

Canadian Programme on the Environnemental Impacts of Munitions

- S. Thiboutot, G. Ampleman, S. Brochu, E. Diaz,
- R. Martel,
- J. Hawari, G. Sunahara,
- M.R. Walsh and M.E Walsh

ARMED FORCE READINESS DEPENDS ON TRAINING WITH LIVE AMMUNITION

UNDERSTAND AND MINIMIZE ENVIRONMENTAL IMPACTS OF WEAPONS

Environmental Impacts of Weapons

Munitions Constituents (MC) Contamination

Source Terms Fate and Transport Toxicity

CFB Wainwright Alberta

Mitigation, Range Design & Greener Munitions

What are the sources of munitions contaminants at impact areas ?

Deposition Studies

Type of detonation:

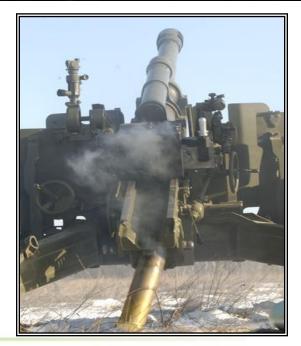
DRDCIRDDC

High-order Low-order Close-proximity Field disposal by blow-in-place

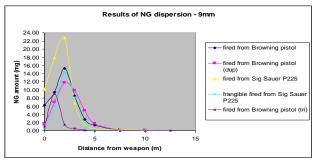
Explosives

g C4

100 000 high order = one low-order detonations


What are the sources of munitions contaminants at firing positions?

Incomplete combustion in guns



Deposition Studies

Small Arms

Results

Weapon	% of unburned EM
5.56-mm MG (NG)	0.7
7.62-mm MG (NG)	1.0
9-mm Pistol (NG)	2.5
12.7-mm MG (NG)	0.7
0.338 Cal Rifle (NG)	0.001
0.5 Cal MG (NG)	0.02
0.5 Cal Rifle (NG)	0.02
20-mm M61 (NG)	7 x 10 -4
40-mm Mk281 (NG)	0.6
40-mm M430 (NG)	8.0
60-mm Mortar (NG)	0.007
81-mm Mortar (NG)	3.3
120-mm Mortar (NG)	1.4
84-mm AT4 (NG)	73
84-mm Carl Gustav (NG)	14
66-mm M72 LAW (NG)	0.2
204-mm GMLRS (AP)	nd
203-mm MK-58 AIM-7 (AP)	3 x 10 ⁻⁷
105-mm Howitzer (DNT)	0.05 - 0.3
155-mm British (NQ)	2 x 10 -5
155-mm British (NG)	3 x10 -5
105-mm Tank (DNT)	0.003

Open burning of excess charge bags

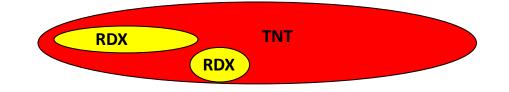
Metals

Munition casings & hard targets : Pb, Sb, Cu, Zn, Sr, Cd.

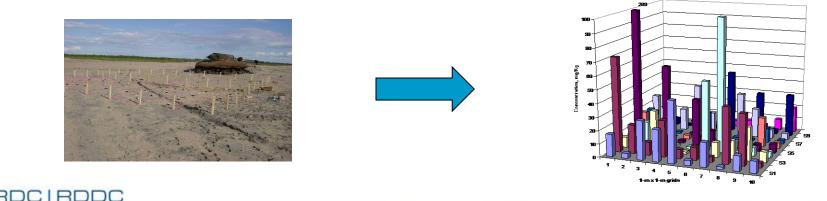
Sampling Objectives in Range and Training Areas

Measure the surface soil contaminants that may:

- Pose a threat to the health of users
- Further be dissolved and brought to water bodies
- Pose a threat to ecological receptors
- Combination of all of the above



What are the nature and dispersion of munitions constituents ?



