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Executive Summary 
 

Environmental scientists often encounter trace level concentrations of contaminants of potential concern 
(COPC) when evaluating sample analytical results. Those low level analytical results cannot be measured 
accurately, and therefore are typically reported as less than a certain detection limit (DL) values. Type I, 
left-censored data arise when certain low values lying below the DL are ignored or unknown as they 
cannot be measured accurately. However, practitioners need to obtain reliable estimates of the population 
mean, µ1, the population standard deviation, σ1, and various upper limits, including the upper confidence 
limit (UCL) of the population mass or mean, the upper prediction limit (UPL), and the upper tolerance 
limit (UTL).  
 
Several methods to estimate the population mean, and the standard deviation based upon left-censored 
data sets exist in the environmental literature. Some recommendations (Helsel (2005), page 78, USEPA 
(2000)) have also been made on how to compute those summary statistics based upon data sets with 
below detection limit observations. However, no specific guidance with justification is available in the 
statistical and environmental literature on how to compute an appropriate 95% UCL (UCL95) of the 
population mean or mass and other limits based upon left-censored data sets of varying degree of 
skewness. Most of the available estimation and UCL computation methods for left-censored data 
proposed and recommended in the literature have been discussed and evaluated in this report. The 
UCL95s are used in several environmental applications, including the estimation of the exposure point 
concentration (EPC) terms needed to assess risk due to average exposure by individuals over an area 
during a certain period of time. This report emphasizes the development of defensible statistical 
procedures to accurately compute a UCL95 of the population mass based upon left-censored data sets 
with varying censoring intensities. Distributions of varying degree of skewness, including mild, moderate, 
and high skewness, have been considered. Some data sets from Superfund sites have also been utilized to 
elaborate on the issues of distortion of estimates and of upper limits by: 1) the presence of a few outliers, 
and 2) the use of a lognormal distribution to accommodate those outlying observations.  
 
The robustness of an estimation and UCL95 computation method needs to be demonstrated for 
distributions of varying degrees of skewness. Specifically, it should be noted that an estimation method 
(e.g., jackknife or percentile bootstrap methods on maximum likelihood estimates (MLE) or Kaplan-
Meier (KM) estimates, robust regression on order statistic (ROS) of log-transformed data, or a robust 
MLE method) that yields reasonably good 95% UCLs (providing adequate coverage for the population 
mean) for symmetric or mildly skewed distributions may not perform well on a data set obtained from 
moderately or highly skewed distributions. It is observed that a UCL95 obtained using some of the 
methods (e.g., MLE, ROS on log-transformed data, robust MLE) listed above actually provides coverage 
much lower than the specified coverage (95%) for the population mass. 
 
By definition, the UCL95 of a population mean, µ1, assumes that one is dealing with a single statistical 
population with mean, µ1. Throughout this report, it is implicitly assumed that the user is dealing with a 
data set collected from a single population, has preprocessed the data set; and has identified all of the 
potential outliers (if any) and multiple populations. In order to obtain meaningful and practical results, the 
procedures described in this report should be used on data sets that represent “single” (e.g., a background 
area, or an exposure unit), and “not mixture” populations. The intent of these statements is to familiarize 
the user with the underlying assumptions required by the various statistical methods, including the 
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estimation methods based upon left-censored data sets. It should, however be noted that the mathematical 
UCL95 computation formulae and methods as described in this report can be used on any left-censored 
data set with or without the outliers. The user should keep in mind that the UCL95 based upon data sets 
with potential outliers or mixture populations may not be reliable and representative of the dominant 
population (e.g., an exposure area) under investigation.  
 
The estimation methods as described in this report are applicable to data sets coming from a “single” 
statistical population such as a single contaminated or remediated area of the site, an unimpacted clean 
background, or reference population. The sampled data should represent a random sample from the area 
such as an exposure area (EA), a remediation unit (RU), or some other site area under study. This means 
that the data should be representative of the entire population (e.g., EA, RU) under study. A few outliers 
(e.g., representing contaminated locations, hot spots) in a full uncensored data set or in a left-censored 
data set may distort all classical statistics, including EM estimates, MLEs, restricted MLEs, regression 
estimates both in raw as well as log scale, and also the associated upper limits such as UCLs, UPLs, and 
UTLs.  
 
 The main objectives of this study are: 1) to evaluate and compare the performances of the various 
parametric and nonparametric UCL95 computation methods for left-censored data sets and 2) to make 
recommendations accordingly. Monte Carlo simulation experiments have been conducted to study and 
compare the performances of the various UCL95 computation methods based upon left-censored data sets 
covering a wide range of skewed distributions. It is anticipated that this document will represent a 
comprehensive tutorial-type report giving the details of the various UCL95 computation methods with 
recommendations needed to compute a meaningful and reliable estimate of the population mass in several 
environmental applications. The methods considered for the estimation of population mean and the 
standard deviation are: 

 
• Maximum likelihood method (CMLE) (Cohen (1950, 1959, and 1991)),  
• Bias-corrected MLE method (UMLE),  
• Restricted MLE (RMLE) method (Perrson and Rootzen (1977)),  
• Expectation Maximization (EM) method (Gleit (1985)),  
• Delta (delta) method (USEPA (1991), 
• Regression on order statistics (ROS) on raw data (Newman, Dixon, and Pinder (1990) and 

UNCENSOR 5.1 (2003)),  
• Regression on order statistics on log-transformed data (Helsel (1990), Helsel (2005), and RPcalc 

2.0 (2005)), 
• Kaplan-Meier (KM) method (Kaplan-Meier (1958)),  
• DL/2 substitution (DL/2) method, and 
• Winsorization method (Gilbert (1987)). 

 
Using the estimated mean and standard deviation, and the extrapolated NDs obtained using one of the 
estimation methods listed above, the 95% UCLs of the mean can be computed using the following 
methods:  

 
• Tiku’s UCL method (Tiku (1967 and 1971)),   
• Schneider’s approximate UCL method (Schneider (1986)), 
• Ad hoc UCL methods using Student’s t-statistic as mentioned in UNCENSOR 5.1; (Millard 

(2002), Helsel (2005), and USEPA-UGD (2004)), 
• Ad hoc UCL methods based upon Land’s H-statistic, 
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• Gamma UCL (Singh, Singh, and Iaci (2002)), 
• Nonparametric Chebyshev inequality (Singh, Singh, and Engelhardt (1997)), and  
• Bootstrap (percentile, standard bootstrap, bootstrap t, and bias-corrected accelerated (BCA)) 

methods (Efron and Tibshirani (1993) and ProUCL 3.0 User Guide (2004)).  
 

All of the UCL95 computation methods listed above have been included in the simulation experiments. 
Normal, lognormal, and gamma distributions covering a wide range of skewed distributions were used in 
the simulation experiments to generate Type 1 left-censored data sets of various sizes including: 10, 15, 
20, 25, 30, 35, 40, 50, 75, and 100. Left-censored samples of varying degree of censoring intensities, 
10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, and 70% have been considered. The performances of the 
various UCL95 methods listed above have been evaluated by comparing their coverage probabilities.  
 
In order to evaluate and compare the various UCL95 computation methods listed above, some 
commercial (e.g., MINITAB, SAS) and freely available software packages (UNCENSOR 5.1 (1993) and 
RPcalc 2.0 (2005)) were used. The main purpose of this evaluation was to compare and verify our results 
obtained using a SimCensor program (in ProUCL 4.0) with the results obtained using the software 
packages mentioned above. During this evaluation process, several numerical errors have been identified 
in the UNCENSOR 5.1 program. It is also noted that there seems to be some confusion in the 
environmental literature about the use of a lognormal distribution and the interpretation and derivation of 
the conclusions based upon the results and statistics computed in the transformed scale or in the original 
scale after using some back-transformation formula. In order to elaborate on these confusing issues, brief 
evaluations of UNCENSOR 5.1 and RPcalc 2.0 software packages have also been conducted; those 
comments are provided in Section 5.8.  
 
Based upon the extensive Monte Carlo simulation experiments, recommendations have been made on 
how to compute appropriate 95% UCLs based upon left-censored symmetric and moderately skewed to 
highly skewed data sets of varying degrees of censoring intensity. The recommendations have been made 
as a function of the sample size, censoring intensity, and skewness measured in terms of the standard 
deviation of log-transformed data. The summary of the simulation results and findings are described in 
Section 8, and the recommendations are summarized in Section 9. The recommended UCL95 
computation methods for the various parametric and nonparametric distributions have also been 
summarized in Table 9-1 of Section 9. It is observed that there is not an existing single UCL95 
computation method that will work for data sets of all sizes and of varying skewness. Since all of these 
recommended 95% UCL values have been incorporated in the revised ProUCL 4.0 software package (still 
in progress), the users do not have to keep track of the various recommendations that have been made as a 
function of the sample size, censoring intensity, and skewness. In addition to the recommended UCL95 
methods, some other UCL95 computation methods based upon MLE and ROS methods have also been 
included in ProUCL 4.0. After completion, the updated ProUCL 4.0 software package will be available at 
the NERL EPA Tech Support Center Web site given at: http://www.epa.gov/nerlesd1/tsc/tsc.htm. It 
should be noted that ProUCL 4.0 will have most of the statistical methods as described and used in EPA 
Guidance Documents (2002a, 2002b).  
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Section 1 
 

Introduction 
 

Processing the analytical results of environmental samples containing potentially hazardous chemicals is 
often complicated by the fact that some of those pollutants are present at low and trace levels. These 
“trace level” or “low level” contaminants cannot be measured reliably and are therefore reported as 
results lying numerically below a certain detection limit, DL (also denoted by L). The resulting data set 
thus obtained with below detection limit observations represents a Type 1 left-censored data set. 
However, since the presence of some of those contaminants (e.g., dioxin) in the various environmental 
media can pose a threat to human health and the environment even at trace level concentrations, these 
nondetects (NDs) should not be ignored or deleted from subsequent statistical analyses.  
 
For exposure assessment and site characterization purposes, such as to determine mean contamination 
levels at various locations or areas of a contaminated site, it is desirable to obtain reliable estimates of 
population mean, standard deviation, and associated upper limits (e.g., upper confidence limits (UCLs), 
upper prediction limits (UPLs), and upper tolerance limits (UTLs)) using the left-censored data sets. 
Improperly computed estimates of these parameters and quantities can result in inaccurate estimates of 
cleanup standards, which in turn can lead to incorrect remediation decisions. In this report, several 
defensible methods have been developed and evaluated that can be used to compute upper limits (UCLs, 
UPLs, and UTLs) based upon Type 1 left-censored data sets. 
 
Nondetects, or below detection limit observations, are inevitable in most environmental data sets. A 
myriad of parametric as well as nonparametric estimation methods exists in the statistical literature (e.g., 
see Cohen (1991), Gibbons and Coleman (2001), Schneider (1986), Gilliom and Helsel (1986), Singh and 
Nocerino (2002), Helsel (2005)) to estimate the population mean, µ1, and the population standard 
deviation, σ1, based upon data sets with the below detection limit observations. However, appropriate 
methods with specific guidance are lacking on how to accurately compute the various upper limits often 
used in many environmental applications. For example, in exposure and risk assessment applications, one 
needs to compute a 95% upper confidence limit (UCL95) of the mean based upon data sets with below 
detection limit observations. Background evaluation and comparison studies often require the 
computation of UCLs, UPLs, and UTLs based upon left-censored data sets. The main objective of this 
study is to research and develop the most appropriate UCL computation method(s) for the left-censored 
data sets. It is hoped that those methods would also be useful to compute defensible UPLs and other 
relevant background statistics. 
 
Recent environmental literature (e.g., Millard (2002) and USEPA-UGD (2004)) cites the use of ad hoc 
“rule-of-thumb” type methods based upon the Student’s t-statistic or Land’s H-statistic to compute the 
95% UCLs, 95% UPLs, and 95% UTLs. For example, it is noted that the Student’s t-statistic (on Cohen’s 
maximum likelihood estimates) is used to compute an upper prediction limit (pages 10-26, USEPA-UGD 
(2004)). However, it is noted that the distribution of the t-type statistic used to construct a UPL (pages 10-
26, USEPA-UGD (2004)) based upon the maximum likelihood estimate (MLE) of the mean and the 
standard deviation based upon left-censored data set is not known. The MLEs of the population mean and 
the standard deviation based upon left-censored data sets are very different from the traditional mean and 
the standard deviation (sd) used in the definition of a typical Student’s t-statistic. This “rule-of-thumb” 
method to compute UCLs, UPLs and UTLs is difficult to defend for moderately skewed to highly skewed 
data sets with standard deviation of the log-transformed data exceeding 0.75-1.0. This has been 
demonstrated via simulation experiments and results as summarized in Section 7 and Appendix C of the 
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report. For skewed distributions, such as a lognormal distribution, the coefficient of variation (CV) and 
skewness are functions of the sd of log-transformed data; therefore, in this report, skewness is defined and 
measured in terms of the standard deviation, σ, of the log-transformed data as considered and used in the 
ProUCL 3.0 User Guide (2004).  
 
Helsel (2005) first proposed the use of the percentile bootstrap method on the Kaplan-Meier (KM) 
method (1958) to compute a 95% UCL of the mean based upon left-censored data sets. The performances 
of the various ad hoc, parametric, and nonparametric UCL95 computation methods for left-censored data 
sets require detailed investigation before recommending their use for the various environmental 
applications. One of the objectives of this report is to determine which of the UCL95 computation 
methods (e.g., KM method, MLE methods, Chebyshev inequality, jackknife, and bootstrap methods) will 
provide approximately 95% coverage (at least roughly) for the population mean, µ1, especially if the data 
sets are moderately skewed to highly skewed.  
 
Simulation studies were conducted to evaluate the performances of the various UCL95 computation 
methods. Since several of the estimation methods (e.g., MLE, EM) considered can handle only a single 
detection (denoted by DL or L) limit case, only the single detection limit case has been evaluated in the 
simulation experiments as summarized in Sections 7 and 8. If multiple detection limits were present in a 
data set, then all detection limits are replaced by the maximum detection limit resulting in the single 
detection limit case. The KM method and regression on order statistics (ROS) method (Helsel, 2005) as 
incorporated in ProUCL 4.0 (currently under development) would be able to handle data sets with 
multiple detection limits.  
 
In Section 8 of this report, the performances of the various UCL95 methods have been compared in terms 
of percent of coverages provided by the respective 95% UCLs to estimate the unknown population mean 
or mass. The numerical simulation results are summarized in Appendix C, whereas the graphical displays 
of coverage probabilities and average UCL95 values are given in Appendices A and B, respectively. A 
simulation program (SimCensor) was developed for this report and was used to compute the various 95% 
UCLs of the population mean based upon left-censored data sets from normal, lognormal, and gamma 
distributions. Based upon the results and findings of the simulation study as summarized in Section 9, 
several UCL95 computation methods will be available in the forthcoming ProUCL 4.0 software, which is 
expected to be available in early 2007.  

 
The methods considered to estimate population mean and the standard deviation are: 

 
• Maximum likelihood method (CMLE) (Cohen (1950, 1959, and 1991)),  
• Bias-corrected MLE method (UMLE),  
• Restricted MLE (RMLE) method (Perrson and Rootzen (1977)),  
• Expectation Maximization (EM) method (Gleit (1985),  
• Delta (delta) method (USEPA (1991)), 
• Regression on order statistics (ROS) on raw data (Newman, Dixon, and Pinder (1990) and 

UNCENSOR 5.1 (2003)),  
• Regression on order statistics on log-transformed data (Helsel (1990), Helsel (2005), and RPcalc 

2.0 (2005)), 
• Kaplan-Meier (KM) method (Kaplan-Meier (1958)),  
• DL/2 substitution (DL/2) method, and 
• Winsorization method (Gilbert (1987)). 

 



 

 3

Using the mean and the standard deviation, and the extrapolated NDs obtained using one of the estimation 
methods listed above, the 95% UCLs of the mean can be computed using the following methods.  

 
• Tiku’s UCL method (Tiku (1967 and 1971)),   
• Schneider’s approximate UCL method (Schneider (1986)), 
• Ad hoc UCL methods using Student’s t-statistic as mentioned in UNCENSOR 5.1 (Millard 

(2002), Helsel (2005), and USEPA-UGD (2004)), 
• Ad hoc UCL methods based upon Land’s H-statistic, 
• Gamma UCL (Singh, Singh, and Iaci (2002)), 
• Nonparametric Chebyshev inequality (Singh, Singh, and Engelhardt (1997)), and  
• Bootstrap (percentile, standard bootstrap, bootstrap t, and bias-corrected accelerated (BCA)) 

methods (Efron and Tibshirani (1993) and ProUCL 3.0 User Guide (2004)).  
 

All of the UCL95 computation methods listed above have been included in the simulation experiments. 
Normal, lognormal, and gamma distributions covering a wide range of skewed distributions were used in 
the simulation experiments to generate Type 1 left-censored data sets of various sizes including: 10, 15, 
20, 25, 30, 35, 40, 50, 75, and 100. Left-censored samples of varying degree of censoring intensities, 
10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, and 70% have been considered. The performances of the 
various UCL95 methods listed above have been evaluated by comparing their coverage probabilities.  
 
1.1 Evaluation of the Existing Software Packages for Left-Censored  

Data Sets 
 

While evaluating and comparing the various UCL95 computation methods listed above, some well-
documented and freely available software packages (UNCENSOR 5.1 (1993) and RPcalc 2.0 (2005)) 
were also evaluated. The main purpose of this evaluation was to compare and verify our results obtained 
using the SimCensor program with the results obtained using the two software packages mentioned 
above. During this evaluation process, several numerical errors have been identified in the UNCENSOR 
5.1 program. The detailed evaluation and comparisons are summarized in Sections 5 and 6. Since 
UNCENSOR 5.1 software has been referenced in the literature, including Manly (2001), Shumway, 
Azari, and Kayhanian (2002), USEPA (2000), and USEPA (1993 – SW-846, currently under revision), it 
is desirable that those errors be corrected. 
 
