which no other porosity has been specified in block INCON. Option "START" is necessary for using default porosity.					
PER(I),	I = 1,3 absolute permeabilities along the three principal axes, as specified by ISOT in block CONNE.					
CWET	formation heat conductivity under fully liquid-saturated conditions (W/m $^{\circ}$ C).					
SPHT	rock grain specific heat (J/kg °C). Domains with SPHT > 10^4 J/kg °C will not be included in global material balances. This provision is useful for boundary nodes, which are given very large volumes so that their thermo- dynamic state remains constant. Because of the large volume, inclusion of such nodes in global material balances would make the balances useless.					
<u>Record ROCKS.1.1</u> (optional, NAD \geq 1 only)						
	Format (7E10.4) COM, EXPAN, CDRY, TORTX, GK, FOCM					
СОМ	pore compressiblity (Pa ⁻¹), $(1/\phi)(\partial\phi/\partial P)_T$ (default is 0).					
EXPAN	pore expansivity (1/°C), $(1/\phi)(\partial\phi/\partial T)_P$ (default is 0).					
CDRY	formation heat conductivity under desaturated conditions (W/m $^{\circ}$ C), (default is CWET).					
TORTX	tortuosity factor for binary diffusion. If $TORTX = 0$, a porosity and saturation-dependent tortuosity will be calculated internally from the Millington and Quirk (1961) model, Eq. (D.5).					

- GK Klinkenberg parameter b (Pa⁻¹) for enhancing gas phase permeability according to the relationship $k_{gas} = k_{liq} * (1 + b/P)$.
- FOCM fraction of organic carbon present in domain; used for calculating amount of VOC adsorbed.

<u>Record ROCKS.1.2</u> (optional, NAD \ge 2 only)

Format (I5, 5X,7E10.4) IRP, (RP(I), I= 1,7)

- IRP integer parameter to choose type of relative permeability function (see Appendix G).
- RP(I), I = 1, ..., 7 parameters for relative permeability function (Appendix G).

<u>Record ROCKS.1.3</u> (optional, NAD \ge 2 only)

Format (I5, 5X,7E10.4) ICP, (CP(I), I = 1,7)

- ICP integer parameter to choose type of capillary pressure function (see Appendix H).
- CP(I) I = 1, ..., 7 parameters for capillary pressure function (Appendix H).

Repeat records 1, 1.1, 1.2, and 1.3 for up to 27 reservoir domains.

- <u>Record ROCKS.2</u> A blank record closes the ROCKS data block.
- **CHEMP** provides data for calculating the thermophysical properties of the NAPL/chemical. The units of many of these constants are not standard metric units, and care must be taken to ensure that the appropriate units are used. Most of the data used in this block can be taken from Appendix A of Reid et al. (1987), where the same units are used as here.

CHEMP has the same data formats as for T2VOC, except that for TMVOC there are two new data records, CHEMP.1 and CHEMP.2. These provide, respectively, the number of organic components used in TMVOC (\leq 18), and the name of the component for which data are being provided.

Record CHEMP.1

Format(I5) NHC

NHC number of organic chemicals for which data are to be entered. When using NK = 2 (water and air only, no VOCs) NHC must be set to zero. Subsequent CHEMP records can be omitted in this case.

Record CHEMP.2

Format(A20) HCNAMES

HCNAMES name of the organic chemical (identification only; no effect on calculations).

Record CHEMP.3

Format (5E10.4) TCRITM, PCRITM, ZCRITM, OMEGAM, DIPOLMM

- TCRITM chemical critical temperature, K.
- PCRITM chemical critical pressure, bar (1 bar = 10^5 Pa).
- ZCRITM chemical critical compressibility.
- OMEGAM Pitzer's acentric factor for the chemical.
- DIPOLMM chemical dipole moment, debyes.

Record CHEMP.4

Format (5E10.4) TBOILM, VPAM, VPBM, VPCM, VPDM

- TBOILM chemical normal boiling point, K.
- VPAM chemical vapor pressure constant from Reid et al. (1987). If VPAM \neq 0 use Wagner correlation (Reid et al., 1987), for VPAM = 0 use Antoine correlation.
- VPBM chemical vapor pressure constant from Reid et al. (1987).
- VPCM chemical vapor pressure constant from Reid et al. (1987).
- VPDM chemical vapor pressure constant from Reid et al. (1987).

Record CHEMP.5

Format (5El0.4) AMWTM, CPAM, CPBM, CPCM, CPDDM

- AMWTM chemical molecular weight, g/mole.
- CPAM chemical ideal gas heat capacity constant from Reid et al. (1987).
- CPBM chemical ideal gas heat capacity constant from Reid et al. (1987)
- CPCM chemical ideal gas heat capacity constant from Reid et al. (1987).
- CPDDM chemical ideal gas heat capacity constant from Reid et al. (1987).

Record CHEMP.6

Format (5El0.4) RHOREFM, TDENREF, DIFV0M, TDIFREF, TEXPOM

- RHOREFM reference NAPL (liquid) density, kg/m³.
- TDENREF reference temperature for NAPL density, K.
- DIFV0M reference binary diffusivity of VOC in air, m^2/s .
- TDIFREF reference temperature for gas diffusivity, K.
- TEXPOM exponent for calculation of chemical diffusivity.

<u>Record CHEMP.7</u> introduces data for NAPL viscosity.

Format (5El0.4) VLOAM, VLOBM, VLOCM, VLODM, VOLCRITM

Two options are available for calculating the NAPL liquid viscosity. The liquid viscosity constants VLOAM - VLODM for the desired NAPL may be assigned data given in Table 9-8 of Reid et al. (1987), and the viscosity will be calculated using a polynomial fit to actual viscosity data (Eq. 4.3.11). Alternatively, VLOAM and VLOBM may be set equal to 0, and VLOCM and VLODM are assigned equal to a reference viscosity and a reference temperature, respectively. In this case, the viscosity is calculated from a more general (and less accurate) empirical correlation (Van Velzen et al., 1972).

- VLOAM liquid NAPL viscosity constant from Reid et al. (1987).
- VLOBM liquid NAPI viscosity constant from Reid et al. (1987).
- VLOCM liquid NAPL viscosity constant from Reid et al. (1987). If VLOAM and VLOBM = 0, VLOCM is reference NAPL viscosity in units of cP (1 cP = 10^{-3} Pa-s).
- VLODM liquid NAPL viscosity constant from Reid et al. (1987). If VLOAM and VLOBM = 0, VLODM is reference temperature for NAPL viscosity in units of Kelvin.
- VOLCRITM chemical critical volume, cm³/mole.

<u>Record CHEMP.8</u> introduces data for chemical solubility.

Fomat (4E10.4) SOLAM, SOLBM, SOLCM, SOLDM

The chemical solubility is calculated from the polynomial SOLUBILITY = SOLAM + SOLBM*T + SOLCM*T**2 + SOLDM*T**3. If data for the solubility as a function of temperature are available, then SOLAM, SOLBM, SOLCM, and SOLDM should be calculated from a polynomial fit

of the data. If such data are not available (the usual case), the solubility will be assumed to be constant, and SOLAM should be set equal to the known solubility, with SOLBM, SOLCM, and SOLDM set equal to 0.

- SOLAM constant for chemical solubility in water, mole fraction.
- SOLBM constant for chemical solubility in water, mole fraction/K.
- SOLCM constant for chemical solubility in water, mole fraction/K².
- SOLDM constant for chemical solubility in water, mole fraction/ K^3 .

Record CHEMP.9

Fomat (3El0.4) OCKM, FOXM, ALAMM

- OCKM chemical organic carbon partition coefficient K_{oc} (see Eq. 4.4.2), m³/kg.
- FOXM default value for fraction of organic carbon in soil, used for all domains for which no specific value is provided in record ROCKS.1.1.
- ALAMM decay constant for biodegradation of VOC, s⁻¹ (see section 4.5). Biodegradation is assumed to take place only in the aqueous phase, and to follow a first order decay law, $M_{VOC}(t) = M_{VOC,0} * \exp(-\lambda t)$. The decay constant $\lambda = ALAMM$ is expressed in terms of the half life $T_{1/2}$ of the VOC as follows: $\lambda = (\ln 2) / T_{1/2}$. Default is ALAMM = 0.

Repeat records CHEMP.2 through CHEMP.9 for a total of NHC (up to eighteen) different organic chemicals.

NCGAS is an optional data block for specifying the number and nature of noncondensible gases to be modeled by TMVOC. If NCGAS is absent, there will be a single non-condensible gas, air.

Record NCGAS.1

Format (I5) NCG

NCG number of non-condensible gases in the simulation.

Record NCGAS.2

Format (A10) NCGINP

NCGINP name of non-condensible gas, to be chosen among the 8 NCGs included in the internal data bank. They are: AIR, O2, N2, CO2, CH4, ETHANE, ETHYLENE, ACETYLENE. NCG names are case sensitive and must be entered exactly as stated here, starting in column 1. Provide record NCGAS.2 for NCG non-condensible gases as specified in record NCGAS.1.

MULTI is a mandatory data block for TMVOC which permits the user to select the number and nature of balance equations that will be solved. MULTI must precede data blocks PARAM, INDOM, and INCON (if present). The keyword MULTI is followed by a single data record.

Record MULTI. 1

Format (515) NK, NEQ, NPH, NB, NKIN

- NK (\geq 2) number of mass components. By convention, mass component # 1 is water, # 2 through NCG+1 are the NCGs, and components # NCG+2 through NK = NHC+NCG+1 are the VOCs (see Table 3). By specifying NK = 2 a run with only water and air and no VOCs can be performed. In this case parameter NHC in data block CHEMP must be set to zero.
- NEQ number of balance equations per grid block. Usually we have NEQ = NK + 1, for solving NK mass and one energy balance equation. TMVOC allows the option NEQ = NK, in which case only NK mass balances and no energy equation will be solved. However, even when specifying NEQ = NK temperatures in different grid blocks may be different. Initial temperatures will remain unchanged in the course of a simulation, and all thermophysical properties will be evaluated at the temperatures specified for the individual grid blocks.
- NPH number of phases that can be present. Only available option is NPH = 3.
- NB number of secondary parameters in the PAR-array (see Fig. 6.3.1) other than component mass fractions. Available options include NB = 6 (no diffusion) and NB = 8 (include diffusion).
- NKIN (≥ 2) number of mass components in INCON data (default is NKIN = NK). This parameter can be used to initialize a simulation with NK mass components from initial conditions for NKIN < NK components. For example, the user may first run a simulation with NK = 2 (water and air only, no VOCs), to obtain "natural" state conditions prior to a contamination event. The SAVE file generated by that run can be used as INCON (data or file) in a subsequent run with NKIN = 2, NK > NKIN, in which a VOC release will be modeled. By convention, the mass components NKIN+1, NKIN+2, ... will be initialized with concentrations equal to 0. Only VOCs (not NCGs) can be added when running with NK > NKIN.