Dispersion of Munitions Residues

Compositional Heterogeneity: Fundamental Error (FE)

Distributional Heterogeneity: Segregation Error (SE)

Control over Heterogeneity

If the entire population is not well represented Under or overestimation by orders of magnitude

To minimize FE : greater sample mass To minimize SE : many increments

Sample treatment is as important as sample collection

Decision Units Definition

DUs for Various Objectives

Risk-based human health

Protection of surface or GW

DU for risk-based ecological receptors

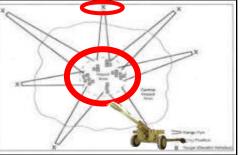
Results

Anti-tank Range Contamination

Energetic HMX, TNT, RDX

Propellants NG, 2,4 DNT

Metals Pb



Artillery Range Contamination

Energetic RDX, HMX, TNT **Propellants** NG, 2,4 DNT

DRDCIRDDC

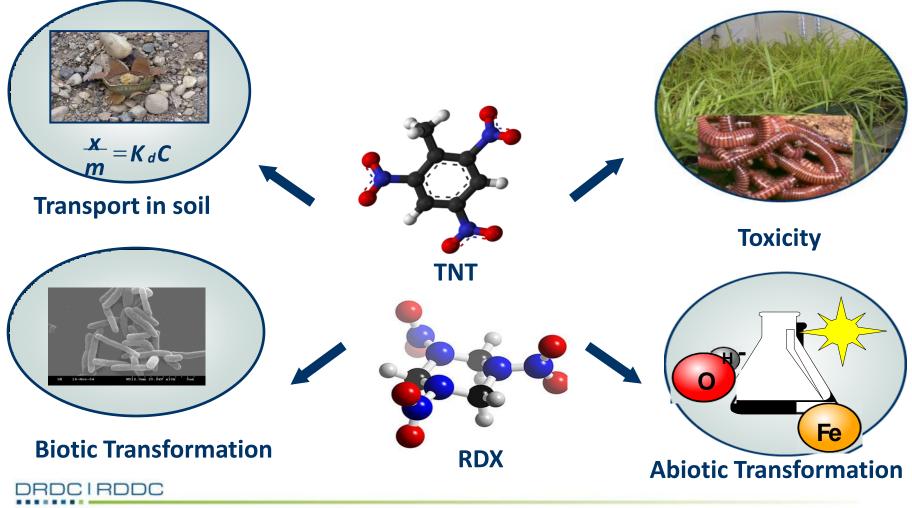
Metals Pb, Zn, Cu....

Small Arms Ranges Contamination

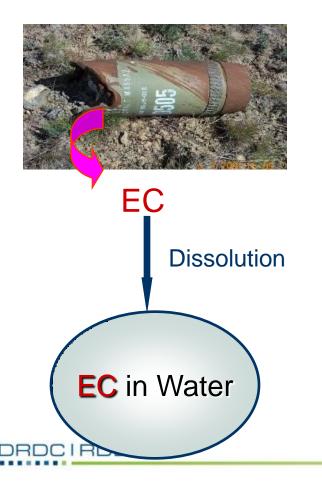
Metals Pb, Sb Propellants NG

Demolition Range Contamination

All types of ammo Energetic : TNT, RDX (low detonation)



Grenade Range Contamination


Energetic RDX Metals Sb, As

Fate and Impact of EM

Aqueous dissolution of formulations

Batch experiment

 Formulation (10mg) in 100 mL DW (T = 10, 25, and 30°C) Dripping experiments

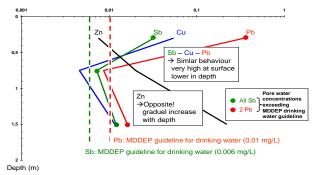
Formulation (10 mg)DW (0.5 mL/min) at r.t.