In order to compare the estimates obtained using the ROS methods, the RPcalc 2.0 program (2005) was 
used on data sets considered in Sections 4 and 6. The ROS estimates obtained using the program 
developed for this report (SimCensor) and RPcalc 2.0 have been summarized in Table 5-1 of Section 5.8. 
For the robust ROS method, estimates of the mean and sd as produced by SimCensor are in close 
agreement with the estimates obtained using RPcalc 2.0 (2005). The minor differences in the estimates 
occur due to the fact that SimCensor (described in ProUCL 3.0 User Guide (2004)) and RPcalc 2.0 
(described in Helsel (2005)) calculate the normal quantiles using slightly different methods. RPcalc 2.0 
calculates the estimates based upon fully parametric ROS method on log-transformed data. The 
differences in the estimates obtained using the two methods (RPcalc 2.0 and equation (3-22)) can be 
significant. At present, it is not known which of these two back-transformation methods (from log scale to 
original scale) performs better. These issues are discussed in detail in Section 5.8.  
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1.2 Assumptions Needed for the Methods Discussed and Developed in 
This Report 

 
The estimation methods as described in this report are applicable to data sets coming from a “single” 
statistical population such as a single contaminated or remediated area of the site, an unimpacted clean 
background or reference population. The sampled data set should represent a random sample from the 
area such an as exposure area (EA), a remediation unit (RU), or some other site area under study. This 
means that the data set should be representative of the entire population (e.g., EA, RU) of interest under 
study. A few outlying observations (e.g., representing contaminated locations, hot spots) in a full 
uncensored data set or in a left-censored data set may distort all classical statistics, including the EM 
estimates, MLEs, restricted MLEs, regression (intercept and slope) estimates both in raw as well as log 
scale, and also the associated upper limits such as UCLs, UPLs, and UTLs.  
 
In practice, it is the presence of a few outlying observations (extreme high analytical values) or the 
presence of multiple populations that distorts the symmetry (and normality) of a data distribution under 
study. Such a mixture data set may have been obtained from two or more populations with significantly 
different mean concentrations such as the one coming from the clean background area and the other 
obtained from a contaminated part of the site. Unfortunately, many times such a mixture data set or a data 
set with a few low probability outlying observations can be incorrectly modeled by a lognormal 
distribution with the lognormal assumption hiding the outliers and contamination (Singh, Singh, and 
Engelhardt (1997) and Singh, Singh, and Iaci (2002)). 
 
One can argue against “not using the outliers” while estimating the various environmental parameters 
such as the EPC terms and BTVs. An argument can be made that the outlying observations are inevitable 
and can be naturally occurring (not impacted by site activities) in some environmental data sets. Often, in 
groundwater applications, a few elevated values (occurring with lower probabilities) are naturally 
occurring, and as such may not be representing the impacted and contaminated monitoring well data 
values. Those data values originating from the groundwater studies may require separate investigation, 
and all interested parties should decide on how to deal with data sets that contain naturally occurring 
unimpacted outlying observations. The project team should come to an agreement whether to treat the 
outlying observations separately or to include them in the computation of the various statistics of interest 
such as the sample mean, standard deviation, and the associated upper limits. However, it should be noted 
that statistics (e.g., mean, UCL) based upon the data set with outliers would yield distorted and inflated 
estimates of the population mass or average. The distorted estimate (a UCL95) of the population mass 
often exceeds the largest data value in the data set. It is noted that in such cases, practitioners (e.g., 
USEPA (1992)) often use the maximum value in a data set as an estimate of the population mean or mass. 
It does not seem desirable to estimate the population mass or average for the entire site area (e.g., AOC, 
EA) based upon the distorted statistics or the maximum observed data value. The authors of the report 
recommend that the outliers be treated separately. The extreme observations coming from the tails of a 
data distribution often represent low probability observations. The main objective of using a statistical 
procedure is to model the majority of the data representing the main dominant population, and not to 
accommodate a few outliers that may yield inflated and impractical results. The cleanup and remediation 
decisions for a site should be based upon reliable statistics (and not distorted statistics) and the data set 
representing the dominant population. A few outlying observations coming from the tails of the data 
distribution should be separately investigated.  
 
Preprocessing of data to identify outliers and multiple populations should be conducted to obtain accurate 
and reliable estimates of the environmental parameters considered in this report. The user may want to 
use informal graphical displays (e.g., quantile-quantile plots, histograms) and formal population 



 

 5

partitioning methods (e.g., see Singh, Singh, and Flatman (1994)) to identify multiple populations (if 
any). The UCL95 computation methods as considered in this report or in any other related reference such 
as Helsel (2005) should be used separately on each of the identified sub-population.  
 
It should be noted that the methods as investigated and described in this report may be used on any data 
set with or without the outliers. However, the authors of the report want to caution and alert the users that 
the distorted statistics based upon data sets with outliers may lead to incorrect conclusions and decisions. 
These issues are illustrated by some examples in Section 6. If deemed necessary, all identified outliers 
should be excluded (with consultation and agreement of all interested parties) from all further analyses, 
including the computation of UCLs, UPLs, and UTLs. All of those identified environmental outliers 
perhaps represented by their locations, time period, laboratory, or analytical method require further 
investigation. Reliable and defensible statistics can be obtained based upon the majority of a data set 
representing the main body of the dominant population under study. 
 
1.3 Disposition of Outliers and Use of a Lognormal Distribution 
 
In addition to nondetects, outliers are also inevitable in most environmental applications. The issue of 
handling and disposition of outliers is a confusing and controversial topic in environmental applications, 
including the estimation of population mean or mass. Depending upon the objective (e.g., estimation of a 
background level concentration, or an EPC term) of the study and data collection, all interested parties 
including the project team should decide about the disposition of outliers. All relevant statistics should be 
computed on data sets with and without the outliers, the results compared, and a decision made 
accordingly. That is, the project team should decide which of the mean statistic (with outliers or without 
outliers) represents a better and more accurate estimate of the population mass under consideration. This 
topic is further discussed in Section 4, and several examples have been considered to address some 
outlier-related issues.  
 
Outliers typically represent observations from different population(s) perhaps representing hot spots and 
contaminated areas impacted by the site activities. A data set consisting of such observations may 
represent a mixture sample from one or more populations. Those outliers representing hot spots and 
impacted site areas obviously require separate investigation. Many times, a few extreme observations 
come from the tails of the data distribution under study with much lower probabilities than the rest of the 
data coming from the main dominant population (e.g., site, monitoring well). High outlying values 
contaminate the underlying left-censored or uncensored full data set from the population under study. In 
practice, it is the presence of a few extreme outliers that cause the rejection of normality of a data set 
(Barnett and Lewis (1994)).  
 
The use of a lognormal distribution to estimate the population mean or mass based upon a data set with 
mixture samples or a few outliers often results in unrealistically large estimates of population mass of no 
practical merit. Therefore, instead of accommodating a few outliers by using a lognormal distribution, it is 
desirable to separately investigate the outliers, and compute the relevant statistics based upon the main 
body of the data set representing the dominant population. The objective is to compute a meaningful 
estimate of the population mass of the main dominant population, and not to accommodate a few extreme 
observations resulting in distorted and unrealistic estimate of the population mass and various other 
parameters. 
 
If possible, it is recommended that robust or resistant procedures be used to compute the mean, standard 
deviation, and other statistics from left-censored data sets. Several robust and resistant estimation 
methods have been considered and evaluated by Singh and Nocerino (2002). Robustness and resistance of 
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an estimator go hand-in-hand. In practice, a resistant (to outliers) estimator also represents a robust 
estimator as it often turns out to be insensitive to the distributional assumptions. The user should make an 
effort to identify all potential outliers using appropriate statistical methods (e.g., see Huber (1981), 
Rousseeuw and Leroy (1987), Barnett and Lewis (1994), Singh (1993), and Singh and Nocerino (1995)) 
before proceeding with the estimation of population mean, standard deviation, UCLs, UPLs, UTLs, and 
other summary statistics based upon left-censored data sets. The detailed discussion and use of those 
robust and resistant regression methods is beyond the scope of this report. Instead of computing and using 
distorted summary statistics (e.g., an inflated average for the entire EA), a few outliers, if any, should be 
studied separately. Some of the classical and robust outlier identification methods have been incorporated 
in the Scout software package developed by the U.S. Environmental Protection Agency (USEPA (2002)).  
 
1.3.1 What Represents a Distorted Estimate of Population Mass or Mean? 

 
A distorted value of a statistic represents an unrealistic and unstable number of no practical merits. In the 
present application of estimation of population mean or mass, the value (a number) of the statistic larger 
than the largest observation (or > 1.5 times or twice the largest value) in a data set can be considered as a 
distorted estimate of the population mean. An estimate of the population mean or mass should not exceed 
the largest observation in the data set used to estimate that mean or mass. However, these occurrences are 
quite common, especially when one estimates the population mean based upon a data set with a few 
potential outliers assuming a lognormal distribution accommodating those few outlying observations. In 
such cases, it is a common practice (USEPA (1992)) to use the maximum (which itself may be an outlier) 
observed value as an estimate of the population mass. Just as before, it is recommended that the 
maximum detected value should not be considered as an estimate of the population mean or mass. 
Therefore, whenever the population mass (mean) needs to be estimated, instead of computing distorted 
statistics based upon a data set with a few potential outliers, every effort should be made to compute a 
reliable estimate of the population mass (average) using the data set representing the dominant population 
(e.g., EA, RU).  
 
There seems to be no general consensus on how to appropriately treat the outliers in the various decision-
making (statistical analyses) processes. However, most of the environmental scientists do recognize that 
outliers when present distort all statistics of importance, and, therefore, it is important to be able to 
identify potential outliers in environmental data sets. Since the treatment and handling of outliers is a 
controversial and subjective topic, this report suggests that the outliers be treated on a site-specific basis 
using all existing knowledge about the site (e.g., EA, RU, area of concern (AOC), and monitoring well) 
under investigation. The treatment of outliers and disposition of outliers (include or not to include) should 
be a team decision based upon the knowledge of the experts involved with the site investigations. The 
project team should clearly state the objective of estimating the population mean (by point estimate or by 
a UCL95). Such an estimate should be representative of the average or mass of the dominant population. 
All interested parties should understand and determine the importance of including or not including a few 
low probability outliers in the estimation of the mass of the dominant population. Specifically, the project 
team should decide whether to compute a reasonable and defensible estimate of the population mean 
based upon the majority of the data, or to compute a population mass by accommodating a few low 
probability outlying observations (perhaps by using a transformation), which could lead to a distorted and 
inflated estimate.  
 
One of the objectives of this report is to clearly specify the inherent assumptions needed to estimate the 
population parameters based upon left-censored data sets. As far as the use of the mathematical UCL95 
computation formulae is concerned, those formulae and methods can be used on any left-censored data set 
with or without the outliers. It is not a requirement to delete or omit the outliers (occurring with lower 
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probabilities) before using the estimation or UCL95 computation methods (e.g., KM (BCA) UCL, MLE, 
and ROS methods). But, an explanation should be provided if outliers are included in the estimation 
process. 
 
Classical MLE (CMLE, RMLE, and UMLE) and EM estimates are distorted by outliers as illustrated by 
Examples 1 through 3 in Section 4. Also, the ROS estimates of the intercept and slope (Rousseeuw and 
Leroy (1987)), and hence, the mean, the standard deviation, and the extrapolated nondetects, are distorted 
by the presence of even a single outlier. These distortions increase rapidly with even a minor increase in 
the standard deviation, σy (= σ) of the log-transformed variable Y = Ln(X). The extrapolated NDs based 
upon ROS (raw data) often result in infeasible negative estimates of nondetects. The use of a log-
transformation alone does not result in robust and resistant estimates of the intercept and slope. One of the 
advantages of using ROS on log-transformed data is that the extrapolated NDs cannot become negative. It 
is, however, noted that, contrary to the statement made in Shumway, Azari, and Kayhanian (2002), the 
extrapolated nondetects do become larger than the detected observed values even for well-behaved 
normally distributed data sets, as used in Example 1 of Section 4. 
 
All interested parties should come to a consensus about the inclusion or exclusion of outliers in the 
computation of the summary statistics and UCL95 of the population mean. Based upon professional 
experience, the authors of the report recommend that summary statistics and all other related upper limits 
be computed based upon the main dominant population (e.g., AOC, EA) without including a few potential 
outliers, especially when the objective is to estimate the overall mean (mass) contaminant concentration 
of an AOC (or of an EA, RU, or a monitoring well) under investigation. In practice, such a mean statistic 
without using a few outliers represents the population “mass” or average better that other statistical 
methods based upon sample percentiles such as the median, 75th, and 90th percentiles. It is recommended 
that all relevant statistics be computed both with and without the outliers, and compare the results to 
evaluate the potential impact of outliers on the statistics used in the various decision-making processes.  
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Section 2 
 

Mathematical Formulation and Distributions Considered 
 

Censoring generally means that observations at one or both extremes (tails) are not available. In Type I 
censoring, the point of censoring (e.g., the detection limit, DL) is “fixed” a priori for all observations, and 
the number, k, of the censored observations varies. In Type II censoring, the number of censored 
observations, k, is fixed a priori, and the point(s) of censoring vary. For example, Type II right censoring 
(large values are not available) typically occurs in lifetime expectancy testing and reliability applications. 
In a life testing application, n items (e.g., electronic items, laboratory animals) are subjected to a lifetime 
expectancy testing experiment that terminates as soon as (n-k) of the n data values have been observed 
(failed/died). The lifetime of the remaining k living objects is unavailable or being censored.  
 
In this report, we are concerned about Type 1 left-censoring UCL95 computation methods. The 
computation of the mean, standard deviation, and quantiles of normal and lognormal populations from 
censored samples has been studied by several researchers, including Cohen (1950, 1959), Perrson and 
Rootzen (1977), Gleit (1985), Schneider (1986), Gilliom and Helsel (1986), Kroll and Stedinger (1996), 
She (1997), Shumway, Azari, and Kayhanian (2002), and Singh and Nocerino (2002). These articles 
cover a myriad of procedures to estimate the sample mean and the standard deviation, including the 
simple substitution methods and likelihood procedures such as Cohen’s maximum likelihood estimation 
(CMLE) procedure, Perrson and Rootzen’s restricted MLE (RMLE) method, and regression on order 
statistics (ROS) methods (Gilliom and Helsel (1986), Newman, Dixon, and Pinder (1990) and Helsel 
(1990)). The simple substitution methods are the replacement of below detection limit data by zero, by 
half of the detection limit, DL/2, or by the detection limit, DL, itself. Helsel (2005) discusses the 
performances of several of the estimation methods as described in the above references. Based upon the 
findings of the various researchers, Helsel (2005) summarizes some recommendations to compute the 
summary statistics for left-censored data sets (page 78). It is noted that the recommendations as described 
by Helsel (2005) are for the computation of summary statistics such as the sample mean and the standard 
deviation and not for the computation of UCL95 based upon left-censored data sets. It is also noted that 
not much is known about some of the recommended methods such as the robust MLE method (Kroll and 
Stedinger (1996)). In this report, we evaluate the performance of the several UCL95 computation methods 
(Section 8) and make recommendations (in Section 9) accordingly. It is observed that an estimation 
method (e.g., MLE method, EM method) which may be considered a good method for estimation of the 
population mean and sd may not be good enough to compute a UCL95 for the population mass.  
 
Using Monte Carlo simulation experiments, several researchers, including Gleit (1985), Gilliom and 
Helsel (1986), and Haas and Scheff (1990), Singh and Nocerino (2002), concluded that the data 
substitution methods (including the uniform generation of NDs in the interval (0, DL]) result in biased 
point estimates of the population mean. In practice, probably due to computational ease, these data 
substitution methods are commonly used in many environmental applications. Depending upon the 
sample size, n, and the censoring intensity, k, substitution of the censored values by DL/2 is one of the 
recommended estimation methods in some USEPA guidance documents (e.g., USEPA (2000), USEPA 
(2006)). Another method that the practitioners sometimes want to use is the random generation 
(uniformly distributed) of the k nondetects (NDs) in the interval (0, DL]. Singh and Nocerino (2002) 
concluded that this uniform generation method does not work well and produces biased estimates of the 
population mean and the standard deviation. Therefore, the uniform generation method and other proxy 
(e.g., substituting NDs by ‘0’, or DL) methods have not been included in this study dealing with the 
computation of UCL95. Since the use of a lognormal model (e.g., Singh, Singh, and Engelhardt (1997)) 
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results in unstable and unrealistically large UCLs as illustrated by examples in Section 6, the use of a 
lognormal distribution should be avoided. Emphasis is given to evaluate and compare the performances of 
the various nonparametric (e.g., bootstrap and Chebyshev on KM estimates) UCL95 computation 
methods that can be used on any left-censored data set-symmetric or skewed.  
 
In order to thoroughly address the issue of UCL95 computations from left-censored data sets, several 
UCL95 computation methods, including the EM algorithm, MLE, UMLE, RMLE methods, regression on 
order statistics (ROS) on raw and log-transformed data (fully parametric and robust ROS), EPA delta 
method, KM method, and nonparametric jackknife and bootstrap (standard, bootstrap t, percentile 
bootstrap, and BCA bootstrap) methods, have been considered in the Monte Carlo simulation experiments 
as summarized in Section 7. Three distributions: a normal distribution, a lognormal distribution, and a 
gamma distribution have been included in the simulation study. Singh, Singh, and Iaci (2002) and Singh 
and Singh (2003) concluded that UCL95 computation methods, which perform well on symmetric and 
mildly skewed data sets, may not perform well on moderately skewed to highly skewed data sets. 
Therefore, in this report, several distributional parameters have been considered to cover a wide range of 
skewness from mildly skewed to highly skewed distributions. Type 1 left-censored data sets of various 
sizes for several computed censoring levels (10%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, and 70%) 
have been generated from the three distributions (normal, lognormal, and gamma). The sample sizes 
evaluated are: 10, 15, 20, 25, 35, 40, 50, 75, and 100. Some fixed detection limit cases have also been 
considered. 
 