A TMVOC simulation may be optionally initialized from T2VOC-style primary variables by setting NKIN to the negative of the number of mass components in the T2VOC data; i.e., NKIN = -2 or -3. For consistency, if this option is used TMVOC should run with only one NCG, and this should be air. If the same temperature-independent Henry's coefficient K_H is to be used as in T2VOC, IE(3) = 1 must be specified in data block SELEC. Further explanation of initialization and primary variable useage is given in the section on data block PARAM below (records PARAM.4 and PARAM.5).

START (optional)

A record with START typed in columns 1-5 allows a more flexible initialization. More specifically, when START is present, INCON data can be in arbitrary order, and need not be present for all grid blocks (in which case defaults will be used). Without START, there must be a one-to-one correspondence between the data in blocks ELEME and INCON.

PARAM introduces computation parameters, time stepping information, and default initial conditions.

Record PARAM.1

Format (2I2, 3I4, 24I1, 10X, 2E10.4). NOITE, KDATA, MCYC, MSEC, MCYPR, (MOP(I), I = 1, 24), TEXP, BE

- NOITE specifies the maximum number of Newtonian iterations per time step (default is 8). Time step will be reduced if no convergence is achieved.
- KDATA specifies amount of printout (default is 1).

0 or 1: print a selection of the most important variables.

2: in addition, print mass and heat fluxes and flow velocities.

3: in addition, print primary variables and their changes.

If the above values for KDATA are increased by 10, printout will occur after each Newton-Raphson iteration (not just after convergence).

- MCYC maximum number of time steps to be calculated.
- MSEC maximum duration, in CPU seconds, of the simulation (default is infinite).
- MCYPR printout will occur for every multiple of MCYPR steps (default is 1).
- MOP(I), I = 1,24 allows choice of various options, which are documented in printed output from a TMVOC run.
- MOP(1) if unequal 0, a short printout for non-convergent iterations will be generated.

MOP(2) through MOP(6) generate additional printout in various subroutines, if set unequal 0. This feature should not be needed in normal applications, but it will be convenient when a user suspects a bug and wishes to examine the inner workings of the code. The amount of printout increases with MOP(I) (consult source code listings for details).

- MOP(2) CYCIT (main subroutine).
- MOP(3) MULTI (flow- and accumulation-terms).

- MOP(4) QU (sinks/sources).
- MOP(5) EOS (equation of state).
- MOP(6) LINEQ (linear equations).
- MOP(7) if unequal 0, a printout of input data will be provided.
- MOP(8) not used by TMVOC.

Calculational choices are as follows:

- MOP(9) determines the composition of produced fluid with the MASS option (see GENER, below). The relative amounts of phases are determined as follows:
 - 0: according to relative mobilities in the source element.
 - 1: produced source fluid has the same phase composition as the producing element.
- MOP(10) chooses the interpolation formula for heat conductivity as a function of liquid saturation (S₁)
 - 0: $C(S_l) = CDRY + SQRT(S_l^* [CWET CDRY])$
 - 1: $C(S_l) = CDRY + S_l * (CWET CDRY)$
- MOP(11) determines evaluation of mobility and permeability at interfaces.
 - 0: mobilities are upstream weighted with WUP (see PARAM.3), permeability is upstream weighted.
 - 1: mobilities are averaged between adjacent elements, permeability is upstream weighted.
 - 2: mobilities are upstream weighted, permeability is harmonic weighted.
 - 3: mobilities are averaged between adjacent elements, permeability is harmonic weighted.
 - 4: mobility and permeability are both harmonic weighted.
- MOP(12) determines interpolation procedure for time dependent sink/source data (flow rates and enthalpies).
 - 0: triple linear interpolation; tabular data are used to obtain interpolated rates and enthalpies for the beginning and end of the time step; the average of these values is then used.
 - 1: step function option; rates and enthalpies are taken as averages of the table values corresponding to the beginning and end of the time step.

2: rigorous step rate capability for time dependent generation data.

A set of times t_i and generation rates q_i provided in data block GENER is interpreted to mean that sink/source rates are piecewise constant and change in discontinuous fashion at table points. Specifically, generation is assumed to occur at constant rate q_i during the time interval $[t_i, t_{i+1})$, and changes to q_{i+1} at t_{i+1} . Actual rate used during a time step that ends at time t, with $t_i \le t \le t_{i+1}$, is automatically adjusted in such a way that total cumulative exchanged mass at time t

$$Q(t) = \int_{0}^{t} q \, dt' = \sum_{j=1}^{i-1} q_j (t_{j+1} - t_j) + q_i (t - t_i)$$
(E.1)

is rigorously conserved. If also tabular data for enthalpies are given, an analogous adjustment is made for fluid enthalpy, to preserve $\int qh dt$.

- MOP(13) (used by dispersion module T2DM).
- MOP(14) determines handling of pivot failures in matrix decomposition (MA28 only).
 - 0: perform new matrix decomposition when encountering a pivot failure.
 - >0: ignore pivot failures.
- MOP(15) determines conductive heat exchange with impermeable confining layers (see section 8.4).
 - 0: heat exchange is off.
 - 1: heat exchange is on (for grid blocks that have a non-zero heat transfer area; see data block ELEME).
- MOP(16) provides automatic time step control. Time step size will be doubled if convergence occurs within ITER \leq MOP(16) Newton-Raphson iterations. It is recommended to set MOP(16) in the range of 2 4.
- MOP(17) chooses scaling-option for preconditioning the Jacobian matrix (MA28 only).
 - 0: no scaling.
 - 7: do perform scaling.
- MOP(18) selects handling of interface density.
 - 0: perform upstream weighting for interface density.
 - >0: average interface density between the two grid blocks. However, when one of the two phase saturations is zero, upstream weighting will be performed.

- MOP(19) (not used by TMVOC).
- MOP(20) (switch for vapor pressure lowering in EOS4 of TOUGH2).
- MOP(21) selects the linear equation solver (see section 8.6).
 - 0: defaults to MOP(21) = 3, DSLUCS, Lanczos-type preconditioned bi-conjugate gradient solver.
 - 1: MA28, sparse direct solver.
 - 2: DSLUBC, bi-conjugate gradient solver.
 - 3: DSLUCS (default).
 - 4: DSLUGM, generalized minimum residual preconditioned conjugate gradient solver.
 - 5: DLUSTB, stabilized bi-conjugate gradient solver.
 - 6: LUBAND, banded direct solver.

All conjugate gradient solvers use incomplete LU-factorization as a default preconditioner. Other preconditioners may be chosen by means of a data block SOLVR (see section 8.6).

- MOP(22) (used by dispersion module T2DM).
- MOP(23) (used by dispersion module T2DM).
- MOP(24) determines handling of multiphase diffusive fluxes at interfaces.
 - 0: harmonic weighting of fully coupled effective multiphase diffusivity.
 - 1: separate harmonic weighting of gas and liquid phase diffusivities.
- TEXP parameter for temperature dependence of gas phase diffusion coefficient (see Eq. D.8).
- BE (optional) parameter for effective strength of enhanced vapor diffusion; if set to a non-zero value, will replace the parameter group $\phi \tau_0 \tau_\beta$ for vapor diffusion (see Eq. D.3 and section D.4).

Record PARAM.2

Format (4E10.4, A5, 5X,3E10.4) TSTART, TIMAX, DELTEN, DELTMX, ELST, GF, REDLT, SCALE

- TSTART starting time of simulation in seconds (default is 0).
- TIMAX time in seconds at which simulation should stop (default is infinite).

- DELTEN length of time steps in seconds. If DELTEN is a negative integer, DELTEN = -NDLT, the program will proceed to read NDLT records with time step information. Note that - NDLT must be provided as a floating point number, with decimal point.
- DELTMX upper limit for time step size in seconds (default is infinite).
- ELST set equal to the name of one element to obtain a short printout after each time step.
- GF magnitude (m/sec²) of the gravitational acceleration vector. Blank or zero gives "no gravity" calculation.
- REDLT factor by which time step is reduced in case of convergence failure or other problems (default is 4).
- SCALE scale factor to change the size of the mesh (default = 1.0).

Record PARAM.2.1, 2.2, etc.

Format (8E10.4) (DLT(I), I = 1, 100)

DLT(I) Length (in seconds) of time step I.

This set of records is optional for DELTEN = - NDLT, a negative integer. Up to 13 records can be read, each containing 8 time step data. If the number of simulated time steps exceeds the number of DLT(I), the simulation will continue with time steps equal to the last non-zero DLT(I) encountered. When automatic time step control is chosen (MOP(16) > 0), time steps following the last DLT(I) input by the user will increase according to the convergence rate of the Newton-Raphson iteration. Automatic time step reduction will occur if the maximum number of Newton-Raphson iterations is exceeded (parameter NOITE, record PARAM.1).

Record PARAM.3

Format (6E10.4,10X,E10.4) RE1, RE2, U, WUP, WNR, DFAC, AMRES

- RE1 convergence criterion for relative error, see Appendix B (default= 10^{-5}).
- RE2 convergence criterion for absolute error, see appendix B (default= 1).
- U pivoting parameter for linear equation solution with the MA28 direct solver. U must be in the range $0 \le U < 1$, and the default is U = 0.1. Increased value for U will make criterion for pivot selection more stringent, resulting in better numerical stability at the expense of increased computing time for matrix decomposition.
- WUP upstream weighting factor for mobilities and enthalpies at interfaces

(default = 1.0 is recommended). $0 \le WUP \le 1$.

- WNR weighting factor for increments in Newton/Raphson iteration (default = 1.0 is recommended). $0 < WNR \le 1$.
- DFAC increment factor for numerically computing derivatives (default value is DFAC = $10 \cdot k^2$, where k, evaluated internally, is the number of significant digits of the floating point processor used; for 64-bit arithmetic, DFAC $\approx 10^{-8}$).
- AMRES maximum permissible residual during the Newtonian iteration (Eq. B.8). If a residual larger than AMRES is encountered, time step will automatically be reduced. When AMRES is left blank or is set to zero, no limitation on residuals will be enforced.
- <u>Record PARAM.4</u> (only for TMVOC-style initialization; absent when T2VOC-style initial conditions are used).

Format(I5) INDICAT0

- INDICAT0 integer variable to specify default phase compositions for all grid blocks that are not given alternative assignments by means of data blocks INDOM or INCON. Parameters corresponding to the seven possible phase combinations in a gas-water-oil system are shown in Table E.1. Option START is necessary to use default initial conditions.
- <u>Record PARAM.5</u> introduces a set of primary variables which are used as default initial conditions for all grid blocks that are not assigned by means of data blocks INDOM or INCON. The primary thermodynamic variables used in TMVOC depend on the phase conditions and are summarized in Table E.1, below.