Sorption on soils

Batch experiments

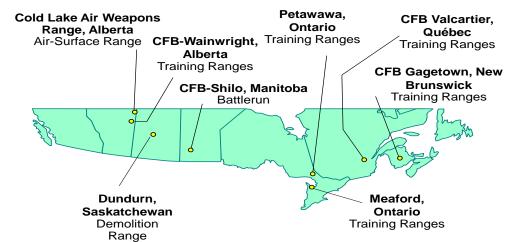
- Soil (1.5 g)
- Deionized water (10 ml)
- Energetic chemical (4-50 ppm)
- Static; aerobic; dark; r.t.
- $\Rightarrow K_d$ values

Column experiments


- Soil (90 g)
- Energetic formulation
- Flow rate: 0.4 mL/min, T = 22.5°C
 - ⇒ Breakthrough curves / transport modeling

Lessons Learned on Fate, Transport and Toxicity

- RDX and AP : Toxic and bioavailable
- HMX : Much less toxic & bioavailable than RDX
- TNT : Toxic & soluble but non-bioavailable (through transformation/sorption)
- NG & 2,4-DNT : Toxic but low bioavailability (NC binding)
- NC : Neither toxic nor bioavailable
- Metals Sb, Pb, Cd, Sr, toxic and bioavailable

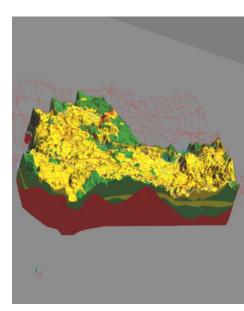


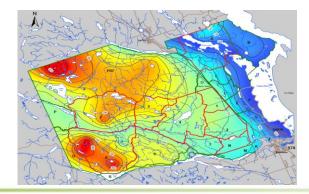
Large Scale Fate and Transport: Hydrogeological Characterization

EM 61

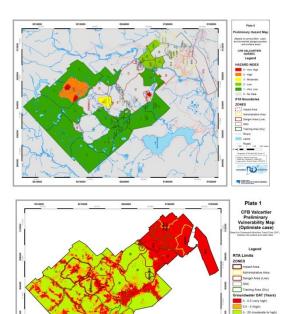
orester

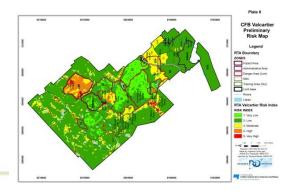





Hydrogeology

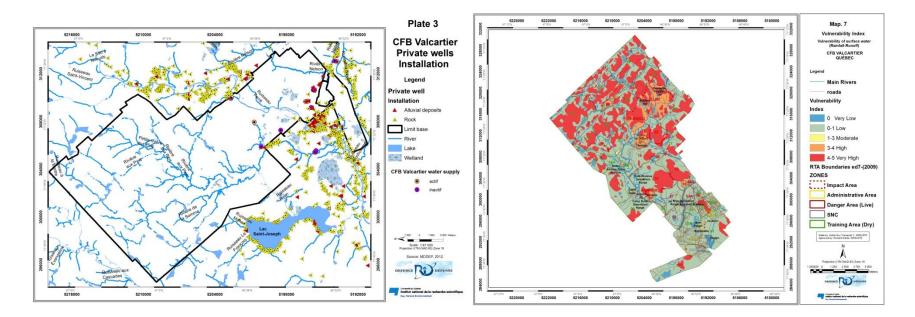
- Surveillance wells in major training areas
- Production of several thematic maps
- Modeling aquifer flow and direction
- Prediction of contaminants transport
- Surveillance programs



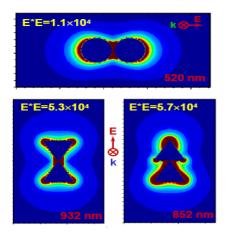

Hydrogeology / Risk Management Tool

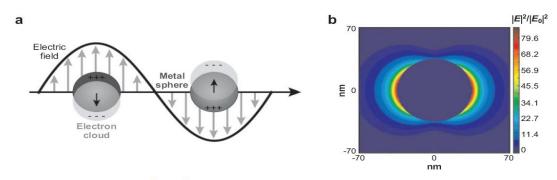
 Munition use logs/Surface sampling/ Deposition studies: Source terms Hazard maps

Hydrogeological studies: Contaminant transport
Vulnerability maps


Combination of the vulnerability and hazard maps –
Risk maps

Receptors & Surface water vulnerability


Futur work


- In situ analytical method for munition constituents in water samples
- Climate changes and their impacts of ranges and training areas
- Deployment in Arctic areas
- Fate and toxicity of emerging Insensitive Munition formulations

In situ monitoring using RAMAN spectroscopy: Theory

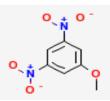
• Raman is a weak optical phenomena: Nanoparticles significantly improves the response (work conducted by Professor Masson, U. Montreal)

Figure 1

(a) Illustration of the localized surface plasmon resonance effect. (b) Extinction efficiency (ratio of cross section to effective area) of a spherical silver nanoparticle of 35-nm radius in vacuum $|\mathbf{E}|^2$ contours for a wavelength corresponding to the plasmon extinction maximum. Peak $|\mathbf{E}|^2 = 85$.