In an effort to document all of the UCL95 computation methods in one report, most of the UCL95 
methods for left-censored data sets cited and mentioned in the literature have been included (perhaps with 
some modification) in this report. It is important to address the issue of the appropriate treatment of 
outliers as data sets with a few high outliers that can be modeled by a lognormal distribution – thus hiding 
and accommodating potential contamination represented by outliers. As mentioned before, this may 
require some preprocessing of the data set using population partitioning (e.g., Singh, Singh, and Flatman 
(1994); Singh and Singh (1996)) and outlier identification (Barnett and Lewis (1994)) methods. These 
issues have been illustrated by using a couple of skewed data sets as discussed in Examples 6 and 7 in 
Section 6. These examples also demonstrate that in practice, the use of a lognormal distribution can yield 
“unstable and impractical” results of no practical merit. This is especially true for moderately skewed to 
highly skewed data sets of smaller sizes (e.g., Singh, Singh, and Iaci (2002)).  
 
2.1 Distributions Considered 
 
Three distributions, normal, gamma, and lognormal (Johnson, Kotz, and Balakrishnan (1994)), have been 
included in the present simulation study. Singh and Singh (2003) used bootstrap and Monte Carlo 
simulation experiments to compare the performance of the various UCL computation methods for full 
uncensored data sets generated from normal, lognormal, and gamma distributions. In this study, we 
compare the performances of the various UCL95 computation methods for left-censored data set. 
 
2.1.1 The Normal Distribution 
 
Let X be a continuous random variable (e.g., concentration of COPC) that follows a normal distribution, 
N(μ,σ2) with mean, μ, and variance, σ2. The probability density function of X is given by the following 
equation: 
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As mentioned before, several maximum likelihood estimation (MLE) methods are available in the 
literature to estimate sample mean and the standard deviation for left-censored data set. Some of those are 
described later in Section 3. 
 
2.1.2 The Gamma Distribution 

 
Singh, Singh, and Iaci (2002) studied the gamma distribution to model positively skewed environmental 
data sets. For full data sets, the use of a gamma distribution results in reliable and stable 95% UCL 
values. It is, therefore, desirable to test if an environmental data set follows a gamma distribution. If a 
skewed data set follows a gamma model, then a 95% UCL of population mean may be computed using a 
gamma distribution. For details of gamma goodness-of-fit tests, estimation of gamma parameters, and 
computation of a 95% UCL of the mean based upon a gamma distribution, refer to Singh, Singh, and Iaci 
(2002). In this study, gamma distribution has been used to compute UCL95 based upon left-censored data 
sets.  
 
A continuous random variable, X (e.g., concentration of COPC), is said to follow a gamma distribution, 
G(k, θ), with parameters k > 0 and θ > 0, if its probability density function is given by the following 
equation: 
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The parameter, k, is the shape parameter, and θ is the scale parameter. Many positively skewed data sets 
follow a lognormal as well as a gamma distribution. A gamma distribution can be used to model 
positively skewed environmental data sets. In addition to jackknife and bootstrap methods, a UCL95 
method based upon linear regression on order statistics (ROS) of (n-k) pairs (gamma quantiles versus 
ordered detected values) has also been described in the following sections. If NDs are present, it is 
desirable to use an available goodness-of-fit test (e.g., as in ProUCL 3.0 and all later versions) on the 
detected data supplemented by a gamma quantile-quantile (Q-Q) plot. 
 
2.1.3 The Lognormal Distribution 

 
Environmental data are often (by default) modeled by a lognormal distribution. Singh, Singh, and Iaci 
(2002) and Singh and Singh (2003) compared the performances of the various UCL95 computation 
methods for full (uncensored) data sets obtained from lognormal and gamma distributions. In this report, 
similar methods have been used to compare the performances of the various UCL95 computation methods 
for Type 1 left-censored data sets. 
 
Let x1, x2, ..., xn be a random sample from a lognormal population, LN(μ, σ2), where the natural logarithm, 
y, of data is normally distributed, N(μ,σ2), with the mean, μ, and the variance, σ2. Let y and sy be the 
sample mean and sample sd, respectively, of the log-transformed data, yi = log(xi); i = 1, 2, ..., n. The 
mean, μ1, of the lognormal population in the original x-scale is given by )5.0exp( 2

1 σμμ += , the 
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sample mean, y , and the sample standard deviation (sd), sy, are given by: 
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2.2 UCL of the Mean, µ1, of a Lognormal Model Based Upon Land’s 

Method (Full Data Set) 
 

The use of Land’s H-UCL on MLEs obtained using log-transformed left-censored data set has been 
mentioned as one of the potential UCL95 computation method in the literature. This method may also be 
used (not a recommended method though) on the full data set obtained by extrapolating the NDs based 
upon ROS on MLEs (Kroll and Stedinger (1996)), or ROS on log-transformed left-censored data set. For 
full data sets, a (1 – α) 100% UCL for the mean, μ1, based upon Land’s H-statistic (Land (1971)) is given 
by: 
 

UCL = ( )15.0exp 1
2 −++ − nHssy αyy , 

 
where y and 2

ys  are the sample mean and variance of the log-transformed data. For left-censored data 
sets, these estimates are replaced by the MLEs (Kroll and Stedinger (1996)) or ROS estimates based upon 
log-transformed data sets. Technically, on the data set obtained using ROS on log-transformed data 
(which assumes a lognormal distribution for both detected and nondetected data), the H-statistic can be 
used to compute a UCL95 based upon the full data set obtained using the detected and extrapolated 
nondetects in the log scale. The 95% H-UCL given by the above equation does provide the specified 95% 
coverage (Singh and Singh (2003)) for the lognormal population mean, μ1. However, the practical merit of 
the associated H-UCL is quite questionable as it may result in unacceptably high UCL values. This is 
especially true for samples of small size (e.g., n < 50) with values of sy exceeding 1.5-2.5 (e.g., Singh, 
Singh, Engelhardt (1997) and ProUCL 3.0 User Guide (2004)). A similar behavior is observed for the 
UCL95 based upon the USEPA (1991) delta log method, and the H-UCL95 computed using the MLEs or 
the full data set with NDs estimated using the ROS on log-transformed data.  
 
The Monte Carlo results, as summarized in this report (Section 8), suggest that, just as for the case of full 
data sets, the H-statistic-based UCL does provide approximate 95% coverage of the population mean, but 
may yield unrealistic, unstable, and inflated UCL values, especially when the sample size is small (e.g., n 
< 50-70) and the skewness is high with the standard deviation of log-transformed data exceeding 1, 1.25, 
and so on. It should also be noted that for larger samples (e.g., >100), the H-UCL sometimes results in a 
value smaller than the sample mean of the detected data-which is again questionable. Therefore, it is 
again recommended to avoid the use of a lognormal distribution when computing the UCL95. It is 
preferable to use nonparametric methods to compute a UCL95 of the mean. A description of some of the 
available estimation methods for left-censored data sets is given in Section 3 and several nonparametric 
UCL95 computation methods based upon resampling bootstrap and jackknife methods are described in 
Section 5. 
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Section 3 
 

Estimation of Population Mean and Variance  
Based Upon Left-Censored Data Sets 

 
This section provides a description of the various methods available to estimate the population mean, and 
the standard deviation based upon left-censored data sets. It has been implicitly assumed that the data set 
under consideration has been obtained from a “single” parametric (e.g., normal, lognormal, and gamma) 
or nonparametric population. This assumption is needed for the validity of the use of a UCL95 as an 
estimate of the mean of the population under study, such as a study area (SA), area of concern (AOC), 
remediation unit (RU), exposure unit (EU), or an exposure area (EA). 
 
It is suggested to avoid the use of transformations (Singh, Singh, Engelhardt (1997) and Singh, Singh, and 
Iaci (2002)) on the raw data sets to achieve symmetry (approximate normality). Typically, the parameter 
(hypothesis of interest) in the transformed space is not of interest to make remediation and cleanup 
decisions. Many times, the practitioners do not know how to interpret the transformed results or back-
transform the results in the original scale. For example, the program UNCENSOR 5.1 can compute the CI 
of the population mean in the log scale, but does not provide any guidance to a user on how to interpret, 
back-transform, or use those intervals to estimate the population mass. Shumway, Azari, and Kayhanian 
(2002) used Box-Cox (BC) type transformation on skewed data sets to achieve symmetry. They used a 
mildly skewed (almost normal) lognormal distribution, LN(μx = 2.77, sd = σx = 0.56), to illustrate their 
procedures. Any of the available estimation methods (e.g., MLE, EM, and ROS) will work equally well 
on the raw data sets obtained from such mildly skewed populations. There is no need to use a BC type 
transformation on data sets obtained from such a mildly skewed population. For such mildly skewed data 
sets with σx = 0.56 (and σy = 0.2 as can be seen from Tables 3-1 and 3-2), estimates and UCL95 based 
upon raw data will do just equally well. It is desirable to demonstrate the gains and advantages (in terms 
of bias and percent coverages achieved by UCL95) of using a transformation in the estimation and UCL 
computation methods. 
 
3.1 Impact of Skewness on Estimation Methods and Robustness of 

Methods Used on Log-Transformed Data Sets 
 

In order to support some of the statements made above about skewness and avoiding the use of 
transformations such as a log-transformation to achieve symmetry, a couple of tables (Table 3-1 and 
Table 3-2) have been constructed showing the relationships between sd, σy of log-transformed variable, Y 
= log(X), and CV and skewness of the lognormal variable, X, in the original scale. In the following, the 
subscript y is used for log-transformed variable, Y = log(X), and subscript x is used for variable, X, in the 
original raw scale. Also, note that CV and skewness of a lognormal variable, X, are functions of sd, σy of 
log-transformed variable, Y. In this report, skewness for a lognormal and for any other skewed 
distribution is defined in terms of standard deviation, σy, of the log-transformed variable, Y. Based upon 
the results (as incorporated in ProUCL 3.0) of an extensive simulation study, Singh and Singh (2003) 
concluded that for mildly skewed lognormal or other distributions (with sd, σy of log-transformed variable 
< 0.5), the difference between a UCL95 based upon Student’s t-statistic (assuming a normal distribution) 
or any other parametric (Land’s H-UCL) or nonparametric method (e.g., bias-corrected accelerated 
(BCA) bootstrap) is not of any practical significance.  
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Therefore, for such mildly skewed distributions with CV = 0.6, as cited and used in the Colorado state 
document (Colorado Water Quality Control Division (WQCD) (2003)), or with sd, σy = 0.2 
(corresponding to σx = 0.56 as used in Shumway, Azari, and Kayhanian (2002)), there is no need to use a 
transformation to achieve symmetry using a Box-Cox (BC) type transformation. As mentioned before, for 
such low values of skewness, all parametric and nonparametric methods on raw data as well as on 
transformed data will yield similar and comparable results (use ProUCL 3.0). For values of standard 
deviation, σy, exceeding 1, the estimates and the UCL95 change drastically with a minor increase in 
standard deviation, σy of Y. Thus, the observations made and derived for mildly skewed distributions (as 
in Colorado WQCD (2003) and Shumway, Azari, and Kayhanian, (2002)) cannot be generalized and 
determined to be robust for moderately skewed to highly skewed distributions with σy of log-transformed 
data exceeding 1.0. The conclusions about the robustness of ROS and EM methods as derived in 
Shumway, Azari, and Kayhanian (2002) need to be demonstrated for higher values of CV, skewness, and 
σy.  

 
Table 3-1. Relationship between Parameters of the Distributions of X and Y 

 
Table 3-2. Relationship between Parameters of the Distributions of X and Y 

Y = log (X) X is Lognormal 
μy σy μx σx CVx Skewnessx

2 0.25 7.62 1.94 0.25 0.78

2 0.50 8.37 4.46 0.53 1.75

2 0.75 9.79 8.51 0.87 3.26

2 1.00 12.18 15.97 1.31 6.18

2 1.50 22.76 66.31 2.91 33.47

2 2.00 54.60 399.72 7.32 414.36

2 2.20 83.10 930.79 11.20 1,439.03

2 2.40 131.63 2,341.21 17.79 5,679.99

2 2.60 217.02 6,370.42 29.35 25,380.48

2 2.80 372.41 18,766.02 50.39 128,103.03

2 3.00 665.14 59,870.45 90.01 729,551.38

Y = log(X)  X is Lognormal

μy σy μx σx CVx Skewnessx

5 0.25 153.12 38.89 0.25 0.78

5 0.50 168.17 89.63 0.53 1.75

5 0.75 196.62 170.85 0.87 3.26

5 1.00 244.69 320.75 1.31 6.18

5 1.50 457.14 1,331.83 2.91 33.47

5 2.00 1,096.63 8,028.53 7.32 414.36

5 2.20 1,669.03 18,695.36 11.20 1,439.03

5 2.40 2,643.87 47,024.40 17.79 5,679.99

5 2.60 4,359.01 127,953.23 29.35 25,380.48

5 2.80 7,480.09 376,925.61 50.39 128,103.03

5 3.00 13,359.73 1,202,530.08 90.01 729,551.38
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For clarification, relationships between standard deviation, coefficient of variation (CV), and skewness of 
a lognormal variable, X, and its transformed variable, Y = log(X), are summarized in Tables 3-1 and 3-2 as 
follows. CV and skewness of a lognormal variable, X, only depend on the standard deviation, σy, of the 
log-transformed variable, Y. A quick review of the following tables reveals that values of CV = 0.6 (as 
used in Colorado WQCD (2003)), CV < 1, or CV < 2 represent only mildly skewed distributions. UCL95 
computation methods for low values of CV < 1, 2 behave in a very significantly different manner (e.g., in 
terms of coverage probabilities) than the UCL95 methods for higher values of CV exceeding 2, 3, and so 
on. Values of CV = 3, 4, and higher are very common for lognormally distributed environmental data 
sets. Conclusions, results, and robustness of methods for distributions with CV < 1 cannot be generalized 
to all lognormal distributions with CV exceeding 2.0, and so on. Most of the examples and simulation 
results as considered in the environmental literature (e.g., Shumway, Azari, Kayhanian (2002), Kroll and 
Stedinger (1996), and Colorado WQCD (2003)) deal with mildly skewed distributions with low values of 
CV, such as 0.6, 1.0.  
 
From Tables 3-1 and 3-2, it is easy to note that for a minor increase in σy, such as from 1.0 to 1.5, the 
skewness increases from 6.18 to 33.47; for σy increasing from 2.0 to 2.2, the skewness increases from 
414.36 to 1439! As mentioned before, the estimated values of σy = 1.5, 2.0, and 2.5 for log-transformed 
data are quite common for data sets originated from environmental applications. The robustness of the 
methods (e.g., robust ROS on log-transformed data, robust MLE method, and EM method followed by 
jackknife method) found to be effective in the environmental literature (e.g., Shumway, Azari, and 
Kayhanian (2002)) should be demonstrated to be robust and effective for moderately skewed to highly 
skewed data distributions with σy exceeding 1.0, 2.0, and so on. Once again, it is reiterated that the 
conclusions derived for low values of σy (< 0.5, 1) cannot be generalized for moderately skewed to highly 
skewed data sets with σy exceeding 1.0. 

 
For a mildly skewed lognormal variable, X~ LN(2.77, σx = 0.56), as considered in Shumway, Azari, and 
Kayhanian (2002), the sd, σy of log-transformed variable, Y = log(X) is about 0.20 (< 0.5). For such a 
distribution, all estimation methods for left-censored data sets (e.g., MLE, EM, ROS on raw and ROS on 
log-transformed data) will yield almost similar results as also determined by Shumway, Azari, and 
Kayhanian (2002). Since the data are only mildly skewed, any of the MLE methods (RMLE, EM) on the 
raw scale can be used. There is no need to complicate the process by using a BC type transformation and 
introducing an unknown amount of transformation bias in the estimates. Moreover, the results of the 
simulation experiment conducted for a mildly skewed lognormal distribution with σx = 0.56 cannot be 
generalized to other heavily skewed (with sd, σy of log-transformed data exceeding 1, 1.25) lognormally 
distributed data sets often encountered in environmental populations.  
 
It is also noted that the robustness of ROS on log-transformed data has been studied only for mildly 
skewed distributions with low CV values (Gilliom and Helsel (1986) and Shumway, Azari, and 
Kayhanian (2002)). As mentioned before, the results and conclusions obtained for mildly skewed 
distributions with low CV values should not be generalized to moderately and highly skewed 
distributions, especially for the lognormal distribution with standard deviation of log-transformed data 
exceeding 1, 1.25, and so on. In order to truly establish and demonstrate the robustness of ROS estimation 
method on log-transformed distribution or other skewed distributions, some moderately and highly 
skewed distributions with sd, σy of log-transformed data exceeding 1, 1.25, 2, and 2.5 should be 
considered. Following Helsel’s November 2005 review comments on an earlier version of this report, 
Monte Carlo experiments have been used on several distributions covering a wide range of skewness to 
evaluate the performance of the UCL95 computation method based upon robust ROS followed by 
bootstrap methods. 
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It is also well known that the estimates of the back-transformed parameters (from transformed space 
based upon a BC type transformation) in the original space may suffer from an unknown amount of 
transformation bias (e.g., back-transformation of ROS estimates to original scale). Many times, the 
transformation bias can be quite large (for highly skewed data sets) and unreasonable, leading to incorrect 
decisions. Moreover, it is not always possible to use transformed parameters and assign physical meaning 
to them. In several environmental applications, it is the mean parameter that is used to make cleanup and 
remediation decisions. Specifically, the mean contaminant concentrations are used in site characterization, 
exposure and risk assessment, and background evaluation studies.  
 