Format (4E20.14) DEP(I), I = 1, NKIN+1

		Primary Variables $\Leftarrow \Leftarrow \Leftarrow \Leftarrow VOCs \Leftarrow \Rightarrow NCGs \Rightarrow \Rightarrow \Rightarrow$						
Phase Conditions	Phase Index		VOC #1		VOC #NHC	NCG #1	 NCG #NCG	
		1	2		NHC + 1	NHC + 2	 NK	NK+1
gas only	1	Р	x _g ^{2+NCG}	•••	x _g ^{NK}	x _g ²	 x ^{1+NCG}	Т
water only	2	Р	x_w^{2+NCG}		x _w ^{NK}	x _w ²	 x_w^{1+NCG}	Т
NAPL only	3	Р	x_n^{2+NCG}		x _n ^{NK}	x _n ²	 x _n ^{1+NCG}	Т
gas and water	4	Р	x _g ^{2+NCG}		x _g ^{NK}	x _g ²	 S_{W}	Т
gas and NAPL	5	Р	x _g ^{2+NCG}		x _g ^{NK}	x _g ²	 Sn	Т
water and NAPL	6	Р	x _n ^{2+NCG}		x _n ^{NK}	x_n^2	 S_{w}	Т
three phase	7	Р	Sg	••••	x _g ^{NK}	x _g ²	 S_{W}	Т

Table E.1. Phase identifiers (INDICAT0) and primary thermodynamic variables used by TMVOC.

P is the pressure of a reference phase in units of Pa. Actual pressure used in each of the phases is P + $P_{c\beta}$, where $P_{c\beta}$ is capillary pressure in phase $\beta = g$, w, n at prevailing saturation conditions. x_{β}^{ν} are mole fractions of the $\nu = 1$, ..., NHC+NCG hydrocarbon and NCG components in the different phases; S_{β} is saturation of phase β ; and T is temperature in °C. When more than four primary variables are used, more than one line (record) of input data must be provided.

For NKIN < 0 (NKIN = -2 or -3) T2VOC-style primary variables as shown in Table E.2 are used for initialization (see discussion of data block MULTI, above), and record PARAM.4 is omitted..

Primary Variables	X1	X2	X3	X4
Phases				
aqueous	Р	Xaw+50	Xmolow	Т
aq., NAPL	Р	Sw	Xaw+50	Т
aq., gas	Р	Sw	Xmolog	Т
aq., gas, NAPL	Р	Sw	Sg+10	Т

Table E.2. Choice of primary variables in T2VOC.

Specifically, for NKIN = -3 the run is initialized from NK = 3 T2VOC-style variables, while for NKIN = -2 initialization is made from NK = 2 T2VOC-style variables. For NK = 2 in T2VOC the third primary variable is omitted. When using T2VOC-style primary variables, these will be converted internally to TMVOC-type variables during the initialization phase of a simulation. TMVOC always uses the primary variables as given in Table E.1.

The T2VOC primary variables are P - pressure, Xaw - mass fraction of air in aqueous phase, Xmolow - mole fraction of VOC in aqueous phase, T - temperature, Sw - water saturation, Xmolog - mole fraction of VOC in gas phase, and Sg - gas saturation. The increments (adding 10, 50) and place changes for some of the primary variables have been chosen so as to enable the fluid property module to recognize fluid phase compositions from the numerical values of the primary variables present.

INDOM introduces domain-specific initial conditions. These will supersede default initial conditions specified in PARAM.4, 5 and can be overwritten by element-specific initial conditions in data block INCON. Option START is needed to use INDOM conditions.

Data formats for record INDOM.2 are identical to those for record PARAM.5.

Record INDOM. 1

Format(A5, I5) MAT, INDECEIN

- MAT name of a reservoir domain, as specified in data block ROCKS.
- INDECEIN integer variable to specify default phase compositions for all grid blocks in the domain named in record INDOM.1. These may be superseded for individual grid blocks by means of assignments in data block INCON. See explanation given for parameter INDICAT0 (record PARAM.4, above). For NKIN = -2 or -3 (data block MULTI), thermodynamic conditions are input as for T2VOC, and are converted internally to TMVOC format. In that case parameter INDECEIN can be omitted and will be ignored.

Record INDOM.2

Format(4E20.13) Xl, X2, X3, ...

A set of NKIN+1 primary variables assigned to all grid blocks in the domain specified in record INDOM.1. See Table E.1 for information on the primary variables.

Repeat records INDOM. 1 and INDOM.2 for as many domains as desired. The ordering is arbitrary and need not be the same as in block ROCKS.

Record INDOM.3

A blank record closes the INDOM data block.

INCON introduces element-specific initial conditions.

Record INCON.1

Format (A3, I2, 2I5, E15.9, I2) EL, NE, NSEQ, NADD, PORX, INDICEE

- EL, NE code name of element.
- NSEQ number of additional elements with the same initial conditions.
- NADD increment between the code numbers of two successive elements with identical initial conditions.
- PORX porosity; if zero or blank, porosity will be taken as specified in block ROCKS if option START is used.
- INDICEE integer variable to assign phase compositions for specific grid blocks. For parameter choices see the explanation given for parameter INDICAT0 (record PARAM.4, above). When T2VOC-style initial conditions are used, parameter INDICEE is ignored.
- <u>Record INCON.2</u> specifies primary variables.

Format (4E20.14) Xl, X2, X3, ...

A set of NKIN+1 primary variables for the element specified in record INCON.1. Data formats are identical to record PARAM.5. INCON specifications will supersede default conditions specified in PARAM.4,5, and will supersede domain-specific conditions that may have been specified in data block INDOM.

- <u>Record INCON.3</u> A blank record closes the INCON data block. Alternatively, initial condition information may terminate on a record with '+++' typed in the first three columns, followed by time stepping information. This feature is used for a continuation run from a previous TMVOC simulation.
- **SOLVR** (optional) introduces a data block with parameters for linear equation solvers.

Record SOLVR.1

Format(I1,2X,A2,3X,A2,2E10.4) MATSLV, ZPROCS, OPROCS, RITMAX, CLOSUR

The SOLVR parameter choices are explained in section 8.6.

FOFT (optional) introduces a list of elements (grid blocks) for which timedependent data are to be written out for plotting to a file called FOFT during the simulation.

Record FOFT.1

Format(A5) EOFT(I)

EOFT is an element name. Repeat for up to 100 elements, one per record.

<u>Record FOFT.2</u> A blank record closes the FOFT data block.

COFT (optional) introduces a list of connections for which time-dependent data are to be written out for plotting to a file called COFT during the simulation.

Record COFT.1

Format(A10) ECOFT(I)

ECOFT is a connection name, i.e., an ordered pair of two element names. Repeat for up to 100 connections, one per record.

<u>Record COFT.2</u> A blank record closes the COFT data block.

GOFT (optional) introduces a list of sinks/sources for which time-dependent data are to be written out for plotting to a file called GOFT during the simulation.

Record GOFT.1

Format(A5) EGOFT(I)

EGOFT is the name of an element in which a sink/source is defined. Repeat for up to 100 sinks/sources, one per record. When no sinks or sources are specified here, by default tabulation will be made for all.

<u>Record GOFT.2</u> A blank record closes the GOFT data block.

NOVERSION (optional)

One record with NOVER typed in columns 1-5 will suppress printing of a summary of versions and dates of the program units in a TMVOC run.

SELECTION (optional) introduces a number of integer and floating point parameters that are used for different purposes in different TOUGH2 modules.

Record SELEC.1

Format(16I5) IE(I), I=1,16

- IE(1) number of records with floating point numbers that will be read (default for IE(1) = 0 is one additional record; maximum value is 64).
- IE(2) allows to choose among different EOS options for real gas mixture.
 - 0: Soave-Redlich-Kwong (Soave, 1972); default.
 - -1: ideal gas mixture.
 - 1: Soave-Redlich-Kwong (Soave, 1972).
 - 2: modified Soave-Redlich-Kwong (Graboski et al., 1978).
 - 3: Peng-Robinson (Peng and Robinson, 1976).
- IE(3) allows to choose different correlations for air solubility in water
 - 0: $K_H = K_H(T)$, as in EWASG (Battistelli et al., 1997).
 - 1: $K_{\rm H} = 10^{10}$ Pa, independent of temperature, as in EOS3 and T2VOC.
 - 2: K_H for air is obtained by harmonic weighting of the Henry's coefficients for oxygen and nitrogen.

Record SELEC.2, SELEC.3, ..., SELEC.IE(1)*8

Format(8E10.4) FE(I), I=1,IE(1)*8

provide as many records with floating point numbers as specified in IE(1), up to a maximum of 64 records; default for IE(1) = 0 is one additional record. Presently no use is made of these parameters in TMVOC.

DIFFUSION (optional; needed only for $NB \ge 8$) introduces diffusion coefficients.

Record DIFFU.1

Format(8E10.4) FDDIAG(I,1), I=1,NPH diffusion coefficients for mass component # 1 in all phases (I=1: gas; I=2: aqueous; I=3: NAPL).

Record DIFFU.2

Format(8E10.4) FDDIAG(I,2), I=1,NPH diffusion coefficients for mass component # 2 in all phases.

provide a total of NK records with diffusion coefficients for all NK mass components. See Appendix D for additional parameter specifications for diffusion.

RPCAP introduces information on relative permeability and capillary pressure functions, which will be applied for all flow domains for which no data were specified in records ROCKS.1.2 and ROCKS.1.3. A catalog of relative permeability and capillary pressure functions is presented in Appendix G and Appendix H, respectively.

Record RPCAP.1

	Format (I5,5X,7E10.4) IRP, (RP(I),I = 1, 7)		
IRP	integer parameter to choose type of relative permeability function (see Appendix G).		
RP(I),	I = 1,, 7 parameters for relative permeability function (Appendix G).		
Record RPCA	<u>P.2</u>		
	Format (I5,5X,7E10.4) ICP, (CP(I), I = 1, 7)		
ICP	integer parameter to choose type of capillary pressure function (see Appendix H).		
CP(I)	I = 1,, 7 parameters for capillary pressure function (Appendix H).		
TIMES	permits the user to obtain printout at specified times (optional). This printout will occur in addition to printout specified in record PARAM.1.		
Record TIMES.1			
	Format (2I5,2E10.4) ITI, ITE, DELAF, TINTER		
ITI	number of times provided on records TIMES.2, TIMES.3, etc., (see below; restriction: ITI \leq 100).		
ITE	total number of times desired (ITI \leq ITE \leq 100; default is ITE = ITI).		
DELAF	maximum time step size after any of the prescribed times have been reached (default is infinite).		
TINTER	time increment for times with index ITI, ITI+1,, ITE.		
Record TIMES.2, TIMES.3, etc.			
	Format (8E10.4)		

(TIS(I), I = l, ITI)

TIS(I) list of times (in ascending order) at which printout is desired.

ELEME introduces element (grid block) information.