Figure 11. Contours of $|\mathbf{E}|^2$ for dimers of silver particles, including two spheres separation 2 nm) and two triangular prisms placed head to head and head to tai. Using a sengue we nm, width 12 nm, snip 2 nm and separation 2 nm).

Climate change, Arctic deployment & Ecosystemic Values

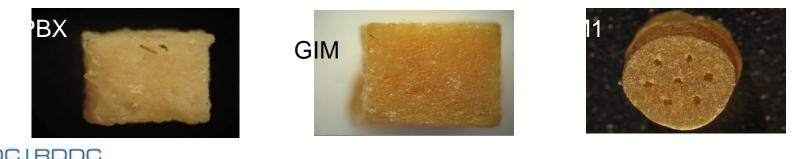

- Climate changes: strong impact on contaminants fate and transport
- Canadian Army training ranges are located abroad Canada in various meteorological and geological settings
- A study will be initiated to predict potential problems in ranges and training areas related to climate changes
- Canada plans to open new ranges in Northern Arctic environment
- Live fire training must be conducted in a sustainable manner
- Ecosystemic value of our training ranges will be evaluated.



Future Work: Insensitive Munitions (IM)

- International pressure to develop IM
- New explosives and propellant ingredients:
 - Dinitroanisole (DNAN)
 - 3-nitro-1,2,4-triazole-5-one (NTO)
 - 1,1-Diamino 1,2-dinitroethylene (FOX-7)
 - Guanylurea dinitramide (FOX-12)
 - Ammonium dinitramide (ADN)
- Toxicity and fate ?

Munitions Formulations



Formulations already being used:

Octol (HMX/TNT); Comp B (RDX/TNT); PBX (HMX/Polyurethane/DOA/...); M1 (NC/2,4-DNT/DPB/...);

New formulations:

GIM (HMX/TNT/ETPE); IMX series (DNAN/NTO/...); PAX series (DNAN/...) Helova (HMX/NC/ETPE/TEGDN/....); Green M1 (NC/TEGDN/...); Triple Base (NC/TEGDN/NQ/...)

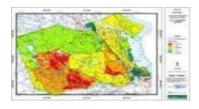
Aqueous solubility and K_{ow} of traditional and new ECs

	Aqueous Solubility at 25°C (mg/L)	K _{ow} at 22 °C
TNT	137	39.8
RDX	55.5	7.94
НМХ	4.80	1.46
TEGDN	7,430	6.17
NQ	3,200	0.21
DNAN	216	38.1
ΝΤΟ	17,200	0.02

Future MC: What to Promote

Best scenario

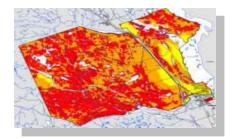
- Non toxic, low water solubility, not bioavailable (e.g. NC)
- Favourable biotic and abiotic transformations
- High sorption to soil/humic material
- Low volatilization
- Benign gaseous emissions (e.g. nitrogen-based explosives)
- Non UXO producing munitions (high-order scenarios)
- Propellants: Modular charges !
- Design for demil
- Metals: Mitigation measures in ranges if unavoidable

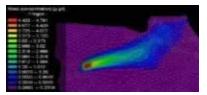


Conclusions

- MC are dispersed heterogeneously in RTAs
- Composite systematic sampling must be used
- Treatment and homogenization are critical
- Fate and transport studies are critical
- Knowledge lead to risk management through mitigation measures
- Future IM are a challenge
- Green component must be taken into consideration early in the development process

The End - Thank You





DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