3.2 Jackknife Method to Compute a UCL95 Based Upon Sample Mean of 

Full Data Set 
 

The details about the computation of a jackknife UCL are given in Section 5. Helsel reviewed an earlier 
version of this report in November 2005. Following Shumway, Azari, and Kayhanian (2002), Helsel 
recommended the use of the jackknife method on the full data set obtained using the robust ROS method 
to compute a UCL95. The jackknife method is a useful resampling technique used to reduce bias in an 
estimator. However, it is noted that a jackknife UCL95 of the population mean based upon sample mean 
and the standard deviation of a full data set is equivalent to Student’s t-UCL95 (Dudewicz and Misra 
(1988) and ProUCL 3.0 User Guide (2004)). These methods, such as Student’s t-UCL95 = jackknife 
UCL95 on robust ROS, robust MLE (Kroll and Stedinger (1996)), or an EM method, provide adequate 
coverage to the population mean only for mildly skewed data sets with sd of log-transformed variable      
< 0.5 (Singh and Singh (2003) and ProUCL 3.0 User Guide (2004)). The coverage of the mean provided 
by Student’s t-UCL95 (hence by jackknife UCL) deteriorates (decreases) fast with increases in skewness. 
Therefore, the UCL results as summarized in Shumway, Azari, and Kayhanian (2002) cannot be 
generalized for moderately skewed to highly skewed distributions with sd, σy of log-transformed data 
exceeding 1. The jackknife UCL95 as suggested in Singh, Singh, and Engelhardt (1997) based upon an 
estimator other than the sample mean, such as the median or the minimum variance unbiased estimator 
(MVUE) of the mean of a lognormal distribution, will be different from the Student’s t-UCL95. This fact 
is clearly stated in the jackknife section of the ProUCL 3.0 User Guide (2004). 
 
3.2.1 Helsel Robust ROS on Log-Transformed Data Followed by Jackknife Method  

 
It is noted that the EM method (Shumway, Azari and Johnson (1989), Gleit (1985), and Singh and Singh 
(2002)) is equivalent to a substitution and fill-in method (such as the substitution by DL/2 method), where 
the fill-in values are based upon the conditional expectation restricted to fall below the detection limit, 
DL. Similarly, Helsel’s robust ROS method and ROS based upon robust MLE (Kroll and Stedinger 
(1996)) method yields full data sets obtained by extrapolating the nondetected values. Thus, the use of the 
jackknife UCL95 method on the full data set obtained using the ROS or EM methods will simply yield a 
Student’s t-UCL95. As mentioned before, a Student’s t-UCL95 (or equivalently jackknife UCL95 based 
upon sample mean) does not provide adequate coverage (ProUCL 3.0 User Guide (2004) and Singh and 
Singh (2003)) to population mean of moderately skewed to highly skewed (e.g., when σy > 1.0) data sets. 
Therefore, for highly skewed data distribution with σy >1.0, the EM method, robust ROS method, or ROS 
on MLEs (Kroll and Stedinger (1996)) method followed by the jackknife UCL95 method may not be a 
reasonable method to use, especially when the skewness is high. This was the reason that the authors of 
this report did not consider robust ROS followed by the jackknife UCL95 method (and also bootstrap 
methods) in the simulation experiments to compute a UCL95 of the population mean. Once one has 
obtained a full data set based upon robust ROS, MLE ROS method, or the EM method, ProUCL 3.0 can 
be used to compute an appropriate UCL95 based upon full data set with extrapolated NDs.  
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3.2.2 Helsel Robust ROS on Log-Transformed Data Followed by Bootstrap Methods 
 

In his November 2005 review, Helsel also suggested the use of bootstrap methods on the full data set 
obtained using his robust ROS method on log-transformed data. Bootstrap methods to compute UCL95 
on full data sets obtained using robust ROS on log-transformed data, ROS on MLEs, or an EM method 
are already available in ProUCL 3.0. For the sake of direct comparison of the coverage probabilities, the 
authors have conducted additional simulations (Sections 7 and 8) to include bootstrap UCL95 methods on 
the robust ROS method as suggested by Helsel in November 2005. The graphical displays of coverage 
probabilities and average UCLs for some of the new simulation results have been included in Appendices 
D and E. Our recommendations based upon the older (Appendices A, B, and C) as well as newer 
(Appendices D and E) simulation results have been summarized in Sections 8 and 9.  
 
3.3 Classical and Robust Estimation of the Mean and the Standard 

Deviation 
 

This section is an introductory section and describes various methods to estimate the population mean, 
and the standard deviation based upon left-censor data sets. The robust versions of the various estimation 
methods have been described. The corresponding classical estimates can be obtained by simply replacing 
each of the n weights, wi, i: = 1, 2, …, n, by 1. Formally, let x1, x2, ..., xn be a random sample from a 
normal population, N(μ,σ2), with k of the nondetects, x1, x2, ..., xk, lying numerically below the detection 
limit, DL, which is denoted by L in this section. The normality assumption is needed for the various MLE 
methods (CMLE, UMLE, and RMLE) and the EM method. Let φ and Φ be the probability density 
function (pdf) and cumulative distribution function (cdf) of the standard normal distribution (SND). The 
logarithm of the likelihood function is given as follows:  
 

                               constant2)(ln)(Φln),,(ln
1

22
0 +−−−= ∑

+

n

k
i σμxσnZkσμxL  (3-1) 
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Note that in equation (3-2), the denominator of sample variance is (n-k) and not (n – k-1). The program 
UNCENSOR 5.1 uses the factor (n – k-1) in the denominator of sample variance. In SimCensor, the 
sample variance formula (3-2) has been used in the derivation of Cohen’s MLE (CMLE) and various 
other MLE estimates. Due to this difference, the statistics based upon the detected observations obtained 
using UNCENSOR 5.1 and our development program, SimCensor, are slightly different. It should be, 
however, noted that it is the sample variance given by (3-2) which has been used in the various MLE 
equations (e.g., Schneider (1986)); therefore, the correct denominator of the sample variance should be 
(n-k).  
 
A brief description of some of the procedures to estimate population parameters for left-censored samples 
is given below. The robust versions of those procedures are described in the following. It should be noted 
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that the robust and resistant procedures perform better than their classical counter parts in the presence of 
outliers (Singh and Nocerino (2002)). It is easy to obtain the classical estimates from the following robust 
estimates by replacing each of the n weights, wi, i: = 1, 2, …, n, by 1. The simulations results as described 
in Sections 7, 8, and 9 are based upon the various classical UCL 95 methods (Section 5) for left-censored 
data sets. 
 
The robust estimate formulae, as presented below, are called the robust M-estimation procedures based 
upon the notion of the influence function (Hampel (1974)). The influence functions are used to assign 
reduced weights to the outlying (contaminating) observations. For fully uncensored data sets, several 
robust procedures exist in the literature for the estimation of population mean and variance (Huber (1981), 
Rousseeuw and Leroy (1987), Staudte and Sheather (1990), and Singh and Nocerino (1995)). For left-
censored data sets, Singh and Nocerino (2002) studied the performances of the various robust estimation 
(of the mean and the standard deviation) procedures based upon the PROP influence function. Those 
robust methods are included in this report to illustrate the influence of outliers on the various estimates as 
shown in Examples 2 and 3 of Section 4.  
 
For left-censored data sets, in order to identify and subsequently assign reduced weights to the outliers 
that may be present in the right tail of a data set, robust sample mean, *

ox , and sd, *
os  using the (n – k) 

detected values need to be obtained first. These values are then used in the various estimation methods, 
such as MLE, UMLE, RMLE, and the EM method, to obtain robust estimates of the population mean and 
sd. The PROP influence function and the corresponding iteratively obtained sample mean and sd based on 
(n – k) detected data are given as follows:  
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Here, 
2*2*2 / ooii sxxd )( −= ; i = k + 1, k + 2, …, n, and 2

0d  is the α*100% critical value from the scaled 

beta distribution, )/()2/)2(,2/1()1( 2 knknβkn −−−−−  of the distances, 2
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3.4 Cohen’s MLE (CMLE) and Unbiased MLE (UMLE) Methods 

 
Cohen’s MLEs for the mean and variance are obtained by solving the following equations:  
 
 ),()(ˆ hgλLxxμ ooMLE −−= and ),()(ˆ 222 hgλLxsσ ooMLE −+= , (3-5) 
 
where 22 )/( Lxsg oo −= , h = k / n, and L = DL. These ML estimates have been computed by using 
numerical methods rather than the using the look-up tables developed by Cohen. The estimates of μ and σ 
given by equation (3-5) are biased. For a Type II censored data set from a normal population, Saw (1961) 
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tabulated the first-order bias correction terms, which were simplified by Schneider (1986). The bias 
correction terms are given as follows: 
 
 )]1/()(439.5692.2exp[ˆ +−−−= nknBiasμ , and (3-6) 

 2
ˆ )]1/()(859.0312.0[ −+−+−= nknBiasσ . (3-7) 

 
In practice, the bias corrections given by formulas (3-6) and (3-7) are also used for Type I censored data. 
The bias-corrected MLE denoted by UMLE are given as follows:  
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The corresponding robust ML and UML estimates of μ and σ are obtained simply by using the robust 
estimates, *

ox  and *
os , in place of ox  and os  in (3-5) and (3-8), respectively. 

 
3.4.1 Difference between MLE Method and Cohen’s MLE Method 

 
During the 1950s, Cohen (1950, 1959) derived the maximum likelihood (ML) equations for censored 
samples and prepared tables (due to unavailability of computers and software programs) of the constants 
needed to compute the MLEs of μ and σ as given by equation (3-5). However, today, instead of using 
those look-up tables, one can easily use a personal computer to solve the ML equations iteratively using a 
suitable numerical method such as the Newton-Raphson method (Faires and Burden (1993)). In the 
examples and simulation experiments as conducted in this report, the MLE estimates of the mean and the 
standard deviation based upon left-censored data sets have been computed using the numerical Newton-
Raphson method. Cohen’s look-up tables of constants were not used which was not even possible for the 
simulation study as described in Section 7.  
 
Some authors (Helsel (2005), and Shumway, Azari, and Kayhanian (2002)) have differentiated between 
the ML estimates obtained using the numerical Newton-Raphson method and Cohen’s ML estimates 
based upon the look-up tables. In this report, we make no such distinction. It is understood that with the 
availability of fast personal computers, most of the users are using numerical methods to compute the 
critical values and constants needed for various statistical methods including Cohen’s MLE method. Also, 
it will not be possible to conduct the simulation experiments as described in this report without directly 
using (as coded in SimCensor) the numerical methods to compute the MLE (CMLE) estimates. In this 
report, we have used both CMLE as well as MLE to represent the MLE estimates obtained using the 
Newton-Raphson method.  
 
3.5 Expectation Maximization (EM) Algorithm 

 
Dempster, Laird, and Rubin (1977) developed the EM algorithm to maximize the likelihood function 
based upon censored and missing data. The iterative EM algorithm works on the detected values 
assuming that no observations were censored. At the initial iteration, using the (n-k) detected data values, 
one could start with some convenient estimates for μ and σ, such as the sample mean and sd, or a simple 
one-step robust pair represented by the median and MAD/0.6745. The iterations are defined as 
successively maximizing the expectation of the conditional likelihood function of the complete data. Gleit 
(1985) used this procedure for left-censored samples and found it to possess a lower mean square error 
(MSE) than the various other substitution and likelihood procedures. For the single DL case, the estimates 
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of μ and σ at the (j+1)th iteration are given as follows (Shumway, Azari, and Johnson (1989); also see 
Section 3.3): 
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Note that the EM method is an iterative substitution method, where at each iteration, all of the nondetects 
are replaced by the “same” conditional expected value as given by equation (3-11). In the presence of 
outliers, the conditional expected value given by (3-11) gets distorted (e.g., becomes negative as can be 
seen in Example 2 of Section 4, or even become greater than DL), and may result in inadequate estimates 
given by (3-9) and (3-10). Typically, contaminant concentrations are nonnegative and substituting a 
negative value for the nondetects will be inappropriate, resulting in biased estimates. In these cases, the 
NDs may be replaced by zero, or half of the detection limit, DL/2. In this report, and in the examples and 
the simulation results discussed in Sections 7 and 8, whenever the conditional expected value became 
negative, it was replaced by DL/2, and whenever the EM fill-in value became greater than DL, it was 
replaced by DL. This modified method is called the “EM Check” method in the examples and the 
simulation results, as summarized in Appendix C. As shown in Examples 2 and 3, the robust EM 
estimation procedure takes care of this problem by assigning reduced weights (see Section 3.3) to the 
outlying observations. The robust EM estimates at the (j+1)th iteration are given as follows: 
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3.6 Restricted Maximum Likelihood (RMLE) Method 

 
Perrson and Rootzen (1977) obtained the restricted likelihood estimates by simplifying the ML equations. 
The likelihood function can be written as follows: 
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where yi = xi – L; i:= k + 1, k + 2, …, n. The random variable, (n – k), representing the number of detected 
values above DL (= L), can be expressed as a binomial random variable with pdf given as follows: 
 

 P ((No. of observation lying above L) = r) = rnr ZZ
rnr

n −−
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where r = 0, 1, 2, …, n. An estimate of Φ(Z), the probability that an observation lies below L, is k/n. Thus, 
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for 0 < k < n, an estimate, nkλ / , of Z is given by )/(Φˆ 1
/ nkλZ nk

−== . Substituting nkλ /  for Z in (3-15) 
and maximizing the resulting restricted likelihood function yields the following closed-form estimates of 
μ and σ (Perrson and Rootzen (1977)). 
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. The estimates given by (3-17) are biased, which can be corrected as 

follows. For left-censored samples, σαμxE o +=][  and )](1[][ 222 αZασsE o −+= , where 
))(Φ1/()( ZZφα −= , and the bias-corrected RMLEs are given as follows: 
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where )/1/()(ˆ / nkλφα nk −= . 
 
The robust RMLEs are obtained by assigning reduced weights (see Section 3.3) to each of the outlying 
observations (if any) in the right tail of the data set. The bias-corrected robust RMLEs (Singh and 
Nocerino (2002)) are given by: 
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3.7 Regression Methods to Estimate Mean, Standard Deviation, and 

UCL95 of the Mean Based on Left-Censored Data Sets 
 

Several, regression on order statistics (ROS) methods have been cited and used in the environmental 
literature when dealing with left-censored data sets. The regression methods are parametric in nature as 
they involve extrapolation of the nondetects based upon certain distributional assumptions about the 
detected observations. In this process, in addition to nondetects, the detected data are also assumed to 
follow a certain distribution (normal, lognormal, or gamma). The slope and intercept of the regression line 
are computed based upon the quantiles obtained using the assumed distribution for the detected 
observations. Three distributions, normal, lognormal, and gamma have been considered in this report.  
 
It should be noted that most ROS methods as described in this report first extrapolate the nondetects 
based upon the statistics (e.g., regression line, slope, and intercept) obtained using the detected 
observations. Obviously, in order to be able to compute reliable estimates of 1) nondetects, and 2) the 
resulting UCL95 with adequate coverage for the mean, enough detected observations should be available. 
If the use of general Data Quality Objectives (DQOs) (e.g., USEPA (2000)) is not possible (e.g., when the 
data might have been collected without using a statistical sampling design), every effort should be made 
to obtain a representative sample with about 10 detected observations. For accurate and reliable results, 
whenever possible, more (larger than 10) detected observations should be used when the percentage of 
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NDs becomes greater than 40%, 50%, and so on. It should be noted that, the use of a minimum of 10 to 
15 detected observations is desirable to compute a UCL95 or any other statistics based upon resampling 
bootstrap methods. 
 
It is assumed that the (n-k) detected observations come from a well-known parametric distribution, such 
as a normal, a lognormal, or a gamma distribution. However, it is not easy to verify the distribution of 
left-censored data sets, especially when a large percentage of observations are being censored 
(nondetected). An ad hoc simple method to verify the data distribution is based upon the quantile-quantile 
(Q-Q) plot of the (n-k) detected observations supplemented with the available goodness-of-fit test (e.g., as 
in ProUCL 3.0) statistics computed using the detected observations. This ad hoc goodness of fit procedure 
will be available in ProUCL V 4.0 that is currently under development, and hopefully will be available for 
public release by the end of 2006 or early 2007.  
 
For a Q-Q plot of a left-censored data set, the k nondetects are estimated (extrapolated) by fitting a 
regression line to the detected raw (normal, gamma) or log-transformed data. The linear regression fit is 
obtained by using an ordinary least squares (OLS) method to the (n-k) pairs, (q(i), x(i));  i:= k + 1, k + 2, …, 
n, where x(i) are the ordered detected raw or log-transformed values arranged in ascending order. The n 
quantiles, q(i), are computed based upon the distributional (normal, gamma) assumptions. Any regression 
method based upon this procedure is called the ROS method in the environmental literature. The available 
ROS methods are:  

 
1) Use of regression on only the (n-k) detected data (Newman, Dixon, and Pinder (1989). This 

method is available in UNCENSOR 5.1 (2003)) to estimate the mean and sd. 
 

2) ROS on the raw detected data with extrapolated NDs obtained in the original raw scale using a 
normal distribution or a gamma distribution. 
 

3) Fully parametric ROS: ROS on log-transformed data with extrapolated NDs obtained in a log 
scale, the mean and sd computed using n = k + (n-k) data points in log scale, and then back-
transforming the mean and sd in the original units assuming a lognormal distribution. Note that 
the estimates thus obtained often suffer from a significant amount of transformation bias. This 
ROS method is often incorrectly called Helsel’s ROS method or robust ROS method on log-
transformed data. For example, the program UNCENSOR 5.1 (2003) also incorrectly calls this 
method as Helsel’s robust ROS method. This should be corrected in UNCENSOR 5.1 to avoid 
confusion. Even though both ROS methods operate upon log-transformed data set, there are some 
differences between the fully parametric ROS method and Helsel’s robust ROS method (#4 
below). These differences are further illustrated by examples discussed in Section 6.  
 

4) Robust ROS on log-transformed data (known as Helsel’s robust ROS): Helsel’s robust ROS 
method on log-transformed data sets is a well documented and recommended method in many 
state and EPA guidance documents (e.g., Colorado WQCD (2003), California’s Ocean Plan 
(2005), Helsel (2005), USEPA (1993 – SW-846)). In robust ROS on log-transformed data, the k 
NDs are extrapolated in log scale; then those k NDs are transformed (via exponentiation) back to 
the original scale. Finally, the sample mean and the standard deviation are computed directly in 
the raw scale using the full data set thus obtained (Gilliom and Helsel (1986)). The estimates of 
the mean and the standard deviation thus obtained are called the robust estimates, and this method 
is called the robust ROS method on log-transformed data. It is noted that the estimates in the 
original scale obtained using this process do not suffer from back-transformation bias. But the 
resulting statistics may represent biased estimates of the mean and sd as many times the 
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extrapolated NDs become greater than the detection limit, DL (L) and the detected observations. 
This can be seen in Examples 1-3 in Section 4. 
 