Record ELEME.1

Format (A3, I2, 2I5, A3, A2, 6E10.4) EL, NE, NSEQ, NADD, MA1, MA2, VOLX, AHTX, PMX, X, Y, Z

- EL, NE five-character code name of an element. The first three characters are arbitrary, the last two characters must be numbers.
- NSEQ number of additional elements having the same volume and belonging to the same reservoir domain.
- NADD increment between the code numbers of two successive elements. (Note: the maximum permissible code number NE + NSEQ *NADD is \leq 99.)
- MA1, MA2 a five-character material identifier corresponding to one of the reservoir domains as specified in block ROCKS. If the first three characters are blanks and the last two characters are numbers then they indicate the sequence number of the domain as entered in ROCKS. If both MA1 and MA2 are left blank the element is by default assigned to the first domain in block ROCKS.
- VOLX element volume (m³).
- AHTX interface area (m²) for heat exchange with semi-infinite confining beds. Internal MESH generation via MESHMaker will automatically assign AHTX.
- PMX permeability modifier (optional, active only when a domain 'SEED ' has been specified in the ROCKS block; see section 8.5). Will be used as multiplicative factor for the permeability parameters from block ROCKS. Simultaneously, strength of capillary pressure will be scaled as 1/SQRT(PMX). PMX = 0 will result in an impermeable block.

Random permeability modifiers can be generated internally, see detailed comments in the TMVOC output file. The PMX may be used to specify spatially correlated heterogeneous fields, but users need their own preprocessing programs for this, as TMVOC provides no internal capabilities for generating such fields.

X, Y, Z Cartesian coordinates of grid block centers. These may be included in the ELEME data to make subsequent plotting of results more convenient. The coordinate data are not used in TMVOC.

Repeat record ELEME.1 for the number of elements desired.

<u>Record ELEME.2</u> A blank record closes the ELEME data block.

CONNE introduces information for the connections (interfaces) between elements.

Record CONNE.1

	Format (A3, I2, A3, I2, 4I5, 5E10.4) EL1, NE1, EL2, NE2, NSEQ, NAD1, NAD2, ISOT, D1, D2, AREAX, BETAX, SIGX			
EL1, NE1	code name of the first element.			
EL2, NE2	code name of the second element.			
NSEQ	number of additional connections in the sequence.			
NAD1	increment of the code number of the first element between two successive connections.			
NAD2	increment of the code number of the second element between two successive connections.			
ISOT	set equal to 1, 2, or 3; specifies absolute permeability to be PER(ISOT) for the materials in elements (EL1, NE1) and (EL2, NE2), where PER is read in block ROCKS. This allows assignment of different permeabilities, e.g., in the horizontal and vertical direction.			
D1 } D2 }	distance (m) from first and second element, respectively, to their common interface.			
AREAX	interface area (m ²).			
BETAX	cosine of the angle between the gravitational acceleration vector and the line between the two elements. GF * BETAX > 0 (<0) corresponds to first element being above (below) the second element.			
SIGX	"radiant emittance" factor for radiative heat transfer, which for a perfectly "black" body is equal to 1. The rate of radiative heat transfer between the two grid blocks is			
	$G_{rad} = SIGX * \sigma_0 * AREAX * (T_2^4 - T_1^4) $ (E.2)			
	where $\sigma_0 = 5.6687e-8 \text{ J/m}^2 \text{ K}^4 \text{ s}$ is the Stefan-Boltzmann constant, and T_1 and T_2 are the absolute temperatures of the two grid blocks. SIGX may be entered as a negative number, in which case the absolute value will be used, and heat conduction at the connection will be suppressed. SIGX = 0 will result in no radiative heat transfer.			

Repeat record CONNE.1 for the number of connections desired.

<u>Record CONNE.2</u> A blank record closes the CONNE data block. Alternatively, connection information may terminate on a record with '+++' typed in the first three columns, followed by element cross-referencing information. This is the termination used when generating a MESH file with TMVOC.
GENER introduces sinks and/or sources.

Record GENER.1

	Format (A3, EL, NE, SL,	I2, A3, I2, 4I5, 5X,A4, A1,3E10.4) NS, NSEQ, NADD, NADS, LTAB, 7	ГҮРЕ, ITAB, GX, EX, HX								
EL, NE	code name of	f the element containing the sink/sou	rce.								
SL, NS	code name of the sink/source. The first three characters are arbitrary, the last two characters must be numbers.										
NSEQ	number of ac (not applicab	number of additional sinks/sources with the same injection/production rate (not applicable for TYPE = DELV).									
NADD	increment between the code numbers of two successive elements with identical sink/source.										
NADS	increment between the code numbers of two successive sinks/sources.										
LTAB	number of points in table of generation rate versus time. Set 0 or 1 for constant generation rate. For wells on deliverability, LTAB denotes the number of open layers, to be specified only for the bottommost layer.										
TYPE	specifies diff	erent options for fluid or heat produ	ction and injection.								
	HEAT	introduces a heat sink/source.									
	COMI										
	WATE	- component 1 (water).									
	COM2	- component 2 (NCG # 1)	injection								
	COM3	- component 3 (NCG # 2)	only								
	•••										
	COMn	- component n (VOC # n-ncg-1)									

If the component index n is larger than 9, use TYPE = CO10, CO11 etc.

MASS - mass production rate specified.

DELV - well on deliverability, i.e., production occurs against specified bottomhole pressure. If well is completed in more than one layer, bottommost layer must be specified first, with number of layers given in LTAB. Subsequent layers must be given sequentially for a total number of LTAB layers.

- ITAB unless left blank, table of specific enthalpies will be read (LTAB > 1 only). When fluid injection is specified as time-dependent tabular data (LTAB > 1), ITAB must be set to a non-blank character, and enthalpy data must be provided (F3, below).
- GX constant generation rate; positive for injection, negative for production; GX is mass rate (kg/sec) for generation types COMI, COM2, COM3, etc., and MASS; it is energy rate (J/s) for a HEAT sink/source. For wells on deliverability, GX is productivity index PI (m³), Eq. (29).
- EX fixed specific enthalpy (J/kg) of the fluid for mass injection (GX>0). For wells on deliverability against fixed bottomhole pressure, EX is bottomhole pressure P_{wb} (Pa), at the center of the topmost producing layer in which the well is open.
- HG thickness of layer (m; wells on deliverability with specified bottomhole pressure only).

<u>Record GENER.1.1</u> (optional, LTAB > 1 only)

Format (4E14.7) Fl(L), L=l, LTAB

F1 generation times

<u>Record GENER.1.2</u> (optional, LTAB > 1 only)

Format (4E14.7) F2(L), L=1, LTAB

F2 generation rates.

<u>Record GENER.1.3</u> (LTAB > 1 and ITAB non-blank only; optional for fluid production (F2 < 0), mandatory for fluid injection (F2 > 0))

Format (4E14.7) F3(L), L=1, LTAB

F3 specific enthalpy of produced or injected fluid.

Repeat records GENER.1, 1.1, 1.2, and 1.3 for the number of sinks/sources desired.

- <u>Record GENER.2</u> A blank record closes the GENER data block. Alternatively, generation information may terminate on a record with '+++' typed in the first three columns, followed by element cross-referencing information.
- **ENDCY** closes the TMVOC input file and initiates the simulation.

Note on closure of blocks CONNE, GENER, and INCON

The ordinary way to indicate the end of any of the above data blocks is by means of a blank record. There is an alternative available if the user makes up an input file from files MESH, GENER, or SAVE, which have been generated by a previous TMVOC run. These files are written exactly according to the specifications of data blocks ELEME and CONNE (file MESH), GENER (file GENER), and INCON (file SAVE), except that the CONNE, GENER, and INCON data terminate on a record with "+++" in columns 1-3, followed by some cross-referencing and restart information. TMVOC will accept this type of input, and in this case there is no blank record at the end of the indicated data blocks.

Appendix F. Input Formats for MESHMAKER

The MESHMaker module performs internal mesh generation and processing. The input for MESHMaker has a modular structure and a variable number of records; it begins with keyword MESHM and ends with a blank record (see Fig. F.1).

At the present time there are three sub-modules available in MESHMaker: keywords RZ2D or RZ2DL invoke generation of a one or two-dimensional radially symmetric R-Z mesh; XYZ initiates generation of a one, two, or three dimensional Cartesian X-Y-Z mesh; and MINC calls a modified version of the GMINC program (Pruess, 1983b) to sub-partition a primary porous medium mesh into a secondary mesh for fractured media, using the method of "multiple interacting continua" (Pruess and Narasimhan, 1982, 1985). The meshes generated under keyword RZ2D or XYZ are internally written to file MESH. The MINC processing operates on the data in file MESH, so that invoking the RZ2D or XYZ options, or assignment of ELEME and CONNE blocks in the INPUT file must precede the MESHMaker/MINC data. We shall now separately describe the preparation of input data for the three MESHMaker sub-modules.

Generation of radially symmetric grids

Keyword RZ2D (or RZ2DL) invokes generation of a radially symmetric mesh. Values for the radii to which the grid blocks extend can be provided by the user or can be generated internally (see below). Nodal points will be placed half-way between neighboring radial interfaces. When RZ2D is specified, the mesh will be generated by columns; i.e., in the ELEME block we will first have the grid blocks at smallest radius for all layers, then the next largest radius for all layers, and so on. With keyword RZ2DL the mesh will be generated by layers; i.e., in the ELEME block we will first have all grid blocks for the first (top) layer from smallest to largest radius, then all grid blocks for the second layer, and so on. Apart from the different ordering of elements, the two meshes for RZ2D and RZ2DL are identical. The reason for providing the two alternatives is as a convenience to users in implementing boundary conditions by way of inactive elements (see Section 8.2). Assignment of inactive elements would be made by using a text editor on the RZ2D-generated MESH file, and moving groups of elements towards the end of the ELEME block, past a dummy element with zero volume. RZ2D makes it easy to declare a vertical column inactive, facilitating assignment of boundary conditions in the vertical, such as a gravitationally equilibrated pressure gradient. RZ2DL on the other hand facilitates implementation of areal (top and bottom layer) boundary conditions.

			ł										ME	S	Н	n	ak	E	R		_	1	W	0	- (d	i R	e	n	s i	0	n	1		R-	Z	(Gr	• i	d	3			1														
			- 1						-	2	-			*	-			• 3) -	-	-	-				-	4	-	-			-		-	5		-	-	*		-	-	6		-	-	* -		-	- 1	- 1	-			-		-	8
HIEISI HIM	A _I K	IE F	പ	1	ц	1	Ц	L	L	L		1	1		L	ш	_	L	T	L	1		Ц	1	1	1	1	Ц	Ц		1	Ľ	1	1	ш		T	L	Ц	1	1	L	Ц	1	L	Ц	ц	Ļ		ц	L		ш	L	L	Ц	L	L
RIZIZIDI	L	ш	Ц	1	ц	L	Ц	L	L	L	Ц	L	1	L	Ц	Ц	L	L	L	L	L		Ц		L	1	L	Ц	Ц		L	Ц	1	1	Ц		L		Ц	1	L	L	Ц	1	L	Ľ	Ц	ı	1	Ц	1		Ц	1	L	Ц	1	L
RIADIIII NBAD	ŀ	Ц	ш	1	Ц		Ц	L	L		Ц	_	1	L	Ц	Ц	L	L	L	L	L		Ц	1	1	L	L	Ц	Ц	Ц	L	Ц	1	L	ш	Ц	L	L	ù	1	L	L	Ц	_	L	Ц	Ц	1	L	Ц	1	L	Ц	1		Ц	L	L
		ш	4	1	LL R	c (2)	1	L	Ц	μ	_	R		3	յ	1	L	+	1	L		Ц		1	1	L	Ħ	Ц		L	Ц	1	1	4		R		N	A	ן ס	Ļ	4	_1	L	Ц	Ц	L		Ц	+		Ц	L		Ц	L	L
μιιί	μ.	Ц			ц	L		1	L	L	L	1	1	L	L	Ú	L	L	T	L	L		Ц	_	L	L	L		Ц	Ц	T	Ц		1			L	L	Ц	1	1	L		1	L	L	Ц	L	L	ப			Ц	1		Ц	1	L
	4	Ц	႕	1	ц	Ļ	Ļ	1	L	Ц	μ	1	L	L	Ц	ш	L	L	L	L	L		Ц	1	1	1	L		Ц	Ц	1			1		Ц	L	L	Ц	1	L	L	Ú	L	L		ш	1	L	ப	1	L	Ц	1		Ц	L	L
	╞	11	┨	1	Ц	Ľ	Ľ	L	L	L		1	1	L	Ц	Ц	ŀ	L	L	L	1		Ц		_	L	1		Ц	Ц	1			1		Ц	L	L	Ц	1	1	L		1	L		Ц	1	L	ப	1	L	Ц	L		ш	L	L
LIOIGIAIR NLOG	╘	Ц	႕	1	ц		L_1 06	L	Ļ	Ц	μ	_	1	Ľ	R	Ц	1	1	+	L	L	L	Ц	1	1	1	L		Ц	Ц	1			1		Ц	L	L	Ц	1	1	L	Ц	1	L	Ц	Ц	1	1_	Ц	L	L	Ц	1	μ	ш	1	L
$\left \cdots \right $	F	Π	71	1	Ц	1	Ц	1	L	Ļ	L	_	1	L	Ц	Ц	1	1	Τ	1	L		Ц	1	1	L	L		Ц	Ц	1			1		Ц	L	L	Ц	1	1	1	Ц		1			1	L	ц	1	1		-	1	Ĺ	1	L
LIAIYIEIF	1	ш	ш	1	ц	1	Ц	1	L		Ц	1	1	L	Ц	Ц	1	L	1	L	1		Ц		1	1	1		Ц	Ц	L			1		Ц	L	1	Ц	1	1	L	Ц		L		Ц	-	L	Ц	1	I.	Ц	1	-	Ц	1	L
	<u>}</u>	LL LL	++		Ll I	ic:	5		1 1			-	+	1	3)	μ	-	-	+	<u> </u>	<u> </u>				-	-		Ħ						-	1	μ,	- , ,			AY	<u>ז</u> א	1	-	-				-			+						-	L
				1		1		1	ī				1	ī			1	1	1	ī	L				_	1	1				1			1	_	Ц	1			_	1	ī			ī			1	1		1	L		1		ш	1	L

· · ·		MESHMAKER-	Rectilinear Grids		
*1	* 2	*	4 * 5	*6*7*	8
MIEISIHIM AIKIEIRI I					ш
DEG					
					ш
	DEL				
					ш
00(1)	Un(2)	DX(3)			
H N02	DEL				шц
NIX					
DX(N01+1)	DX(N01+2)-				
humun	1111111111				
HO NO	DEL				
MIY					
DY(1)	DY(2)	DY(3)		DY(NO)	
	111111111				ш
NO NO	DEL	-			
MIZITI					ш
02(1)	U2(2)	02(3)		D2(NU)	
					шЧ
					шJ

		п	ESHMAKER -	- MINC Pro	ocessing	for Fr	actured Ned	ia	
*	1		2 *	- 3 * -	4	• • 5	* 6	*7	8
n'E'S'H'U									
MILINICI	┼┶╞╧┤		чши			шш			
PIAIRT									
				<u>1 1 1 1 1 1 1 1 1 1 </u>					
Lui				uluu	uuliu	ши			hunne

Figure F.1. MESHMaker input formats.

RADII is the first keyword following RZ2D; it introduces data for defining a set of interfaces (grid block boundaries) in the radial direction.

Record RADII.1

Format(I5) NRAD

NRAD number of radius data that will be read. At least one radius must be provided, indicating the inner boundary of the mesh.

Record RADII.2, RADII.3, etc.

Format(8E10.4) RC(I), I = 1, NRAD

RC(I) a set of radii in ascending order.

EQUIDistant introduces data on a set of equal radial increments.

Record EQUID. 1

Format(I5, 5X, E10.4) NEQU, DR

NEQU	number of desired radial increments.
DR	magnitude of radial increment.

Note: At least one radius must have been defined via block RADII before EQUID can be invoked.

LOGARithmic	introduces data on radial increments that increase from one to the
	next by the same factor $(\Delta R_{n+1} = f \bullet \Delta R_n)$.

Record LOGAR. 1

Format(A5, 5X, 2E10.4) NLOG, RLOG, DR

NLOG number of additional interface radii desired.

RLOG desired radius of the last (largest) of these radii. DR reference radial increment: the first ΔR generated will be equal to $f \cdot DR$, with f internally determined such that the last increment will bring total radius to RLOG. f < 1 for decreasing radial increments is permissible. If DR is set equal to zero, or left blank, the last increment DR generated before keyword LOGAR will be used as default.

Additional blocks RADII, EQUID, and LOGAR can be specified in arbitrary order.

Note: At least one radius must have been defined before LOGAR can be invoked. If DR = 0, at least two radii must have been defined.

LAYER introduces information on horizontal layers, and signals closure of RZ2D input data.

Record LAYER. 1

Format(I5) NLAY

NLAY number of horizontal grid layers.

Record LAYER.2

H(I) a set of layer thicknesses, from top layer downward. By default, zero or blank entries for layer thickness will result in assignment of the last preceding non-zero entry. Assignment of a zero layer thickness, as needed for inactive layers, can be accomplished by specifying a negative value.

The LAYER data close the RZ2D data block. Note that one blank record must follow to indicate termination of the MESHM data block. Alternatively, keyword MINC can appear to invoke MINC-processing for fractured media (see below).

Generation of rectilinear grids

XYZ invokes generation of a Cartesian (rectilinear) mesh.

Record XYZ.1

Format(E10.4) DEG

DEG angle (in degrees) between the Y-axis and the horizontal. If gravitational acceleration (parameter GF in record PARAM.2) is specified positive, -90° < DEG < 90° corresponds to grid layers going from top down. Grids can be specified from bottom layer up by setting GF or BETA negative. Default (DEG = 0) corresponds to horizontal Y- and vertical Z-axis. X-axis is always horizontal.

Record XYZ.2

Format(A2, 3X, I5, E10.4) NTYPE, NO, DEL

- NTYPE set equal to NX, NY or NZ for specifying grid increments in X, Y, or Z direction.
- NO number of grid increments desired.
- DEL constant grid increment for NO grid blocks, if set to a non zero value.

<u>Record XYZ.3</u> (optional, DEL = 0. or blank only)

Format(8E10.4) DEL(I), I = 1, NO

DEL(I) a set of grid increments in the direction specified by NTYPE in record XYZ.2. Additional records with formats as XYZ.2 and XYZ.3 can be provided, with X, Y, and Z-data in arbitrary order.

<u>Record XYZ.4</u> a blank record closes the XYZ data block.

Note that the end of block MESHMaker is also marked by a blank record. Thus, when MESHMaker/XYZ is used, there will be two blank records at the end of the corresponding input data block.

MINC processing for fractured media

- **MINC** invokes postprocessing of a primary porous medium mesh from file MESH. The input formats in data block MINC are identical to those of the GMINC program (Pruess, 1983), with two enhancements: there is an additional facility for specifying global matrix-matrix connections ("dual permeability"); further, only active elements will be subjected to MINCprocessing, the remainder of the MESH remaining unaltered as porous medium grid blocks. See Appendix C for further discussion.
- **PART** is the first keyword following MINC; it will be followed on the same line by parameters TYPE and DUAL with information on the nature of fracture distributions and matrix-matrix connections.

Format(2A5, 5X, A5) PART, TYPE, DUAL

- PART identifier of data block with partitioning parameters for secondary mesh.
- TYPE a five-character word for selecting one of the six different proximity functions provided in MINC (Pruess, 1983b).
 - ONE-D: a set of plane parallel infinite fractures with matrix block thickness between neighboring fractures equal to PAR(l).
 TWO-D: two sets of plane parallel infinite fractures, with arbitrary angle between them. Matrix block thickness is PAR(l) for the first set, and PAR(2) for the second set. If PAR(2) is not specified explicitly, it will be set equal to PAR(l).
 THRED: three sets of plane parallel infinite fractures at right angles, with matrix block dimensions of PAR(l), PAR(2), and
 - with matrix block dimensions of PAR(1), PAR(2), and PAR(3), respectively. If PAR(2) and/or PAR(3) are not explicitly specified, they will be set equal to PAR(1) and/or PAR(2), respectively.
 - STANA: average proximity function for rock loading of Stanford large reservoir model (Lam et al., 1988).

STANB:	proximity function for the five bottom layers of Stanford large reservoir model.
STANT:	proximity function for top layer of Stanford large reservoir model

Note: a user wishing to employ a different proximity function than provided in MINC needs to replace the function subprogram PROX(x) in file meshm.f with a routine of the form:

FUNCTION PROX(x) PROX = (arithmetic expression in x) RETURN END

It is necessary that PROX(x) is defined even when x exceeds the maximum possible distance from the fractures, and that PROX = 1 in this case. Also, when the user supplies his/her own proximity function subprogram, the parameter TYPE has to be chosen equal to ONE-D, TWO-D, or THRED, depending on the dimensionality of the proximity function. This will assure proper definition of innermost nodal distance (Pruess, 1983b).

DUAL	is a five flow.	e-character word for selecting the treatment of global matrix-matrix
blank: (default	.)	global flow occurs only through the fracture continuum, while rock matrix and fractures interact locally by means of interporosity flow ("double-porosity" model).
MMVER:		global matrix-matrix flow is permitted only in the vertical; otherwise like the double-porosity model; for internal consistency this choice should only be made for flow systems with one or two predominantly vertical fracture sets.
MMALL:		global matrix-matrix flow in all directions; for internal consistency only two continua, representing matrix and fractures, should be specified ("dual-permeability").