Another ROS method is known as the robust ROS MLE method (Kroll, C.N. and J.R. Stedinger (1996)). 
This use of this method has been suggested in the literature (Helsel (2005)) to compute summary 
statistics. In this hybrid method, MLEs are computed using log-transformed data. Using the regression 
model as given by equation (3-21) below, the MLEs of the mean (used as intercept) and sd (used as slope) 
in the log scale are used to extrapolate the NDs in the log scale. Just like in the robust ROS method, all of 
the NDs are transformed back in the original scale by exponentiation. This results in a full data set in the 
original scale. One may then compute the mean and sd using the full data set. The estimates thus obtained 
are called robust ROS ML estimates (Kroll and Stedinger (1996)). However, the performance of such a 
hybrid estimation method is not well known. Moreover, for higher censoring levels, the MLE methods 
sometimes behave in an unstable manner.  
 
It is also observed that in the environmental literature (e.g., Colorado WQCD (2003), California’s Ocean 
Plan (2005), RPcalc 2.0 (2005), Shumway, Azari, and Kayhanian (2002), and USEPA (1993-SW-846)) 
any estimation, or UCL, UTL computation method based upon robust ROS estimates is typically called 
Helsel’s robust method or robust ROS method. It should be noted that prior to this report, not many 
studies have evaluated the performances of the UCL95 methods based upon a robust ROS method 
covering a wide range of skewed distributions. In this report, we use the same terminology, and any UCL 
computation method such as bootstrap method based upon the above robust ROS estimates of the mean 
and sd will be called Helsel’s robust ROS method.  
 
As suggested by Helsel (November 2005 review of this report), it is advised that the users make a note of 
the differences between the two ROS methods as described above. In order to avoid confusion about the 
appropriate definition and use of the robust ROS method on log-transformed data, some researchers (e.g., 
Helsel (2005)) have suggested avoiding the use of the fully parametric version of ROS on log-
transformed data. Following Helsel’s recommendation supplemented with our examples (Section 6) and 
simulation results of Section 8, the fully parametric ROS on log-transformed data will not be available in 
ProUCL 4.0. A detailed description of the various regression methods is given as follows.  
 
3.7.1 ROS on Detected Raw Data – Assumes a Normal Distribution 

 
The ordinary least squares (OLS) regression is obtained by fitting a linear model to the detected data 
(perhaps after a suitable transformation) and the hypothetical normal quantiles. In other words, it is 
assumed that the k censored observations, x1, x2, ..., xk, follow the zero-to-detection limit (DL) portion of a 
normal (or transformed such as log-transformed) distribution. A least squares regression line is obtained 
using the (n-k) pairs, (q(i), x(i));  i:= k + 1, k + 2, …, n, where x(i) are the k detected values arranged in 
ascending order. Then n quantiles, q(i), are obtained using an appropriate normal probability statement, 
such as P(Z ≤ q(i)) = (i – ⅜) /(n + ¼), i := 1, 2, …, n (Johnson and Wichern (1988)). The OLS regression 
line fitted to the last (n-k) pairs (q(i), x(i));  i:= k + 1, k + 2, …, n, corresponding to the detected values is 
given by: 
 
 x(i) = a + bq(i); i:= k + 1, k + 2, …, n.  (3-21) 
 
For full data sets, Barnett (1976) used the intercept and the slope of the regression line to estimate the 
population mean and the standard deviation. Newman, Dixon, and Pinder (1989) followed a similar 
approach, and used the intercept and the slope of the OLS line given by (3-21) to estimate population 
mean, μ, and the standard deviation, σ, from left-censored data sets. Singh and Nocerino (2002) noted that 
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the use of this method using only (n-k) detected values results in a biased estimate of the mean and the 
standard deviation. This method has been incorporated in the UNCENSOR 5.1. A 95% UCL of the mean 
for this method may be obtained (not a recommended method) using the Student’s t-statistic with (n – k-
1) degrees of freedom (df).  
 
Note: This method assumes normality of the data set, completely ignores the k ND values, and yields 
biased estimates. This method has been illustrated by Example 1 of Section 4. It is also noted that this 
method does not perform well (in terms of the coverage for the population mean); therefore, the graphical 
displays of the simulation results for this method have not been included in Appendices A, B, D, and E. 
 
3.7.2 ROS on Raw Data, Extrapolate k NDs – Assumes a Normal Distribution 

 
This ROS method uses the k extrapolated values of nondetects obtained using the model given by (3-21). 
This approach estimates the population mean, and the standard deviation using the (n-k) detected values 
and the k extrapolated nondetects obtained assuming a normal distribution. However, the following 
should be noted: 

 
• There is no guarantee that the k extrapolated NDs will lie below the detection limit, DL, contrary 

to the statement given in Shumway, Azari, and Kayhanian (2002) on page 3346. The extrapolated 
NDs often exceed the DL and the detected observations as can be seen in Example 1. 

 
• For ROS on raw data, the extrapolated NDs sometime result in infeasible negative values. This is 

especially true when a few outliers may be present in the data set. This is illustrated by Examples 
2 and 3 of Section 4. 

 
Using the full data set thus obtained, one can compute the sample mean and the standard deviation. The 
sample mean based upon infeasible extrapolated NDs will yield a biased estimate of the population mean. 
A 95% UCL of the mean can be obtained using Student’s t-distribution with (n-1) df, as this method 
assumes that the data set follows a normal distribution. Alternatively, on the full data set with 
extrapolated NDs, one can use ProUCL 3.0 to compute a UCL95 of the population mean provided the 
extrapolated nondetects represent feasible estimates of the nondetect observations. 
 
3.7.3 ROS on Log-Transformed Data – Assumes a Lognormal Distribution 

 
The ROS method on log-transformed detected data represents a parametric method as the quantiles used 
to estimate the slope, intercept, and nondetects (log scale) are based upon the assumption of a lognormal 
distribution. The estimates of the mean and sd (in the original scale) based upon the regression on log-
transformed data can be obtained in several ways. Two of those methods (fully parametric ROS and 
robust ROS) have been considered in this report. The program RPcalc (2005) computes these estimates in 
the original scale by using yet another method, as discussed in Section 5 of the report. Let Org stand for 
the data in the original unit and Ln stand for the data in the natural log-transformed unit. Using equation 
(3-21) on the log-transformed detected data, the nondetects in transformed log-units are obtained by 
extrapolation corresponding to the first k normal quantiles. Once the nondetects have been estimated, the 
sample mean, standard deviation (and the associated UCLs) can be computed using one of the following 
two methods on full data sets: fully parametric ROS on log-transformed data with extrapolated NDs in 
log scale; and robust ROS on log-transformed data with NDs obtained in the original units by 
exponentiating the nondetects.  
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It is noted that both estimation methods are parametric methods as they both are based upon the 
assumption of a lognormal distribution of the data set. Due to the similarities between these two ROS 
methods, there seems to some confusion about their use in the environmental literature. The differences 
between these methods have been described in Section 3.7.3.3. 

 
3.7.3.1 Fully Parametric ROS on Detected Log-Transformed Data 

 
The mean, Lnμ̂ , and sd, Lnσ̂ , are computed in log scale using a full data set obtained by combining the  
(n-k) detected log-transformed data values and the k extrapolated nondetect (log-transformed) values. 
Note that some of those extrapolated values can be larger than the DL and the detected values, contrary to 
the statement made by Shumway, Azari, and Kayhanian (2002). Assuming, lognormality, El-Shaarawi 
(1989) estimated μ and σ by back-transformation using the following equations as one of the several ways 
of computing these estimates. Note that these estimates suffer from a significant amount of transformation 
bias as can be seen in examples discussed in Section 6. The estimates given by (3-22) are neither unbiased 
nor have the minimum variance (Gilbert (1987)). Therefore, it is recommended to avoid the use of the 
fully parametric ROS method to compute UCL95 and various other limits. 
 
 )2/ˆˆexp(ˆ 2

LnLnOrg σμμ +=  and )1)ˆ(exp(ˆˆ 222 −= LnOrgOrg σμσ  (3-22) 
 
SimCensor back-transforms the estimates of the mean and sd based upon equation (3-22). It is noted that 
UNCENSOR 5.1 uses some other unverifiable method to back-transform the estimates of the mean and sd 
from log scale to the original scale, and, as mentioned before, the program RPcalc 2.0 (2005) uses yet 
another method to compute the estimates of the mean and sd in the original scale. Then using those 
estimates in original scale, recomputes estimates in the log scale. This is further illustrated in Section 5. It 
has not been established which one (if any) of these methods may yield the most accurate estimates. 
 
Note: It is noted that the use of back-transformation equations from the log scale to the original scale as 
given by (3-22) often results in unrealistically elevated estimates of the population mean and the standard 
deviation. This is illustrated in Section 6 by using some skewed left-censored data sets. It is, therefore, 
recommended to avoid the use of the well-documented back-transformation formula given by (3-22) 
above. It is also noted that, other than (3-22), there does not exist any other well-documented or 
recommended method available in the literature, which can be used to back-transform estimates of the 
mean and sd from transformed space (e.g., MLE, UMLE estimates in log scale) to original scale.  
 
So far as the computation of a UCL95 is concerned (which is the objective here), one may be tempted to 
compute a 95% UCL of the population mass based upon Land’s H statistic using the sample mean and 
variance of the log-transformed data obtained using ROS on log-transformed data. However, it is well 
known, depending upon the data skewness, such a UCL95 based upon Land’s H-statistic can be 
unrealistically large. Therefore, an obvious approach is to use one of the nonparametric methods (e.g., 
bootstrap or Chebyshev methods) available in ProUCL 3.0 on the full data set obtained after back-
transforming the extrapolated NDs to original units by exponentiation. Depending upon the data 
skewness, ProUCL 3.0 provides several alternative methods and picks the most appropriate method to 
compute an appropriate UCL95 of the mean. Note that the UCL95 based upon this approach (using 
ProUCL 3.0 on extrapolated full data set) will be the same as the UCL95 computed using the full data set 
in the original scale obtained using Helsel’s robust ROS method described below. 
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3.7.3.2 Robust ROS on Detected Log-Transformed Data (also Known as Helsel’s Robust 
Method) 

 
In robust ROS on log-transformed data, the NDs are extrapolated in the same manner as in the fully 
parametric ROS method described in Section 3.7.3.1 above. However, the extrapolated nondetects are 
back-transformed first in the original units before computing the mean, standard deviation, and other 
relevant summary statistics. This results in a full data set in the original units. One can, then, compute the 
sample mean and the standard deviation based upon the full data set (n = k + (n-k)) obtained in the 
original scale. It is noted that, even though the extrapolated NDs cannot become negative, they can 
exceed the detection limit and the detected observations (Examples 1-3), which in turn results in biased 
estimates (Singh and Nocerino (2002)) of the population mean or mass. One may use ProUCL 3.0 on the 
full robust ROS data set to compute a UCL95 of the population mass. 
  
The jackknife UCL95 of the population mean based upon the sample mean (using a full robust ROS data 
set) is not mentioned here as the use of the jackknife method on the full data set obtained using robust 
ROS (or any other method such as the EM method, and robust ROS on MLE estimates) is equivalent to 
Student’s t-UCL95 computed based upon the sample mean and the sample standard deviation. This fact is 
mentioned in ProUCL 3.0 User Guide (2004). It is well known (Singh and Singh (2003), ProUCL 3.0 
User Guide (2004)) that, for moderately skewed to highly skewed data sets (with sd of log-transformed 
data > 0.5), the Student’s t-UCL95 (and equivalently jackknife UCL95 based upon sample mean) does 
not provide adequate coverage (much lower than 0.95) to the population mean.  
 
It is noted that the robustness of the ROS method on log-transformed data has been determined based 
upon limited simulation studies for mildly skewed distributions represented by low values of the standard 
deviation, σy (e.g., < 1.0) of log-transformed variable, Y or low values of CV (Gilliom and Helsel (1986), 
Shumway, Azari, and Kayhanian (2002)). These studies do not cover moderately skewed to highly 
skewed distributions (with σy exceeding 1, 1.5) that are inevitable in many environmental applications. It 
is desirable that the robustness of the robust ROS method on log-transformed data or the robustness of 
ROS on MLE (Kroll and Stedinger (1996)) method be evaluated and demonstrated for skewed data sets 
with σy exceeding 1.0. 
 
As suggested by Helsel (November 2005 review of this report), additional simulations were performed to 
evaluate the performance of a UCL95 based upon a robust ROS estimation method for moderately 
skewed to highly skewed distributions. The results of our additional simulation experiments as 
summarized in this report (Appendices D and E) suggest that the 95% UCLs (e.g., obtained using 
jackknife and bootstrap methods on a robust ROS full data set) based upon a robust ROS method do not 
provide adequate coverage to the population mass for moderately skewed to highly skewed data sets. 
Depending upon the skewness and sample size (as observed in earlier simulation results as graphed in 
Appendices A and B), one should use the BCA bootstrap or Chebyshev UCL method on KM estimates to 
compute an appropriate UCL95. Detailed recommendations are given in Sections 8 and 9. 
 
Note: Helsel (2005) extended his robust ROS on log-transformed estimation method for data sets with 
multiple detection limits. His proposed method can be used to estimate the sample mean, sample sd, and 
the nondetect observations in the original scale. To date, not much is known about the performances of 
such estimates. Helsel’s (2005) method to extrapolate NDs when multiple detection limits are present in a 
data set will be available in ProUCL 4.0. It is noted that, once the NDs have been estimated resulting in a 
full data set, one may want to use ProUCL 3.0 to compute the most appropriate UCL95 based upon a full 
data set including the detected values and the extrapolated nondetects. 
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3.7.3.3 Differences and Similarities between Fully Parametric ROS and Helsel’s Robust 
ROS Methods to Estimate Population Mean and the Standard Deviation 

 
• Both methods are parametric methods, as the slope, intercept, and the NDs are estimated based 

upon the assumption of a lognormal distribution. 
 
• The main difference between the two ROS estimation methods on log-transformed data is the 

way the mean and the standard deviation are being computed. The fully parametric ROS method 
yields estimates that may suffer from transformation bias. More than one method exists to 
perform back-transformation from log scale to original scale (e.g., given by equation (3-22), 
incorporated in UNCENSOR 5.1 and in RPcalc 2.0). However, it is not known which one of the 
back-transformation estimation methods performs the best (in terms of bias and MSE). On the 
other hand, the robust ROS (Helsel) method computes the mean and the standard deviation in the 
original units avoiding the transformation bias.  

 
• So far as the computation of a UCL95 is concerned, there should not be any difference between 

the UCL95s obtained using the fully parametric ROS method or Helsel’s ROS robust method, 
provided they are computed appropriately on the full data set (estimated NDs + detected data) 
transformed into the original scale. The user should have a good understanding of the objective 
(computing a UCL95) and how to compute it (e.g., use ProUCL 3.0) appropriately. 

 
3.7.3.4 Influence of Outliers on ROS Methods 

 
Singh and Nocerino (2002) demonstrated that classical MLE methods and the various ROS approaches 
(on raw or log-transformed data) do not perform well in the presence of outliers. The estimates obtained 
using the classical methods in the original or log-transformed scale get distorted by outliers. This results 
in distorted estimates of intercept (population mean) and slope (sd), which gives rise to infeasible 
extrapolated nondetects. For example, the estimated nondetects can become negative (when dealing with 
raw data), larger than DL, and even larger than some of the observed values (e.g., x(k) ). The use of such 
extrapolated NDs results in biased estimates of the population mean and sd. Conclusions derived using 
distorted statistics and UCL95 can be incorrect and misleading. In these situations, subjective checks may 
be provided to modify the regression method: negative estimates of NDs may be replaced by DL/2, and 
the estimated nondetects greater than DL may be replaced by DL itself. The mean and variance are 
computed using the replacement values. Singh and Nocerino (2002) considered this method in their 
simulation study and concluded that the modified regression method also yields biased estimates of 
population mean and variance. Therefore, the modified ROS method on raw data has not been included in 
the simulation experiments as discussed in Section 7.  
 
Kroll, C.N. and J.R. Stedinger (1996) also cautioned the readers about the influence of outliers on MLE 
estimates, their robust ROS method on MLEs. Some of these outlier-related issues including the 
distortions of statistics by outliers are illustrated in Section 4. 
 
3.8 ROS on Left-Censored Gamma Distributed Data  

 
Many positively skewed data sets follow a lognormal as well as a gamma distribution. Singh, Singh, and 
Iaci (2002) noted that gamma distributions are better suited to model positively skewed environmental 
full data sets. For full data sets, it is observed that the use of a gamma distribution results in reliable, 
practical, and stable UCL95 values. Also, note that in order to use a gamma distribution, there is no need 
to transform the data and back-transform the resulting statistics. If a left-censored data set follows a 
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gamma distribution (can be verified using a Q-Q plot and goodness-of-fit tests as incorporated in ProUCL 
3.0), then those NDs can be extrapolated using the regression model (3-21) based upon (n-k) pairs given 
by ((n-k) higher order gamma quantiles, ordered (n-k) detected observations)). However, one has to 
estimate the gamma parameters before computing the gamma quantiles and extrapolating the NDs. This 
may have some effect on the adequacy and accuracy of the estimated gamma quantiles, and consequently 
on the accuracy of the extrapolated NDs. Just like all other distributions, outliers, when present, can 
distort all statistics including slope, intercept, extrapolated NDs, mean, sd, and UCL95. The details of this 
process can be found in the ProUCL 3.0 User Guide (2004). A brief description of the computation of 
gamma quantiles is given as follows. 
 