Record PART.1

Format (2I3, A4, 7E10.4) J, NVOL, WHERE, (PAR(I), I = 1, 7)

- J total number of multiple interacting continua (J < 36).
- NVOL total number of explicitly provided volume fractions (NVOL < J). If NVOL < J, the volume fractions with indices NVOL+l, ..., J will be internally generated; all being equal and chosen such as to yield proper normalization to 1.
- WHERE specifies whether the sequentially specified volume fractions begin with the fractures (WHERE = '0UT ') or in the interior of the matrix blocks (WHERE = '1N ').

PAR(I), I = 1, 7 holds parameters for fracture spacing (see above).

<u>Record PART.2.1, 2.2, etc.</u>

Format (8E10.4) (VOL(I), I = 1, NVOL)

VOL(I) volume fraction (between 0 and 1) of continuum with index I (for WHERE = 'OUT ') or index J+1 - I (for WHERE = 'IN '). NVOL volume fractions will be read. For WHERE = 'OUT ', I = 1 is the fracture continuum, I = 2 is the matrix continuum closest to the fractures, I = 3 is the matrix continuum adjacent to I = 2, etc. The sum of all volume fractions must not exceed 1.

Appendix G. Relative Permeability Functions

Several relative permeability functions are provided in TMVOC for problems involving three-phase water-air-NAPL flow. Unless it is otherwise stated, the original TOUGH2 two-phase functions have been retained. If one of the TOUGH2 two-phase functions is chosen, the NAPL relative permeability will be assumed to be equal to zero. The notation used below is: k_{rw} - aqueous phase relative permeability; k_{rg} - gas phase relative permeability; k_{rn} - NAPL relative permeability. S_g , S_w , and $S_n = 1 - S_g - S_w$ are the saturations of gas, aqueous, and NAPL phases, respectively.

IRP = 5 "All perfectly mobile"

$$\label{eq:krg} \begin{split} k_{rg} &= 1 \\ k_{rw} &= 1 \\ k_{rn} &= 1 \\ no \text{ parameters.} \end{split}$$

IRP = 6 Modified version of Stone's first three-phase method (Stone, 1970).

$$k_{rg} = \left[\frac{S_g - S_{gr}}{1 - S_{wr}}\right]^n$$

$$k_{rw} = \left[\frac{S_w - S_{wr}}{1 - S_{wr}}\right]$$

$$k_{rn} = \left[\frac{1 - S_g - S_w - S_{nr}}{1 - S_g - S_{wr} - S_{nr}}\right] \left[\frac{1 - S_{wr} - S_{nr}}{1 - S_w - S_{nr}}\right] \left[\frac{\left(1 - S_g - S_{wr} - S_{nr}\right)\left(1 - S_w\right)}{\left(1 - S_{wr}\right)}\right]^n$$

When $S_n = 1 - S_g - S_w$ is near irreducible NAPL saturation, $S_{nr} \le S_n \le S_{nr} + .005$, NAPL relative permeability is taken to be

$$\mathbf{k}_{rn}' = \mathbf{k}_{rn} \cdot \frac{\mathbf{S}_{n} - \mathbf{S}_{nr}}{.005}$$

Parameters are $S_{wr} = RP(1)$, $S_{nr} = RP(2)$, $S_{gr} = RP(3)$, n = RP(4).

$$\begin{split} \text{IRP} &= 9 \qquad \text{three-phase functions of Parker et al. (1987).} \\ &m = 1 - 1/n \\ &\overline{S}_g = S_g \,/\, (1 - S_m) \\ &\overline{S}_w = (S_w - S_m) \,/\, (1 - S_m) \\ &\overline{S}_l = (S_w + S_n - S_m) \,/\, (1 - S_m) \\ &k_{rg} = \sqrt{\overline{S}_g} \, \left[1 - (\overline{S}_l)^{1/m} \right]^{2m} \\ &k_{rw} = \sqrt{\overline{S}_w} \, \left\{ 1 - \left[1 - (\overline{S}_w)^{1/m} \right]^m \right\}^2 \\ &k_{rm} = \sqrt{\overline{S}_w} \, \left\{ 1 - \left[1 - (\overline{S}_w)^{1/m} \right]^m - \left[1 - (\overline{S}_l)^{1/m} \right]^m \right\}^2 \\ &where \, k_{rw}, \, k_{rg}, \, \text{and } k_{rn} \, \text{ are limited to values between 0 and 1, with} \end{split}$$

$$S_m = RP(1)$$
, and $n = RP(2)$.

IRP = 10 same as IRP = 6 except that

$$k_{rg} = 1 - \left[\frac{S_n + S_w - S_{wr}}{1 - S_{wr}}\right]^n$$

$$\begin{split} \text{IRP} = 11 & \quad \text{functions used by Faust (1985) for two-phase Buckley-Leverett problem} \\ & \quad k_{rw} = (S_w - 0.16)^2 / 0.64 \\ & \quad k_{rg} = 0 \\ & \quad k_{rm} = (0.8 - S_w)^2 / 0.64 \\ & \quad \text{where } k_{rw} \text{ and } k_{rn} \text{ are limited to values between 0 and 1, no parameters.} \end{split}$$

The relative permeability functions listed above should be considered preliminary. TMVOC users are encouraged to follow ongoing research into three-phase relative permeabilities, and to add suitable formulations into subroutine RELP.

This routine has the following structure:

```
SUBROUTINE RELP(SL,SG,REPL,REPG,REPO,NMAT)
С
         . . .
         . . .
         . . .
С
        GOTO (10,11,12, ...), IRP(NMAT)
С
         . . .
         . . .
С
   10 CONTINUE
                                                        (IRP = 1)
         . . .
         . . .
         . . .
        REPL= ...
        REPG= ...
        REPO= ...
        RETURN
С
   11 CONTINUE
                                                        (IRP = 2)
         . . .
         . . .
         . . .
        REPL= ...
        REPG= ...
        REPO= ...
        RETURN
С
     12 CONTINUE
         . . .
         . . .
         . . .
С
        END
```

Here, SL and SG are the aqueous and gas phase saturations (note that for NAPL saturation we have SO = 1 - SL - SG). REPL, REPG, and REPO are, respectively, the relative permeabilities of aqueous, gas, and NAPL phases. NMAT is the index of the domain to which the grid block belongs, and IRP(NMAT) is the index number of the relative permeability function in that domain.

To code an additional relative permeability function, the user needs to insert a code segment analogous to those shown above, beginning with a statement number that would also appear in the GOTO statement. The relative permeabilities REPL, REPG, and REPO need to be defined as functions of the phase saturations. The RP() data read in the input file can be utilized as parameters in these functional relationships.

Appendix H. Capillary Pressure Functions

A three-phase capillary pressure function has been included in TMVOC. The original TOUGH2 two-phase functions have been retained, and if one of the TOUGH2 two phase functions is chosen, the gas-NAPL capillary pressure will be assumed to be equal to zero. The notation used below is: $P_{cgn} = gas$ -NAPL capillary pressure; $P_{cgw} = gas$ -water capillary pressure. It should be noted that the capillary pressure between the NAPL and the aqueous phases, P_{cnw} , is given by $P_{cnw} = P_{cgw} - P_{cgn}$.

$$\begin{split} \text{ICP} &= 8 \qquad \text{three-phase capillary functions from Parker et al. (1987).} \\ &= 1 - 1/n \\ &\overline{S}_w = (S_w - S_m) / (1 - S_m) \\ &\overline{S}_l = (S_w + S_n - S_m) / (1 - S_m) \\ &P_{cgn} = -\frac{\rho_w g}{\alpha_{gn}} [(\overline{S}_l)^{-1/m} - 1]^{1/n} \\ &P_{cgw} = -\frac{\rho_w g}{\alpha_{nw}} [(\overline{S}_w)^{-1/m} - 1]^{1/n} - \frac{\rho_w g}{\alpha_{gn}} [(\overline{S}_l)^{-1/m} - 1]^{1/n} \\ &\text{where } S_m = \text{CP}(1); n = \text{CP}(2); \alpha_{gn} = \text{CP}(3); \alpha_{nw} = \text{CP}(4). \end{split}$$

These functions have been modified so that the capillary pressures remain finite at low aqueous saturations. This is done by calculating the slope of the capillary pressure functions at \overline{S}_w and $\overline{S}_l = 0.1$. If \overline{S}_w or \overline{S}_l is less than 0.1, the capillary pressures are calculated as linear functions in this region with slopes equal to those calculated at scaled saturations of 0.1.

ICP = 9 zero capillary pressures $P_{cgn} = 0$ $P_{cgw} = 0$ no parameters.

Additional capillary pressure functions can be programmed into subroutine PCAP in a fashion completely analogous to that for relative permeabilities (see Appendix G).

Subject Index

A

Accumulation terms 21, 29, 31, 58, 133f., 138, 147, 155 Accuracy 6, 13, 19, 49, 52, 58, 73, 139 Acentric factor 11, 15, 151 Acetylene 5, 13, 153 Active blocks 42, 46, 176 Activity coefficients 8f., 13 Adsorption 5, 6, 18, 147 Advection 1, 67, 112, 134, 143 Air 5, 9, 13, 44, 46, 63, 67, 71, 73, 85, 96f., 111, 127, 146, 150, 153f., 162, 165 Air extraction 44 Airflooding 96, 107 Algebraic equations 137 Ambient 110, 127 Analytical solutions 19f. Aqueous 5, 6, 7, 9, 13, 14, 18, 26, 29, 67, 71, 72, 85, 86, 111ff., 122, 125ff., 133, 143, 145, 146, 153, 162, 179 Aquifer 108f., 112 Architecture 2, 20 Area 139 Arrays 4, 5, 20f., 23, 28f., 31f., 36, 39f., 55 Atmospheric 108ff. Average 136, 139 Automatic time stepping 19, 22, 157, 159, 160

B

Balance equations 3, 4, 19, 2ff., 2ff., 35, 46, 72, 133ff., 147, 154
Balances (inventory) 55, 86, 97
Benchmark 1, 58
Benzene 67, 85f., 91
Bi-conjugate gradients 52ff., 158
Binary interaction parameters 11f.
Biodegradation 1, 5, 18, 153
Black body 168 Boiling 5, 16 point 151 Boundary conditions 34, 42, 44f., 67, 71, 96f., 108ff., 172 Dirichlet 42, 45 Neumann 45 no flow 45 time-dependent 45f. Buckley-Leverett 63, 180 Bugs (in program) 20