3.8.1 Quantile-Quantile (Q-Q) Plot for a Gamma Distribution  

 
Let x1, x2, ..., xn be a random sample from the gamma distribution, G(k, θ). One should not get confused 
with k, the shape gamma parameter, which is different from k, the number of NDs as used above. Let x(1) 
≤ x(2)  ≤ ... ≤ x(n( represent the ordered sample. In order to compute gamma quantiles, one needs to estimate 
the gamma parameters, k and θ. Let k̂ and θ̂  represent the maximum likelihood estimates (MLEs) of k 
and θ, respectively. It should be noted that, initially, these MLE estimates of k and θ are computed based 
upon the (n-k) detected observations. For details of the computation of MLEs of k and θ, refer to Singh, 
Singh, and Iaci (2002). Just like all other ROS methods, in order to be able to compute reliable estimates 
of the nondetects and the resulting UCL95 with adequate coverage for the mean, enough (about 10 or 
more) detected observations should be available. The Q-Q plot is obtained by plotting the scatter plot of 
pairs ),( )(0 ii xx =:i  k+1, 2, …, n, where k = number of nondetects. The n quantiles, x0i, are given by the 

equation, ;2/ˆ
00 θii zx =  =:i 1, 2, …, n, where the quantiles z0i (already ordered) are obtained by using 

the inverse chi-square distribution and are given as follows: 
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In the above equation, 2

ˆ2k
χ  represents a chi-square random variable with k̂2  degrees of freedom (df). 

The program, PPCHI2 (Algorithm AS91), as given in Best and Roberts (1975), has been used to compute 
the inverse chi-square percentage points, z0i, as given by the above equation. This is an informal graphical 
method to test for a gamma distribution. A linear pattern displayed by the scatter plot of the bulk of the 
data may suggest an approximate gamma distribution. For example, a high value (e.g., 0.95 or greater) of 
the correlation coefficient of the linear pattern may suggest an approximate gamma distribution (provided 
no obvious jumps and breaks of significant magnitude are present in the Q-Q plot) of the data set under 
study. On this Q-Q plot, points well separated from the bulk of data may represent outliers. Also, obvious 
breaks and jumps of significant magnitude in the gamma Q-Q plot suggest the presence of multiple 
populations or outliers.  
 
After fitting a linear regression model (3-21) to the (n-k) pairs, (gamma quantiles, detected data), one can 
extrapolate k NDs for left-censored data set. This will yield a full data set of size n = k + (n-k). A 95% 
UCL of the mean for the gamma distribution then can be computed using UCL computation methods as 
described in Singh, Singh, and Iaci (2002), and incorporated in ProUCL 3.0. This method has also been 
included in our simulation experiments to compare the performances of the various UCL95 methods. 
Both approximate and adjusted gamma UCL95 methods (as in ProUCL 3.0) have been included in the 
simulation study.  



 

 29

3.9 EPA Delta Lognormal Method – Assumes Lognormality 
 

The USEPA (1991) proposed the use of the delta lognormal method for the estimation of the population 
mean and the standard deviation based upon left-censored data sets. This method has been included in the 
UNCENSOR 5.1 program. However, it is noted that the procedure used to compute a UCL95 as included 
in UNCENSOR 5.1 may be incorrect. The delta lognormal method has also been included in the 
simulation experiments as considered in this report. It is noted that, since the delta lognormal method is 
based upon the lognormal assumption, the resulting UCL95 often becomes unrealistically large of no 
practical merit. Some examples illustrating these issues are discussed in Section 6. 
 
This method assumes that a certain proportion, δ = k/n, of data values are at or below the detection limit, 
L (or DL), and that the (n-k) observations (with proportion = 1 - δ) above the detection limit, L, are 
assumed to follow a lognormal distribution. The delta lognormal distribution models the data as a mixture 
of two distributions: k nondetects are modeled by a discrete distribution all taking values at L with 
probability δ, and by a lognormal distribution for (n-k) observations above the L (or DL). Thus, the entire 
data set is assumed to follow a delta lognormal distribution with a detection limit at L (or DL). The 
estimates of the mean and sd (in the original scale denoted by x’s) obtained using such a hybrid 
distribution are given by: 
 

 )ˆ5.0ˆexp()1(ˆ 2
yyx σμδLδμ +−+=  

)]ˆ5.0ˆexp(2][)1([)]1()ˆ)][exp(ˆˆ2exp()1[(ˆ 2222
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where,  )ln( ii xy = ; k = 1 ≤ n, k < n, 

 )(ˆ knyμ iy −= ∑ ; k = 1 ≤ n, k < n, 

 )1()ˆ(ˆ 22 −−−= ∑ knμyσ yiy ; k = 1 ≤ n, k < n, and 
 δ = k/n. 

 
It is noted that no guidance has been provided in the literature on how to compute a 95% UCL of the 
mean. For the delta lognormal method, the UNCENSOR 5.1 computes a 95% confidence interval (CI) for 
the population mean based upon some undocumented method. We could not duplicate the UCL97.5 
(upper end of a 95% CI) result as reported by UNCENSOR 5.1. Following a similar procedure as 
described above to compute the sample mean, one may use Land’s (1971) H-statistic to compute a 
UCL95 for such a distribution. A 95% UCL based upon the delta lognormal method is given as follows: 
 

UCL = δL + (1 - δ) (H-UCL), 
 
where H-UCL is computed using Land’s H-statistic based only upon (n-k) detected values. One can use 
ProUCL 3.0 to compute an H-UCL based upon (n-k) detected observations. The simulation results as 
summarized in Section 8 and Appendix C suggest that this method does not perform well as it also yields 
unrealistically large UCL95 (just like Land’s H-UCL on full data set). These issues are also illustrated by 
some exampled in Section 6. 
 
3.10 Nonparametric Winsorization Method 

 
Some practitioners (e.g., Gilbert (1987)) and USEPA guidance documents (USEPA (2000)) suggest the 
use of the Winsorization (Dixon and Tukey (1968)) method to compute the mean, the standard deviation, 
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and a UCL95 from left-censored data sets when dealing with “symmetric” distributions. It is noted that 
this method does not perform well (yields biased estimates) for skewed data sets, as can be seen from the 
simulation results presented in Appendix C. In this method, values at both ends are replaced by other 
intermediate values. For a data set of size n with k (< n) nondetects, the procedure is described as follows: 

 
• Replace all of the k NDs by the next largest value. Note that all NDs are replaced by the same 

value. 
 
• Since this method deals with symmetric distributions, the same number of the largest k values is 

replaced by the next smallest value. This will result in (n-2k) unmodified values in the middle. 
 

• Based upon the modified data of size n, compute the sample mean, wx (called the Winsorized 
mean). Similarly, compute the Winsorized sd, sw, using the following equation. 
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This sw represents an approximate unbiased estimator of the population standard deviation, σ. Here, ν  = 
(n-2k) denotes the number of unmodified values in the middle of the data set of size, n. For normally 
distributed data sets, a 100(1 – α) UCL of the mean, μ, is given by the following equation.  
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The simulation study as summarized in this report suggests that this method does not perform well (as 
expected) when dealing with data sets from asymmetrical distributions. It is observed that for normally 
distributed data sets, the results obtained using this method are comparable with results obtained using the 
various other MLE methods. It is noted that, by definition of Winsorization, this method could not be 
used on data sets with censoring intensity exceeding 50%.  
 
3.11 Nonparametric Kaplan-Meier (KM) Method  

 
The Kaplan-Meier (1958) estimation method, also known as the product limit estimation (PLE) method 
(Bechtel Jacobs Company (2000)), is based upon a statistical distribution function estimate, like the 
sample distribution function, except that this method adjusts for censoring. The KM method is quite 
popular in survival analysis (dealing with right-censored data – such as dealing with terminally ill 
patients) and various medical applications. Helsel (2005) is one of the first few researchers 
recommending the use of the KM method when dealing with left-censored environmental data sets. 
Following, Helsel’s recommendation and its well-established success in medical applications, the authors 
of the report included the KM estimation method in their simulation study as summarized in this report. A 
brief description of the estimation of sample mean, and SE of the sample mean based upon the KM 
method is given as follows. For details, refer to Kaplan and Meier (1958) and the report prepared by 
Bechtel Jacobs Company for DOE (2000). It should be pointed out that the KM estimation method has an 
added advantage over other methods as it can be used on data sets with multiple detection limits. 
 
Let x1, x2, ..., xn  (detection limits or actual measurement) represent n data values obtained from samples 
collected from an area of concern (AOC), and let ,21 xx ′<′ …< nx′ denote the n΄ distinct values at which 
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detects are observed. That is, n΄ (≤ n) represents distinct observed values in the collected data set of size 
n. For j = 1,…, n΄, let mj denote the number of detects at jx′  and let nj denote the number of xi  ≤ jx′ . 
Also, let x(1) denote the smallest xi. Then  
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0)(~ =xF  or undefined,                         0 ≤  x  ≤  x(1) 
 
Note that in the last equality statement of )(~ xF  above, 0)(~ =xF when x(1)  is a detect, and is undefined 
when x(1) is a nondetect. The estimation of the population mean using the KM method is given as follows: 
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Using the KM method as described above, an estimate of the standard error (SE) of the mean can be 
obtained by using the following equation: 
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Here, k = number of observations below the detection limit and 
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As mentioned before, some researchers, specifically Helsel (2005), have suggested that the KM method 
perhaps is the most appropriate method to compute the sample mean and SE for left-censored data sets. 
Helsel (2005) felt that the percentile bootstrap method on the KM estimate of the mean should be 
appropriate to compute a 95% UCL of the population mean. Following his recommendations, the KM 
method has been included in the simulation experiments as summarized in this report. The percentile 
bootstrap approach along with other approaches, including the Chebyshev inequality, jackknife and bias-
corrected accelerated (BCA) bootstrap methods, have been included in the simulation study as discussed 
in Section 7. All our observations and recommendations have been summarized in Sections 8 and 9. 
 
Using the KM estimates of the mean and the SE of the mean, some investigators have mentioned the use 
of the normal distribution-based z cutoff value (Helsel (2005)) or a Student’s t-distribution-based cutoff 
value (Bechtel (2000)) to compute a 95% UCL of the mean. Specifically, using a t cutoff value, a 95% 
UCL of the mean based upon the KM estimates is given by the following equation: 
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UCL95 = 2
)1(,95.0 ˆˆ SEn σtμ −+ . 

 
In the simulation experiments as discussed in Section 7, a 95% UCL of the mean based upon the KM (or 
PLE) method has been computed using: 1) the normal approximation based upon standard normal critical 
values, zα, and Student’s t-critical value (Appendix D and E); 2) several of the bootstrap methods, 
including the percentile bootstrap method and the bias-corrected accelerated (BCA) bootstrap method; 
and 3) the Chebyshev inequality. As expected, it is noted that the approximate KM-UCL95 based upon 
the normal approximation (using z or t distributions) does not provide adequate coverage to the mean of 
non-normal skewed populations. It should be pointed out that in the simulation study as considered in this 
report, only a single detection limit case for the KM method (as most of the other methods considered can 
handle only the single detection limit case) has been considered. However, in ProUCL 4.0 (under 
development), the KM method along with the robust ROS method (Helsel (2005)) on log-transformed 
data will be able to handle data sets with multiple detection limits.  
 
Some examples illustrating the estimation of NDs, mean, and the standard deviation using the methods 
discussed in this section are considered next. A few examples have been used to illustrate the influence of 
outliers on the computation of relevant statistics. These examples also demonstrate the differences in the 
estimates obtained using the two versions of ROS method on log-transformed data sets. 
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Section 4 
 

Examples Illustrating the Estimation of the Mean and the 
Standard Deviation for Left-Censored Data Sets 

 
Robust and resistant methods (Singh and Nocerino (2002)) have also been considered to demonstrate the 
distortions of the various statistics and estimates in the presence of outliers, and why it is important not to 
accommodate a few outlying observations with low probability of occurrence in the computation of the 
estimates of population mean or mass and the standard deviation. The outliers are special and require 
separate investigation. It should be pointed out that, in general, the robustness and resistance of an 
estimator go hand in hand (e.g., Rousseeuw and Leroy (1987), and Singh and Nocerino (1995)). 
Typically, it is the presence of a few outliers or multiple populations in a data set that affects the 
normality of the data set under study. The robust or resistant computations have been performed using the 
Censor (Singh and Nocerino (2002)) program, as robust or resistant estimation methods based upon 
influence function (e.g., PROP influence function) approaches are not available in any other software 
package. In the following examples, the substitution values for the ROS (raw or log-transformed) method 
are identified or marked by an (*), and the substitution value for the EM method is marked by (**). 
 
4.1 Example 1: Sulfate Data Set without Outliers 

 
This well-behaved left-censored data set is taken from the USEPA RCRA guidance document (1992). 
The detection limit is set at 1450. The data with 3 nondetects and 21 detected sulfate values, are: <1450, 
<1450, <1450, 1850, 1760, 1710, 1575, 1475, 1780, 1790, 1780, 1790, 1800, 1800, 1840, 1820, 1860, 
1780, 1760, 1800, 1900, 1770, 1790, and 1780. The sample mean and sd obtained using 21 detected data 
are 1771.91 and 92.702, respectively. The estimates of the mean and the standard deviation (raw data) 
obtained using some of the methods are summarized in the Table 4-1. Note that the ROS method used in 
Table 4-1 assumes the normality of the raw data set. 
 

Table 4-1. Raw Classical or Robust Results (without Outliers), n = 24, k = 3, and DL = 1450 
     

Method DL/2 DL CMLE UMLE RMLE ROS* EM** 

Mean 1641.04 1731.67 1724.0 1724.94 1725.55 1751.36 1723.66 

Sd 364.09 138.92 153.65 159.39 144.37 103.21 157.80 

             *(1571.91, 1613.25, 1637.46)      ** (1385.97)     
 

For the fully parametric ROS (FP-ROS) on log-transformed data: Mean = 1751.68, sd = 107.146, and for 
Helsel’s robust ROS method: Mean = 1751. 46, and sd = 103. It is noted that for this well-behaved mildly 
skewed data set, the differences between the estimates obtained using the ROS method on raw data set 
and the two ROS methods on log-transformed data are not that significant. Also note that the substitution 
by DL/2 method resulted in a biased estimate of the mean with the highest variability. All of the MLE and 
the EM methods resulted in fairly similar estimates. For this mildly skewed well-behaved data set, any of 
the MLE methods can be used to estimate the population mean and sd.  
 
The ROS method on raw data set resulted in three (3) estimated nondetects (denoted by *) each of which 
is larger than DL, and some even exceed the detected observations. The sample mean and sd thus 
obtained represent biased estimates of the population mean and sd (Singh and Nocerino, 2002). Ideally, 
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the extrapolated nondetects are supposed to be less than the DL. The EM method resulted in the same 
conditional expected substitution value = 1385.97 for each of the three nondetects (marked by (**)). The 
use of the slope and intercept obtained using ROS on raw (ignoring the extrapolated nondetects as in 
UNCENSOR 5.1) detected value yields 1751.36 and 92.15 as biased estimates of the mean and the 
standard deviation. The ROS on raw data with extrapolated NDs, and the two ROS methods, Helsel and 
FP-ROS on log-transformed data, yield similar (but biased) results with lower standard deviations than 
those obtained using the MLE methods. It is noted that the ROS methods on the raw or log-transformed 
data resulted in extrapolated NDs higher than the detection limit and also higher than some of the detected 
observations. This is the reason that the ROS methods yield higher mean and lower variance.  
 
4.2 Example 2: Sulfate Data Set with Outliers in Original-Scale 

 
In order to illustrate how the presence of outliers distorts the various estimates, three arbitrarily chosen 
outliers, 7000, 8000, and 11,000, are added to the data set of Example 1. The relevant classical 
(traditional) and robust statistics (Singh and Nocerino (2002)) for the raw data set are summarized in 
Table 4-2. The classical sample mean and sd based upon the detected 24 data values with outliers are 
2633.75 and 2410.35. Using equation (3-21), the intercept and slope for the left-censored data with 
outliers are 2216.51 and 2061.25. The classical ROS on detected raw data resulted in infeasible negative 
values for the extrapolated nondetects (marked by *). The classical EM method also resulted in a negative 
distorted value = -254.79 marked by (**) in Table 4-2. It is noted that using the robust (based upon PROP 
function) EM method, the estimates of nondetects are = 1385.97 (marked by ** in the Robust column), 
which are identical to the classical EM estimate without the three outliers as given in Table 4-1.  

 
Table 4-2. Raw Results with 3 Outliers, n = 27, k = 3, and DL = 1450 

     
 Classical Robust / Resistant (α = 0.01, 0.05) 

Method Mean sd Mean sd 

MLE 2317.64 2437.60 1729.83 147.41 

UMLE 2329.79 2516.74 1730.56 152.19 

RMLE 2204.61 2609.06 1731.14 139.17 

ROS* 2216.51 2574.10 *Classical estimates 
= (-1899.83, -995.304,  -469.177) 

EM** 2312.80 2491.23 
**(-254.79) 1723.66 157.80 **(1385.97) 

           
It should be noted that no robust or resistant estimates of nondetects were computed for the ROS method, 
as those robust regression procedures (e.g., Rousseeuw and Leroy (1987)) are not well-studied for left-
censored data sets. 
 
All classical estimates, including the extrapolated NDs, got distorted by outliers. It is noted that the robust 
or resistant results for MLE, RMLE, and EM methods are in close agreement with or without the outliers, 
as can be seen by comparing Tables 4-1 and 4-2. The estimates obtained using a log-transformation are 
discussed in Example 4.3 below. 
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Note: In the absence of the availability of suitable robust and resistant methods (which are not easily 
available in software packages), it is desirable that one preprocesses the data and make sure that one is 
dealing with a single statistical population without the outliers. If outliers are present in a data set, then 
those outliers, in consultation with all interested parties and the project team, should be treated and 
investigated separately. Once again, the objective is to compute a reliable estimate of population mass 
based upon the majority (instead of trying to accommodate a few outliers by using a log-transformation) 
of the data representing the dominant population. The project team should decide which of the estimates 
of the mean (with outliers or without the outliers) is representative of the mass of the population under 
consideration. The team should decide about the disposition of outliers. It is desirable to compute the 
relevant statistics with and without the outliers, compare the results, and make a decision depending upon 
the objectives of the study. 
 
4.3 Example 3: Sulfate Data Set with Outliers in the Log Scale  

 
The computations for Example 2 are repeated here based upon the log-transformation of the data set. In 
practice, a lognormal distribution is used as a default model. This is especially true when a few outliers 
may be present or the data set is skewed. The estimates based upon log-transformed data are given below 
in Table 4-3. The classical mean and sd for the detected log-transformed data are 7.675 and 0.537. In the 
following, all back-transformation results are obtained using equation (3-22). The outliers distorted the 
estimates of the mean and sd for all of the methods, including the fully parametric ROS on log-
transformed data and Helsel’s robust ROS method. As mentioned earlier, the log-transformation alone 
cannot produce robust or resistant estimates, especially in the presence of outliers. The methods used have 
to be robust as well as resistant to outliers. One of the advantages of using the log-transformed data is that 
the substitution values for the nondetects cannot become negative (as in Example 2) for the ROS and EM 
methods. Just as in Example 2, all classical estimates based upon log-transformed data got distorted by 
the three outlying observations as can be seen in Table 4-3. The substitution values are marked by an * for 
the ROS method, and by ** for the EM method.  

 
Table 4-3. Classical Estimates for Log-Transformed Data with Outliers, n = 27, and k = 3 

 
 Log-Transformed Back-Transformed  
Method Mean sd Mean sd Extrapolated value 

MLE 7.59 0.56 2314.35 1393.69  

UMLE 7.59 0.57 2344.59 1456.60  

RMLE 7.58 0.58 2315.67 1476.96  

ROS* 7.58 0.58 2311.29 1461.96 *(6.62, 6.83, 6.95) 

EM** 7.59 0.57 2327.96 1438.29 **(6.92) 

 
Note that the ROS method as included in Table 4-3 represents the FP-ROS on log-transformed data 
(Helsel (2005)) with back-transformed estimates obtained using equation (3-22). For the Helsel robust 
ROS method: Mean = 2441.60, and sd = 2334.066 as given in Table 5-1. It is noted that all ROS 
estimates (robust or FP-ROS) were distorted by the outliers. Depending upon the objective of the study, 
the project team should decide which of the mean statistic (with outliers or without outliers) is more 
representative of the population mass. 
 
Note: It is recommended to avoid the use of a lognormal distribution that tends to hide contamination by 
accommodating a few outliers or multiple populations. Several more examples have been discussed in 
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Section 6 supporting the statement: “Avoid the use of a lognormal distribution.”  It is suggested to use 
alternative models (e.g., gamma distribution), or nonparametric bootstrap and KM estimation methods to 
obtain more reliable, stable, and defensible estimates of the parameters of interest such as the population 
mass. 
 
The PROP robust or resistant estimates (Singh and Nocerino (2002)) with α = 0.05 on the log-
transformed data are given in Table 4-4. The robust estimates of the mean and sd based upon the detected 
data are 7.48 and 0.0086, respectively. The results summarized in Table 4-4 are in close agreement with 
the robust results obtained using the data in the original scale (Table 4-2), and with the estimates obtained 
using the classical procedure without the outliers (Table 4-1). 

 
Table 4-4. Robust Estimates for Log-Transformed Data with Outliers, n = 27, and k = 3 

   
 Log-Transformed Back-Transformed  

Method Mean sd Mean sd  

MLE 7.45 0.09 1731.10 155.89  

UMLE 7.45 0.09 1732.34 161.09  

RMLE 7.45 0.08 1731.72 146.78  

EM** 7.45 0.10 1725.57 166.57 **(7.24) 
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Section 5 
 

UCL Computation Methods for Left-Censored Data Sets 
 

As the title of the report suggests, the main objective of the present study is to evaluate and compare the 
performances of the various UCL95 computation methods for Type 1 left-censored data sets. Several 
methods and recommendations are available in the literature (as described in Section 3) on how to obtain 
a point estimate of the population mean based upon left-censored data sets. However, to date, no clear-cut 
and specific guidance is available on how to compute an appropriate UCL95 of the mean based upon left-
censored data sets. Actually, there seems to be some confusion about the computation of an appropriate 
UCL95 based upon left-censored data sets. For an example, it is noted that on page 78 of Helsel (2005), 
some recommendations are provided on how to estimate the population mean and the standard deviation. 
Those recommendations are not for the computation of other relevant statistics, including the upper limits 
such as UCL95 and UPL95. Several potential UCL computation methods are listed (without specific 
recommendations) in Chapter 6 of Helsel (2005). Several UCL95 computation methods (e.g., Tiku’s 
method on MLEs, bootstrap and jackknife on KM method, and ROS methods), including some ad hoc 
methods and methods listed in Helsel (2005), have been considered and evaluated in this report. 
Recommendations have been made based upon the findings of the simulation results as summarized in 
Appendices A, B, C, D, and E of this report. 
 
Extensive simulation experiments covering a wide range of skewed distributions have been conducted to 
evaluate and compare the performances of the various potential UCL95 computation methods. It is noted 
that the various ROS methods, EPA delta lognormal method, and the MLE methods, CMLE, UMLE, and 
EM, depend upon distributional assumptions that are often hard to justify or verify. The MLE methods 
are iterative and sometimes do not converge properly, especially for smaller sample sizes and larger 
censoring intensities. Therefore, the use of distribution-free nonparametric UCL methods based upon the 
KM method, Chebyshev inequality, resampling bootstrap, and jackknife methods provide viable 
alternatives to compute UCL95 based upon left-censor data sets. Based upon our simulation study as 
summarized in Section 8, it is noted that the nonparametric methods not only perform better (e.g., 
coverage probabilities) than their parametric counterparts, but also yield meaningful and practical results 
(estimates of the mean, sd, and of EPC terms (UCL95)). Several of these methods will be available in the 
forthcoming ProUCL 4.0. 
 
Some UCL95 methods based upon EPA delta lognormal method and ROS methods have been discussed 
earlier. Several other parametric and nonparametric potential UCL95 methods cited in the literature are 
listed as follows:  
 

• Ad hoc UCL methods obtained using Student’s t-statistic as mentioned in Helsel (2005), Millard 
(2002), EPA-Unified Guidance Document (2004) 

• Ad hoc UCL method based upon Land’s H-statistic (Helsel (2005)) 
• UCLs based upon the Chebyshev Inequality (Singh, Singh, and Engelhardt (1997)) 
• UCLs based upon Tiku’s approximation method (Symmetrical censoring, Tiku (1971)) 
• UCLs based upon Schneider’s approximation (for non-symmetric censoring) (Schneider (1986)) 
• Bootstrap UCL methods (standard, bootstrap t, percentile bootstrap, and BCA bootstrap) 
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Since the performances (e.g., coverage probabilities) of the UCL computation methods listed above are 
not well known and well established, most of those methods, new and old, have been included in the 
simulation study as summarized in Sections 7 and 8.  
 
5.1 Ad hoc UCL95 Computation Method Based Upon Student’s t-

Distribution 
 

Several documents (e.g., Helsel (2005), Millard (2002), USEPA-UGD (2004), and UNCENSOR 5.1 
(2003)) mention the use of Student’s t-statistic as one of the potential method to compute a UCL95 for 
left-censored data sets. Specifically, Cohen’s MLE (CMLE), unbiased MLE (UMLE), or EM estimates of 
the mean and the standard deviation are used to compute Student’s t-statistic-based UCL95 of the 
population mean. One such UCL95 based upon Cohen’s MLE, denoted by CMLE(t) method (in the 
simulation results) is given as follows: 
 

UCL95 = )/ˆ(ˆ 2
)1(,95.0 nσtμ MLEnMLE −+  

 

Similar UCL95 equations can be developed for RMLE, UMLE, EM, and various ROS methods. Some of 
these UCL95 methods have been included in the simulation experiments as described in Section 7. It is 
noticed that for normally distributed left-censored data sets with low censoring intensities, such as lower 
than 20%, the UCL95 based upon CMLE(t) ad hoc method does provide about 95% coverage to the 
population mean. For normally distributed data sets, the coverage provided by this CMLE(t) UCL method 
decreases very slowly as the censoring intensity (percentage of NDs) increases. It is also noted that for 
normally distributed data sets, the MLE (Tiku) and UMLE (Tiku) methods provide about 95% coverage 
to the population mean for all censoring levels from 10% to 70%. However, as expected, these UCL 
methods do not provide adequate coverage to the population mean or mass of skewed data distributions. 
 
In UNCENSOR 5.1 output results based upon log-transformed data, it is noted that 95% confidence 
intervals (CIs) are provided in log scale based upon Student’s t-statistic for the CMLE, RMLE, and 
UMLE methods. It is not clear how one will interpret and use such CIs to derive conclusions about the 
population means (which is the main objective here) in the original scale. At best, such a CI represents 
(after transforming the end points by exponentiation) a CI for the population median and not the 
population mean. The difference between the two parameters can be huge for skewed data sets. Moreover, 
the back-transformed estimates of the end points in original scale will suffer from an unknown amount of 
transformation bias. 
 
5.2 (1 – α)100% UCL of the Mean Based Upon the Chebyshev Inequality  

 
The Chebyshev-type inequality (as used in ProUCL 3.0) can also be used to compute a UCL95 of the 
mean for left-censored data sets. The two-sided Chebyshev inequality (Hogg and Craig (1978)) for a 
random variable, X, with finite mean and the standard deviation, μ1 and σ1, is given by: 
 

. 
 
Using this probability statement, an approximate (1 – α)100% UCL (ProUCL 3.0, 2004) of the mean, μ1, 
can be obtained by using the following equation: 
 

UCL = nsαx x)1)/1(( −+ . 
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The above UCL equation can be used to compute a UCL95 based upon any of the estimation methods, 
including the MLE and KM methods listed above. Specifically, in order to compute such UCLs, instead 
of using the classical sample mean and sd (or SE), one uses the mean and sd (or SE) obtained using any of 
the methods such as MLE, EM, or KM described earlier in Section 3. For mildly skewed left-censored 
data sets, a UCL95 based upon Chebyshev inequality as described here tends to yield conservative 
estimates (with coverage possibly larger than 95%) of the population mean. Specifically, it is noted that 
the UCL95 based upon Chebyshev inequality (with KM estimates) yields a reasonable UCL of the mean. 
However, just like for full-uncensored highly skewed data sets (ProUCL 3.0), a higher confidence 
coefficient may be needed (such as 97.5% or 99%) to compute a UCL95 based upon Chebyshev 
inequality for highly skewed left-censored data sets. This topic is discussed further in Section 8.2.5. 

 
Note: It is noted that the Chebyshev UCL computation method as described here is a nonparametric 
method as it does not require any distributional assumptions about the population under study. 
 
5.3 UCL95 Based Upon Tiku’s Method (Symmetrical Type II Censoring) 

 
For symmetrical Type II censoring, Tiku (1971) suggested the use of a Student’s t-distribution with (n – 
k-1) degrees of freedom. In practice, this method is also used for Type 1 censoring. The method can be 
used on any of the MLE methods (e.g., CMLE, RMLE, and UMLE). The UCL95s based upon Tiku’s 
approximation method (using any of the MLEs) have been included in the simulation experiments as 
described in Section 7. Due to symmetrical censoring, MLE estimates of the mean and the standard 
deviation are independent (Schneider (1986)), and Student’s t-statistic can be used to construct a UCL95. 
 
A (1 – α)100% UCL of the mean, as proposed by Tiku (1971), is given by: 
 

UCLTk = )ˆ(ˆ )1(, MLEknMLE Variancet μμ α −−+  

 
The above equation can also be written as follows: 
 

UCLTk = )1(ˆˆ 11)1(, −−+ −− knGamσtμ MLEknαMLE . 
 
Here Gam11 is computed using the Fisher’s information matrix, I (Schneider (1986)). This UCL is denoted 
by Tiku method in Appendices A, B, and C. Tiku’s approximate method is simple and performs better (in 
terms of coverage probabilities) than Schneider’s approximation as discussed in Section 5.4. 
 
5.4 UCL95 Based Upon Schneider’s Method (Non-symmetrical Type II 

Censoring) 
 

In this setting, when the censoring is non-symmetrical, the MLEs of the mean and variance are no longer 
independently distributed. One also has to consider the covariance between the MLE estimates of the 
mean and variance, which are derived from the Fisher’s information matrix, I. The method as described in 
Schneider (1986) is an approximate method and uses the critical values of a standard normal distribution 
to compute the approximate UCL95 of the mean. It is noted that this approximate method does not 
provide adequate coverage to the population mean, especially when the censoring intensity increases or 
the data distribution is not symmetric. The details can be found in Schneider (1986). The following 
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equations may be used for any of the MLE methods including: CMLE, UMLE, and RMLE. The 
asymptotic variance and covariance matrix for MLEμ̂ and MLEσ̂   is given by:  
 

ASCV( MLEμ̂ , MLEσ̂ )  = ASCV = ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−

1112

1222
2ˆ

JJ
JJ

nDET
σ

, 

 
Here, DET is the determinant of the matrix and is given by the following equation: 
 

DET = 12122211 JJJJ − , 
 

)(1 2111 EzzJ ++= , ))(1( 2112 EzEzJ ++= , 1222 2 EJJ += ,  
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probability density function (pdf) and cumulative distribution function (cdf) of a standard normal 
distribution (SND). Some other equations used are given as follows: 
 

DETJGam /2211 = , DETJGam /1212 −= , and DETJGam /1122 = . 
 

Note that 11

2ˆ
)ˆ( Gam

v
σμV =  is the variance of the MLE estimate of the mean (e.g., CMLE, UMLE). This 

variance (or the SE) has been used in the derivation of UCL95 based upon Tiku’s method. The 
approximate UCL for asymmetrical censoring is given as follows: 
 

UCL = MLEMLE σCμ ˆˆ 1+ , 
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As usual, zα is the upper percentile of a SND used to compute a (1 – α)100% UCL of the mean. All of the 
equations listed above have been implemented in the SimCensor program to estimate the mean, sd, and to 
compute the UCL95 of the mean for left-censored data sets. 
 
5.5 Jackknife UCL Computation Method for Left-Censored Data Set 

 
Let x1, x2, ..., xn be a random sample (left-censored with k NDs, and (n-k) detects) of size n from a 
population with an unknown parameter, θ (e.g.,θ = μ1), and let θ̂  be an estimate of θ, which is a function 
of all n observations. For example, the parameter, θ, could be the population mean, and a reasonable 
choice for the estimate, θ̂ , is the Cohen’s MLE, UMLE, RMLE, or KM mean.  
 
In the jackknife approach, n estimates of θ  are computed by deleting one observation at a time 
(Dudewicz and Misra (1988)). Specifically, for each index, i, denote by )(̂iθ , the estimate of θ (computed 
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similarly as θ̂  such as CMLE) when the ith observation is omitted from the original sample of size n, and 
let the arithmetic mean of these n estimates (e.g., of the mean, median, or of percentile) be given by: 

. 
 
 
 
A quantity known as the ith “pseudo-value” is defined by: 
 

)(̂)1(ˆ
ii nnJ θθ −−=  

 
The jackknife estimator of θ  is given by the following equation: 
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1)ˆ(θ  

 
If the original estimate θ̂  is biased, then, under certain conditions, part of the bias is removed by the 
jackknife method, and an estimate of the standard error (SE) of the jackknife estimate, )ˆ(θJ , is given by: 
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Consider the t-type statistic given by: 
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The t-type statistic given above has an approximate Student’s t-distribution with (n-1) degrees of 
freedom. A jackknife (1 – α)100% UCL for θ  is given as follows: 
 

UCL = )ˆ(1, ˆ)ˆ( θα σθ JntJ −+  

 
If the sample size, n, is large, then the upper αth t-quantile in the above equation can be replaced by the 
corresponding upper αth standard normal quantile, zα.  
 
5.5.1 Jackknife UCL Method Based on Sample Mean of a Full Data Set – as Obtained Using 

Helsel ROS Method or ROS on ML Estimates 
 

This special jackknife UCL needs some discussion and clarification. As noted earlier, the jackknife UCL 
based upon the sample mean of a full data set (given or obtained after extrapolating k NDs) as obtained 
using a robust ROS method, or ROS on robust MLEs (Kroll and Stedinger (1996)) or EM method (Gleit 
(1985), Shumway, Azari, and Johnson (1989)) is equivalent to Student’s t-UCL of the mean (Dudewicz 
and Misra (1988) and ProUCL 3.0 User Guide (2004)) based upon that full data set. The jackknife 
UCL95 (on full data sets), as suggested in Singh, Singh, and Engelhardt (1997), based upon an estimator 

∑
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other than the sample mean, such as the median or the minimum variance unbiased estimator (MVUE) of 
the mean of a lognormal distribution, will be different from the Student’s t-UCL95. This fact has been 
acknowledged in the jackknife section of the ProUCL 3.0 User Guide (2004). 
 
The EM method (Shumway, Azari and Johnson (1989), and Gleit (1985)) is equivalent to a substitution 
and fill-in method (such as the substitution by DL/2 method), where the fill-in values (all fill-in values are 
equal) are based upon the conditional expectation restricted to fall below the detection limit, DL. 
Similarly, the use of robust ROS and the use of robust ROS based upon MLEs (Kroll and Stedinger 
(1996)) yield full data sets obtained by extrapolating the nondetected values. The use of the jackknife 
UCL95 method on a full data set obtained using the ROS or EM methods will simply yield a Student’s t-
UCL95 based upon that full data set with extrapolated NDs. Therefore, the use of EM method, robust 
ROS method, or ROS on MLEs followed by the jackknife UCL95 is not needed as those UCLs can be 
computed simply by using Student’s t-statistic on the sample mean and the standard deviation of the full 
data set obtained using the ROS or EM methods. 
 