С

Calling sequence 86, 95 Cancellation, numerical 58 Capillary 44, 96f., 109 effects 6,9 fringe 145 pressure 5, 24, 34, 46, 51, 71, 96, 110, 134, 149f., 161, 166, 167, 182 Caprock 49 Carbon 18, 150, 153 Cartesian (see Grid) Cartesian coordinates 167 CH4 153 Chemical potential 7f. Chemicals (see VOCs) organic 5 CHEMP (keyword) 150 CO2 5, 13, 153 Code installation 1, 3, 58 COFT (keyword) 35, 164 Comments 36 COMMON blocks 21, 32f. Compilation 3, 4, 32 Components 5, 7ff., 20, 23ff. 29, 31, 47f., 54f., 58, 60, 67, 71, 73, 85f., 96, 111f., 127, 133ff., 138, 143ff., 150, 154, 161, 165, 169

Composition (phases) 5ff., 9ff., 21, 26f., 44, 47, 96f., 112, 127, 133, 141, 156, 160, 162f. Compressibility 6, 10, 14, 16, 57, 140, 149 critical 151 Computational work 46, 52 Computer hardware 3 Concentration 9, 13, 34, 73, 97f., 112f., 143, 154 Condensation 5, 9, 72 Conduction (heat) 6, 49, 134 Conductive layer 49 Confining beds 49f, 157, 167 Conjugate gradient solvers 3, 19, 32f., 52ff., 138, 158 CONNE (keyword) 168, 171 Connections (interfaces) 4, 33ff., 40, 45f., 57, 97, 141, 164, 168, 176 Conservation 145 Constitutive relations 34 Contamination 8, 60, 110, 113, 138, 154 Continuation run (see Restarting) Continuum 43, 136, 140ff., 177f. Convection 6, 134 Convergence 19, 21f., 52, 54, 73, 112, 127, 155, 157, 159 check 22, 138 criterion 22, 54, 159 flag 21f., 56 rate...19, 52, 73 tolerance 22, 32, 58, 138 Coordinates 19, 42, 139, 167 global 19, 139f. Corresponding states 6, 12 Critical pressure 10 properties 6 temperature 9f., 15f. Cross-referencing 36 Cylindrical geometry 47

D

Darcy's law 5, 134 Darcy velocity 72, 85, 134 Data blocks 34, 35f., 40, 146, 148ff. files 34 geometry 34, 36, 39, 40ff., 51, 136, 148, 172ff. Decay 5, 18, 153 Defaults 36, 44, 52ff., 63, 138, 147, 149, 153ff., 160, 162 Deliverability (well) 47ff., 71, 112, 169f. Density 6, 10, 13f., 15f., 18, 48, 85, 112, 133, 149, 152, 157 Departure enthalpy 11, 17 Derivatives, numerical 29, 31, 160 Desorption 6 Differentiation 138 DIFFU (keyword) 165 Diffusion 1, 67, 135 binary 149 coefficient 144, 146, 158, 165 of gases 146, 158 molecular 5, 60, 96, 112, 143 multicomponent 111 multiphase 143ff. vapor 112, 143, 158 Diffusive flux 55, 135, 137, 143ff., 158 Diffusivity binary 152 effective 143, 145, 158 molecular 6, 67, 111 pressure 140 thermal 50, 67 Dimensionality (of flow problem) 139 Dimensioning (of arrays) 4, 5, 21, 32f. Dipole moment 151 Direct solvers (linear equations) 52ff., 158 Dirichlet boundary conditions 42, 45 Discretization 19, 135ff., 145ff. Disk files 21, 35f., 39, 55, 148 Dispersion 5, 157f. Dissolution 5, 6, 13f., 72f., 112f., 145 Distribution coefficient 8, 18, 133 43f., 50f., 109f., 162, 167, 181 Domain Double porosity 19, 140ff., 177 Double precision 3 Drainage 112 Dual permeability 142, 176f.

Duplicate names (of subroutines) 4 Dusty gas 143

Е

Electric resistance heating 127 ELEME (keyword) 167 Elements (see Volume elements) Elevation 109ff. ENDCY (keyword) 170 ENDFI (keyword) 148 Energy balances 19, 23, 29ff., 72, 133f. internal 134 rate 175 Enhanced vapor diffusion 147, 158 Enthalpy 6, 11, 13f., 16f., 47, 71, 111, 134, 156, 159, 170 EOS module 20, 29, 55 Equations (see Balance, Energy, Governing, Mass) Equation(s) algebraic 19, 137 continuum 136 cubic 10 differential 137 energy 154 governing 20, 29, 133 linear 19, 52ff. of state 8, 10, 156 partial differential 135 steam table 13 EQUID (keyword) 174 Equilibrium 5, 10, 109 constants 8 local 23 gas-static 96 gravity-capillary 44, 109 sorption 133 thermodynamic 139 Error 4, 18, 32, 58 absolute 159 duplicate names 4 relative 159 Ethane 5, 9, 13, 153 Ethylene 5, 13, 153

Evaporation 5 Execution (of program) 3, 20, 22, 86, 95 Expansivity 6, 149 Extensive quantity 136 Extraction 44, 72, 108f., 112f., 125

F

Failure (of a time step) 22, 52 Fickian model 5 Fick's law 143 Field observations 20, 58 Finite differences 19, 50, 135, 137, 139 Finite elements 135 First order 137f. Floating point 58, 73, 160, 164 Flow global 140, 142 interporosity 140 rates 156 steady 109f. terms 21, 31f., 155 Fluid flow 19 properties 5ff. Flux 45, 55, 133ff. conservation 145 diffusive 143ff. FOFT (keyword) 163 Formats data blocks 36 disk files 36, 40, 42 input 22, 34, 37ff., 43, 53, 58, 148ff. FORTRAN 3, 127 Fracture 176f. -matrix 145 spacing 178 Fractured media 19, 40ff., 139ff. Front 72, 86 Fugacity 8f.

G

Gas 1, 6ff. constant 10 diffusion 67, 112, 143ff.

ideal 11f., 16, 46, 72, 151, 165 non-condensible 1, 5ff., 25, 153 real 8ff. static 96 thermophysical properties 10ff. Gauss' divergence theorem 135 GENER (keyword) 169, 171 Generation (see Sinks/sources) Geometry 19, 34, 36, 39, 136, 139 data 40ff., 51, 136, 148 Geostatistical 51 Geothermal 49 Gibbs' phase rule 23 GMINC program 176 GOFT (keyword) 164 Governing equations 20, 29, 133 Gradient (see also Conjugate gradient) 97, 140f., 143, 145, 172 Gravity 5, 48, 96f., 112, 134, 137, 139, 159, 172, 175 Gravity-capillary equilibrium 44 Grid (see also MESH) 21, 49 block 4, 19f., 23, 26, 28ff., 35, 40, 42f., 44ff., 51ff., 58, 67, 71f., 85f., 91, 96f., 109ff., 127, 137, 139, 141ff., 154f., 157, 160, 162f., 167f., 172, 174ff., 181 block names 42 Cartesian 40, 48, 109f., 175 generation 34, 109f. increments 174ff. irregular 19, 40, 139 layers 174f. nested 141 primary 40, 43, 141, 172, 176 radial 40, 174 Groundwater 44

H

Half life 5, 18, 153 Hardware 3 Harmonic (see Weighting) Heat 133f. capacity 12, 50, 151 conduction 49f., 149

conductivity 156 convection 6 exchange 30, 39, 45f., 49f., 140, 157, 167 flow 19, 55, 140 generation 169 latent 6 sensible 6 sink/source 47 specific 50, 97, 134, 149 transfer 6, 134, 168 Henry's coefficient 6, 10, 13, 15, 154, 165 law 10, 13, 15 Heterogeneity 5, 51, 167 Higher-order methods 40 Homepage (TOUGH2) 1 Homogeneous 110 Hydrocarbons 7ff., 111, 161 Hydrodynamic dispersion 5 Hydrostatic 44

I

IBM 3,58 Ideal gas (see Gas, ideal) IFD (see Integral finite differences) Impermeable 50 Implicit time differencing 137 Inactive blocks 42, 44f., 46, 50, 67, 110, 172, 175 INCLUDE (file) 4, 32 INCON (keyword) 163, 171 Increments 29, 32, 160, 162, 174ff. INDOM (keyword) 162 Infiltration 108, 110f., 145 Initial conditions 34ff., 44f., 50, 71f., 85, 96f., 107ff., 127, 154f., 160ff. Initialization 21, 26f., 36, 60, 109ff., 154f., 160ff. Injection 24, 47, 71ff., 85, 96f., 111, 141, 170 Input data 21f., 34ff., 40ff., 55, 58ff., 109ff., 127

formats 22, 34, 37f., 148ff. Installation (of code) 3, 58 Integral finite differences (IFD) 19, 40, 45, 136ff. Integration 133 Interface (also see Connection) 19, 33, 50, 139f., 142, 145, 156f., 159, 167f., 174 International Formulation Committee 6 Internet (see Web) Interphase mass transfer (see Phase partitioning) Interpolation 21, 47, 137, 156 Interporosity flow 140, 142, 177 Inventory 85, 112f. Inward unit normal 133, 136 Irreducible (see Saturation) Isothermal 23, 30, 71, 140 Iteration 19, 21, 29, 45, 52ff., 112, 137f., 155 Iterative solvers (linear equations) 52ff.

J

Jacobian matrix 22, 29ff., 52ff., 73, 138, 157

K

Keywords 34, 58, 148 Klinkenberg parameter 135, 150 Knudsen diffusion 143

L

Laboratory experiments 20, 45, 58, 71, 85, 96 Land surface 108, 111f. LAYER (keyword) 174 Linear equations 19, 22, 30ff., 52ff., 73, 156 solvers 52ff., 158 Linking 3, 32 Liquid 24 LOGAR (keyword) 174 LU-factorization 52f., 158

Μ

MA28 3, 33, 53, 157ff. Mass 133 balances 19, 23, 29ff., 133ff., 147 component 133, 154 exchange 5, 46, 140, 157 flux 134 fraction 14, 86, 111f., 119, 125f., 133 injection 47, 170 production 169 flow rate 55 transport 135, 143 Matrix (Jacobian) 22, 30ff., 52, 97, 157 Matrix blocks 140f., 176 Memory requirements 4, 52 MESH (see also Grid) 20f. Cartesian 40, 48, 109, 172, 175f. file 39ff. generation 3, 172ff. primary 176 radial 40, 42, 172ff. rectilinear 40, 42, 175 MESHM (keyword) 148, 172 Meshmaker 40ff., 172ff. Methane 5 Metric units 34 Migration (of contaminants) 72 MINC (keyword) 176 MINC (multiple interacting continua) 40ff., 140ff., 176ff. mixing rules 11 Mixture 1, 7, 8, 12, 14, 49 Mobility 156 Model mathematical 127 Modular architecture 20 Molar density 10, 14 enthalpy 16f, heat capacity 12 units 133 volume 15 weight 46 Mole fraction 8f., 11, 14, 18, 24ff., 34, 47, 60, 72, 86, 97, 133, 144ff.

Molecular diffusion (see Diffusion) Molecular weight 12, 49, 151 MOP options 155ff. MULKOM 3 MULTI (keyword) 154 Multiphase 7, 133f., 137, 140, 143ff. Multiple interacting continua (see MINC) Multiple porosity 19, 40

Ν

Naming conventions (for grid blocks) 40, 42f. NAPL (non-aqueous phase liquid) 1, 5, 6, 9, 13, 15ff., 26, 71ff., 86, 91, 96f., 108, 112f., 126f., 152 lense 112f. redistribution 109, 112, 122 spill 1, 108f., 111f., 119 Natural state 110, 154 NCG (non-condensible gas) 1, 5ff., 13ff., 24f., 44, 63, 73, 133 NCGAS (keyword) 153 n-decane 67 Neumann boundary conditions 45 Newton-Raphson iteration 7, 26, 29, 31, 52, 55, 73, 112, 137f., 155, 157, 159ff. Nine-point differencing 40 Nitrogen 73, 97 Nodal distance 45, 139, 141, 177 line 139 points 42, 110, 137 Non-condensible gas (see NCG) Nonisothermal 1, 50, 127 Non-linear 137 Nonpolar substance 10 Normal vector 133 NOVER (keyword) 164 n-pentane 112 Numerical cancellation 58 differentiation 29, 138 performance 58 roundoff 59 Numerical solution 20

0

Oil (see NAPL) O-preconditioning 54 Organic carbon 18, 150, 153 Organic chemical (see VOC) Output 3, 22, 32, 36, 55ff. Oxygen 73, 97 o-xylene 96, 107

Р

PAR array 29 PARAM (keyword) 155 PARAMETER statement 4, 32 Parameters computational 34 hydrogeologic 34 secondary 20, 28ff., 154 thermophysical 10ff., 28 PART (keyword) 176 Partial pressure 9 Partial differential equations 19, 135 Partition coefficient 18, 153 Partitioning (among phases) 5, 8ff., 13 PDE (see Partial differential equation) Peng-Robinson equation of state 11, 165 Permeability 49, 110, 156 absolute 34, 51, 134, 149, 168 modification 51, 55 modifiers 51, 167 relative 34, 71, 96, 110, 134, 144, 147, 149f., 166, 179f. -thickness 47 Petroleum reservoirs 10 Phase (fluid) 5, 20, 127, 133, 154 aqueous 9, 13ff., 28f., 72, 125, 127 appearance 5, 7, 19, 23, 26f., 55, 58 aqueous 122, 133 boundary 111, 127, 147 change 7, 127 composition 21, 26f., 47, 127, 156, 160ff. conditions 7, 24 diagnostic 21

disappearance 5, 7, 19, 23, 26f., 55, 58, 113 distribution 18, 133 equilibria 8 gas 7ff., 28f., 113, 127, 145, 158 index 24ff. liquid 8f., 16, 145, 158 NAPL 9, 29, 127 oil 13, 144 partitioning 1, 5, 7ff., 13, 60, 127, 143, 145f. reference 134, 161 single 24, 46, 60, 67, 109, 111, 127, 140 transition 6 three-phase two-phase 60, 111, 127 Pivoting 54, 157, 159 Plotting 39, 57, 113, 163f., 167 Pore 149 velocity 57, 109 volume 85 Porosity 6, 18f., 34, 51, 110, 133, 149, 163 Porous medium 43, 139, 142, 143, 176 PR (see Peng-Robinson) Precision (of arithmetic) 3 Preconditioning (linear equations) 3, 52ff., 97, 138, 157f. Pressure 5, 6, 8, 12, 14f., 24, 45f., 56, 109, 134f., 140f., 146, 162 ambient 110 bottomhole 47f., 56, 169f. capillary 24, 34f., 46, 51, 56, 71, 96, 110, 134, 149f., 161, 166f., 182 critical 10, 151 diffusivity 140 equilibrium 96, 172 gas 45f. hydrostatic 44 increase 14 partial 9,11 reference 16, 134, 161 sandface 112 vapor 8ff., 16f., 26, 97, 151, 158 wellbore 47f., 71

Primary variables 20, 22ff., 28ff., 59, 137, 154, 160ff. Printout 155, 166 Processes 5 Produced fluid 156 Production 47, 169 rate 48, 170 well 47, 141 Productivity index (PI) 47, 71, 170 Program execution 3, 20 options 55 structure 3, 20f. units 3 Proximity function 142, 176f. Pseudo-component 9 PVT properties 10, 21

Q

Quasi-steady 140

R

Rackett equation 15 RADII (keyword) 174 Radius 174 Radial flow 47 grid blocks 42 increments 174 symmetry 40, 172 Radiant emittance 168 Radiative heat transfer 134 Random 51, 167 Raoult's law 10 Rate constant 18 Real gas 10 Recharge 108 Records (data) 34, 36, 58, 111, 148ff. Rectilinear 175 Redlich-Kwong equation of state 10, 72, 165 Relative (see Permeability) Remediation 1, 44, 108 Reservoir 140 domains 149, 162, 167

Residual 19, 22, 29, 31f., 52, 58, 137f., 160 computation 22 formulation 19
Restarting 44f., 50
Rock 133f.
ROCKS (keyword) 149
Roundoff (numerical) 22, 127
RPCAP (keyword) 166
RZ2D (keyword) 172
RZ2DL (keyword) 172

S

Sample problems 58ff. Sand 71,96 Sandstone 45 Saturated 110, 112 Saturated-unsaturated flow 108 Saturated vapor pressure 9, 16f. Saturation 6, 24ff., 85, 112, 133, 161, 179ff. irreducible 85, 112, 179 NAPL 113, 122, 126 water 111 Scaling 157 Secondary parameters 20, 28ff., 33, 154 Segment (of a simulation run) 44, 73, 85, 96, 109, 111f. SELEC (keyword) 164 Semi-analytical 49f. Seven-point differencing 40 Significant digits 160 Simulation time 111 Single porosity 40 Single precision 3 Sinks/sources 18, 21, 24, 31, 33f., 45ff., 111f., 133, 137, 141, 148, 156f., 164, 169f. SI units 34 Skin factor 47 Soave-Redlich-Kwong equation of state 10, 11, 72, 165 Soil 144 properties 110 vapor extraction 108f., 112f. Solid 133

Solubility 6, 13f., 15, 26, 72, 85, 111, 152f., 165 Soluble 144 Solute 67, 143 Solver (linear) 52ff., 97 SOLVR (keyword) 53f., 163 Sorption 1, 18, 133 Source (see Sink) Space discretization 19, 34, 58, 136ff., 145f. Sparse matrix 19, 32 Spatial correlation 51, 167 Spill (see NAPL) SRK (see Soave-Redlich-Kwong) Stability 19, 137 Standard conditions 146 Standard state 8 START (keyword) 155 Steady (flow, state) 22, 47, 109ff. Steam flooding 71ff., 86, 92ff., 127 injection 44, 71ff. superheated 24 tables 6, 13 Stefan-Boltzmann (law, constant) 134, 168 Step change 85 Step function 156 Storage (see Memory) Stress 6 Subdomain 133, 141 Subgridding 141f. Subroutine 1, 4, 21f., 31f., 39, 42, 45, 51, 55, 57, 85, 97, 109, 155, 180ff. Sun workstation 3 Surface 133, 136 SVE (see Soil vapor extraction)

Т

T2DM (dispersion module) 157f.
T2VOC 13, 19, 58, 63, 71ff., 127, 150, 165

-style initial conditions 35, 44, 71, 154, 160ff.

TABLE (disk file) 50

Taylor series 138
TCE 14, 71
Temperature 6, 67, 134, 154, 161, 168

critical 8, 9, 15f., 151 profile 49f. variation 49f. Templates 58, 127 Termination (of execution) 22 Text editor 36, 42, 46 Thermal conductivity 50, 134 diffusivity 50 Thermodynamic conditions 7, 39, 44f., 72, 111 constraints 60 equilibrium 23, 139 formulation 6ff. parameters 137 state variables 19ff., 23ff., 28ff., 44f., 55, 160f. Thermophysical parameters 20, 22, 31 properties 5ff., 21, 28ff., 34, 52, 71, 150ff. Three-phase 1, 9, 24, 26, 71, 96, 127, 144, 179ff. Time automatic 22 increment 22, 32 discretization 19, 136ff. series 57, 85, 97, 111ff. stepping 3, 19, 21f., 34, 44, 52, 55, 58, 86, 111, 127, 138, 155ff., 159, 166 truncation errors 58 TIMES (keyword) 166 Title (data record) 148 Toluene 85f., 91, 96, 107 Tortuosity 111, 143f., 146f., 149 TOUGH 3 TOUGH2 1ff., 6, 19ff., 32, 43, 50, 58, 67, 127, 133, 147f., 158, 164, 179, 182 homepage 1 Tracer 143, 145 Transient 23, 140 Tutorial 58 Two-phase 24, 26

U

Unconfined 108f. Units (disk files) 39 matrix 54 metric 150 of measurement 34, 47ff., 133f., 143, 150, 152, 161 of program 1, 3f., 20, 32, 35, 39. 86, 95, 164 SI 34 Unix 3 Unsaturated 8, 60, 108ff. Update of program modules 1, 3 of thermodynamic conditions 7, 21f., 26, 29 Upstream (see Weighting) Utility programs 1

V

Vadose zone 1, 113 Validation (of code) 58 Vapor 112 -air mixtures 146 diffusion 112 pressure 9f., 26, 97, 151 pressure lowering 6, 9, 158 water 11 Vaporization 16, 45, 97 Variables primary 20, 23ff., 28f., 44, 137, 154 secondary 20 switching 24 Variably saturated 127, 145 Velocity 55, 72, 85, 109, 143 Verification (of code) 58 Version control 1f., 86, 95, 164 Vertical section 108 Viscosity 6, 12f., 14, 17, 134, 152 VOCs (volatile organic chemicals) 1, 5, 6, 8, 9, 12ff., 15ff., 24ff., 44, 85f., 107, 111f., 119, 122, 125ff., 133, 150 adsorbed 150

dissolved 13f. Volatile 5, 111f., 127, 144 Volume 133, 139, 142 active 42, 46 average 136 elements (see also Grid blocks) 33, 40, 44f., 50, 137, 163f., 167ff. inactive 42, 46 names 40, 42

W

Wagner equation 17 Water 5ff., 13ff., 85, 111ff. flooding 71ff., 85, 91 injection 72 saturation 111 table 108ff., 111ff. vapor 11f. Web (Internet) 1 Weighting 160 harmonic 137, 145ff., 156, 158, 165 interface 137 upstream 137, 156f., 159 Well 169f. extraction 108 injection 141 production 47, 141 radius 47 Wellbore 48 pressure 48, 71 Workstation 3

Х

Xylene 96 XYZ (keyword) 175

Ζ

Z-preconditioning 53f.