It is well known that Student’s t-UCL95 or equivalently the jackknife UCL95 based upon the sample 
mean does not provide adequate coverage (ProUCL 3.0 User Guide (2004) and Singh and Singh (2003)) 
to population mean of moderately skewed to highly skewed (e.g., when σy > 1.0) data sets. This was the 
reason that the authors of this report did not include Helsel’s robust ROS followed by the jackknife 
UCL95 method (or bootstrap methods) in the simulation experiments to compute a UCL95 of the 
population mean. Moreover, once a full data set based upon Helsel’s ROS, ROS on robust MLEs, or EM 
method has been obtained, one can simply use ProUCL 3.0 to compute a UCL95, as most of the available 
UCL95 methods for full data sets are included in ProUCL 3.0. Depending upon the sample size and data 
skewness, ProUCL 3.0 computes and recommends the most appropriate UCL95 for the unknown 
population mean.  
 
Note: It is noted that the jackknife UCL computation method as described here is a nonparametric method 
as it does not require any distributional assumptions about the population under study. 
 
5.6 Bootstrap on Censored Data Sets 

 
In this report, we compare the performances (coverages) of the four bootstrap methods to compute 
UCL95 based upon left-censored data sets. The four bootstrap methods included in the study are: standard 
bootstrap, bootstrap t-method, percentile bootstrap method, and the bias-corrected accelerated (BCA) 
bootstrap method (Efron and Tibshirani (1993), Manly (1997)). These methods have been used on several 
estimation methods including the KM method and the various likelihood methods (CMLE, RMLE, and 
UMLE). For full data sets, the bootstrap procedures (Efron (1982) and Efron and Tibshirani (1993)) have 
been recommended for the computation of UCL95 for the means of skewed distributions (ProUCL 3.0 
User Guide (2004)).  
 
The bootstrap procedures require no assumptions regarding the statistical distribution (e.g., normal, 
lognormal, gamma) of the underlying population and can be applied to a variety of situations, including 
the left-censored data sets. These methods are specifically useful when: the exact distributions of the 
statistics used (e.g., Cohen’s MLE, RMLE) are not known; or the critical values of the test statistics are 
not available; the test statistics and their distributions depend upon the unknown number of nondetects, k, 
which might be present in a data set.  
 
Let x1, x2, ..., xn be a random sample of size n from a population with an unknown parameter, θ (e.g., θ = 
mean, μ1). The sample is left-censored with k observations below the detection limit, DL, and (n – k) 
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observations above the detection limit. Let θ̂  be an estimate of θ, which is a function of k nondetected 
and (n – k) detected observations. For example, the parameter, θ, could be the population mean, μ, and a 
reasonable choice for the estimate, θ̂ , might be the Cohen’s MLE, Helsel’s robust ROS mean, or KM 
estimate of the mean.  
 
The bootstrap procedure on a censored data set is similar to the general bootstrap technique used on full-
uncensored data sets. The only difference is that an indicator variable, I (taking only two values: 0 and 1), 
is used when dealing with left-censored data sets (e.g., see Efron (1981) and Barber and Jennison (1999)). 
The indicator variable, I, is associated with the detection status of the selected observations, xi ; i: = 1, 2, 
..., n, in a bootstrap sample. The indicator variable, I, takes on a value = 1 when a detected value is 
selected and I = 0 if a nondetected value is selected in a bootstrap sample. In this setting, the detection 
limit is fixed at DL and the number of nondetects may vary from bootstrap sample to bootstrap sample. 
There may be k1 nondetects in the first bootstrap sample, k2 nondetects in the second sample, ..., and kN 
nondetects in the Nth bootstrap sample. Since the sampling is conducted with replacement, the number of 
nondetects, ki, i: = 1, 2, ..., N, can take any value from 0 to n, inclusive. This is typical of a Type I left-
censoring bootstrap process.  
 
A suitable parametric (CMLE, RMLE) or nonparametric (Winsorized, KM method) estimation method is 
used on each of the N left-censored bootstrap samples. The following two steps are common to the four 
bootstrap methods considered in this report. 

 
Step 1.  Let (xi1, xi2, ..., xin) represent the ith sample of size n with replacement from the original left-

censored data set  (x1, x2, ..., xn). Note that an indicator variable (as mentioned above) is 
tagged along with each sample taking values 1 (if a detect) and 0 (if a nondetect is selected). 
Compute an estimate of the population mean (e.g., Cohen’s MLE of the mean, KM mean, 
ROS) using the ith bootstrap sample, i: = 1, 2, ..., N. 

 
Step 2.  Repeat Step 1 independently N times (e.g., N = 2000), each time calculating a new estimate. 

Denote these estimates (e.g., CMLE, KM means, and ROS means) by ,, 21 xx …, Nx . The 
bootstrap estimate of the population mean is given by the arithmetic mean, Bx , of the N 
estimates ix  (e.g., N CMLEs or N KM means). The bootstrap estimate of the standard error is 
given by: 
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In general, a bootstrap estimate of θ may be denoted by Bθ  (instead of Bx ). The estimate, Bθ , is the 

arithmetic mean of the N bootstrap estimates (e.g., KM mean, or CMLE mean) given by $θi , i:=1,2,…, N. 

The N bootstrap estimates are computed in the similar way as the original estimate, θ̂  (e.g., KM mean, or 
CMLE mean), of the parameter, θ. Note that if the estimate,θ̂ , represents the KM estimate of, θ, then $θi  
(denoted by xi  in the above paragraph) also represents the KM mean based upon the ith bootstrap sample. 

The difference, θθB
ˆ− , provides an estimate of the bias of the estimate, θ̂ .  
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After these two steps, a bootstrap procedure (BCA, Boot-t) is similar to a conventional bootstrap 
procedure used on a full data set as described in ProUCL 3.0 User Guide (2004). For clarification, those 
bootstrap UCL computation methods for left-censored data sets are described as follows.  
 
Note: In bootstrap methods, resamples are generated with replacement from the same original left-
censored data set. In this process, there is a positive chance that all (or most) values in a bootstrap 
resample are equal. This is true when one is dealing with small data sets. In order to avoid such situations 
(with all values in a bootstrap sample to be the same), it desirable to have at least 10 (preferably more) 
detected observations in a left-censored data set.  
 
5.6.1 UCL of the Mean Based Upon Standard Bootstrap Method 

 
The bootstrap estimate of SE of an estimate,θ̂  (e.g., KM mean, CMLE), is given by: 
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A (1 – α)100% standard bootstrap UCL for θ (population mean) based upon the estimate, θ̂  (e.g., KM 
mean), is given as follows: 
 

UCL = Bz σθ α ˆˆ +  
 
Here, zα is the usual upper αth critical value (quantile) of the standard normal distribution. It is observed 
that the standard bootstrap method does not adequately adjust for skewness and the UCL given by the 
above equation often fails to provide the specified (1 – α)100% coverage to the population mean of 
skewed (e.g., lognormal and gamma) distributions. 
 
5.6.2 UCL of the Mean Based Upon Bootstrap t-Method 

 
Another variation of the bootstrap method, called the “bootstrap t” is a nonparametric procedure, which 
estimates the quantiles of the associated t-statistic (pivotal quantity). Here θ̂  (or x ) is an estimate (e.g., 
KM mean, MLE mean) of the population mean based upon the left-censored data and sx is the associated 
sample standard deviation (e.g., CMLE or KM estimate of standard deviation) computed using the 
original left-censored data set. Let ix and sx,i  represent the corresponding estimates (e.g., using CMLE or 
KM method) of the mean and the standard deviation computed from the ith (with i:=1,2, ..., N) bootstrap 
resample of the original left-censored data obtained following the procedures as described in Steps 1 and 
2 above.  
 
The N pivotal quantities, ixii sxxnt ,/)( −=  are computed and sorted, yielding ordered N quantities, t(1) 
≤ t(2) ≤ … ≤ t(N). The estimate of the lower αth quantile of the pivotal quantity, t, is given by tα,B = t(αN). For 
example, if N = 1000 bootstrap samples are generated, then the 50th ordered value, t(50( , would be the 
bootstrap estimate of the lower 0.05th quantile of the pivotal t-statistic. Then a (1 – α)100% UCL of the 
mean based upon the bootstrap t-method is given as follows: 

UCL = 
n

s
tx x

N )(α−  
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It should be noted that in the above UCL equation, x and sx are not the simple sample mean and the 
standard deviation. They actually represent the estimates of population mean and the standard deviation 
for the chosen estimation method (e.g., KM method, CMLE method) for left-censored data sets. 
Typically, for skewed data sets (e.g., gamma, lognormal), the 95% UCL based upon the bootstrap t-
method performs better than the 95% UCLs based upon the simple percentile and the BCA percentile 
methods. However, it should be pointed out that the bootstrap t-method sometimes results in unstable and 
erratic UCL values, especially in the presence of outliers (Efron and Tibshirani (1993)) or when the data 
set may appear to look skewed (perhaps due to the presence of contaminated observations). Therefore, the 
bootstrap t-method should be used with caution. In case this method results in erratic unstable UCL 
values (e.g., unusually larger than the Chebyshev UCL); the use of an appropriate Chebyshev (e.g., 95%, 
97.5%) inequality-based UCL is recommended.  
 
5.6.3 Percentile Bootstrap Method 

 
Bootstrap resampling of the original left-censored data set is used to generate the bootstrap distribution of 
the unknown population mean as described in Steps 1 and 2 above. Just as before in Section 5.6.2, here 
also, ix , represents an estimate such as the KM mean, or CMLE of the population mean based upon the ith 
bootstrap sample. Note that ix  is not a simple sample mean, and is actually computed based upon the 
chosen method (e.g., KM method) from the ith resampling (with i: = 1, 2, ..., N) of the original left-censor 
data. These N, ix , i: = 1, 2, ..., N, are arranged in ascending order as )1(x  ≤ )2(x   ≤ ... ≤ )(nx . The (1 – 
α)100% UCL of the population mean, μ, is given by the value that exceeds the (1 – α)100% of the 
generated mean values. The 95% UCL of the mean is the 95th percentile and is given by: 
 

 95% Percentile – UCL = 95th% ix ; i: = 1, 2, ..., N 
 
For example, when N = 1000, a simple 95% percentile-UCL (e.g., based upon KM method) is given by 
the 950th ordered mean value given by )950(x . 
 
5.6.4 Bias-Corrected Accelerated (BCA) Percentile Bootstrap Procedure 

 
The BCA bootstrap method is also a percentile bootstrap method, which adjusts for bias in the estimate 
(Efron and Tibshirani (1993) and Manly (1997)). The performance of this method for skewed 
distributions (e.g., lognormal and gamma) is not well studied. In this report, we study and compare its 
performance (in terms of coverage probabilities) with parametric methods and other bootstrap methods. It 
is observed that, for skewed data sets, this method does represent a slight improvement (in terms of 
coverage probability) over the simple percentile method. However, for moderately skewed to highly 
skewed data sets with the sd of log-transformed data >1, this improvement is not adequate enough and 
yields UCLs with a coverage probability much lower than the specified coverage of 0.95. The BCA upper 
confidence limit of the intended (1 – α) coverage for a selected method (e.g., CMLE, KM, and 
Chebyshev) is given by the following equation: 
 

(1 – α)100% UCLPROC = BCA-UCL = 2α
PROCx , 
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2α
PROCx

where 
2α

PROCx  is the α2100th percentile of the distribution of the PROCx ; i: = 1, 2, ..., N and PROC is one of 
the many (e.g., CMLE, KM, DL/2, and Chebyshev) mean estimation methods included in this simulation 

study. For example, when N = 2000, = (α2N)th ordered statistic of PROCx ; i: = 1, 2, ..., N, and is 

given by the order statistic, )(, 2NPROCx α .  
 
Here α2 is given by the following probability statement: 
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Here, Φ(Z) is the standard normal cumulative distribution function and z(1–α) is the 100(1 – α)th  percentile 
of a standard normal distribution. For example, z(0.95) = 1.645, and Φ(1.645) = 0.95. Also, 0ẑ  (bias 
correction) and α̂  (acceleration factor) are given as follows: 
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Φ-1 (x) is the inverse function of a standard normal cumulative distribution function, e.g., Φ-1 (0.95) = 
1.645, and )(# , PROCiPROC xx <  represents the number of times, iPROCx ,  is less than PROCx  with i: = 1, 2, 
..., N. α̂  is the acceleration factor and is given by the following equation: 
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The summations in the above equation are being carried from i = 1 to i = n, the sample size.  PROCx  and 

PROCix ,−  are respectively the PROC mean (e.g., KM mean) based upon all n observations, and the PROC 
mean based upon (n-1) observations without the ith observation, i: = 1, 2, ..., n. 
 
5.7 Bootstrap Methods to Compute UCLs Based Upon Full Data Sets –  

Obtained Using ROS Methods 
 

In his November 2005 review of this report, Helsel suggested the use of bootstrap methods on the full 
data set obtained using his robust ROS method on log-transformed data. We want to point out that the 
bootstrap methods to compute UCL95 on full data sets as obtained using Helsel’s robust ROS, ROS on 
robust MLE, or EM method on left-censored data sets represent conventional bootstrap estimation 
methods to be used on full data sets. One can use ProUCL 3.0 to compute such bootstrap 95% UCLs. 
  
However, for the sake of direct comparisons (e.g., with KM methods) of the coverage probabilities, the 
authors considered bootstrap UCL95 methods on robust ROS method. Additional simulations were 
conducted to perform such an investigation and comparisons. Some of those new simulation results have 
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been graphed in Appendices D and E. Our recommendations based upon the older (Appendices A, B, and 
C) as well as newer (Appendices D and E) simulation results have been summarized in Sections 8 and 9.  
 
5.8 QA/QC of the Procedures and Algorithms Used in the Report and as 

Incorporated in the SimCensor Program 
 

Program SimCensor has been developed to study and evaluate the various methods used to estimate the 
mean and variance and to compute the UCL95 for Type I left-censored data sets. Most of the old or new 
parametric or nonparametric methods available in the literature have been incorporated into the 
SimCensor program. Based upon the performances of the methods considered, several of those methods 
will be available in ProUCL 4.0. It should be noted that different methods used on the same data set often 
yield different estimates and UCL95 values. In order to decide which of the methods perform better than 
the other methods, an extensive Monte Carlo simulations study has been conducted as summarized in 
Sections 7 and 8.  
 
The accuracy of the methods included in the SimCensor program used for estimation of the mean, 
variance and computation of UCL95 has been verified (whenever available in other software packages) 
by using the procedures available in the existing software programs. These programs include 
UNCENSOR 5.1, RPcalc 2.0, SAS, and MINITAB. SAS and MINITAB have been used mainly to 
compare the computations for the Kaplan-Meier (KM) method. The KM estimates obtained by using 
SimCensor, SAS, and MINITAB are in complete agreement. Computations for some of the bootstrap 
methods on KM estimates have also been independently verified by Ms. V. Hennesey and Miss P. 
Saravanan of UNLV. 
 
 SAS and MINITAB deal with right-censored data sets. Therefore, the left-censored data sets from 
environmental applications need to be flipped (values are subtracted from a selected value larger than all 
of the values in the data set, which needs to be adjusted back after the calculations) before computing the 
desired statistics using SAS or MINITAB. In SimCensor (and in ProUCL 4.0), the algorithm for the KM 
method has been implemented directly for left-censored data sets (Bechtel and Jacob (2000)). Therefore, 
the user does not have to flip the data before using the KM estimation method.  
 
In addition to estimating the mean and standard error (SE) of the mean, the KM method as incorporated in 
SimCensor can also compute an estimate of the population variance. It is noted that a direct KM estimate 
of the variance will be very useful to compute UPLs and UTLs based upon left-censored data sets. 
Typically, the KM estimate of the population variance is not available in the SAS and MINITAB software 
packages. As a result, practitioners (e.g., Helsel (2005)) often suggest the use of the “rule-of-thumb” type 
estimate by using the equation: sd = nSE . Based upon the limiting testing on some data sets, it is 
observed that the difference between the two standard deviations thus obtained is not very significant. 
However, this statement cannot be generalized for all data sets of varying skewness and censoring 
intensity. 
 
5.8.1 Discussion of UNCENSOR 5.1 

 
So far as UNCENSOR 5.1 (2003) is concerned, several discrepancies and errors have been observed. It 
should be pointed out that earlier versions (e.g., UC3.0) were producing several incorrect values, some of 
which have been corrected in UNCENSOR 5.1.  
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• First of all, it is pointed out that in UNCENSOR 5.1, for the computation of the variance of the 
detected data values, the factor (n – k-1) should be replaced by (n-k) as used in the literature 
(Cohen (1991) and Schneider (1986)).  

 
• There is no guidance given in UNCENSOR 5.1 on how to compute the UCL95 in the raw scale 

after transforming the data in the log scale and computing the UCLs in the log scale based upon 
Student’s t-statistic.  

 
• For log-transformed data, UNCENSOR 5.1 generates a 97.5% UCL (actually a two-sided 95% 

confidence interval of the mean) based upon Student’s t-statistic for estimates obtained using 
CMLE, UMLE, and RMLE methods. The program does not back-transform the end points of the 
CI in log scale to original scale. Moreover, after a back-transformation in the original scale, such 
an interval will be at best a CI for the population median and not for the population mean. In 
practice, this can be confusing to a typical user, as these ideas (how to back-transform) and the 
appropriate use of lognormal distribution are not clear to most practitioners. Furthermore, the 
back-transformed end points of a CI will suffer from an unknown (not well established) amount 
of transformation bias. 

 
• Many times, UNCENSOR 5.1 yields a 95% CI interval that does not include the sample mean. 

This is illustrated by examples discussed in Section 6.  
 
• It is also noted that the back-transformation formula, as given in the UNCENSOR 5.1 manual to 

compute the estimates of the mean and the standard deviation in the original scale, does not seem 
to yield the same results as we get by using the SimCensor program (using equation (3-22) of 
Section 3) or by using other programs such as MINITAB. Some of these discrepancies have been 
mentioned in Section 6.  

 
• The bias-corrected MLE method and delta lognormal method often result in erratic and 

unrealistically large estimates as illustrated by examples in Section 6. 
 
• Helsel’s robust ROS has been incorrectly labeled. The method used in UNCENSOR 5.1 actually 

represents the FP-ROS method as discussed in Section 3 of this report. 
 
5.8.2 Discussion of RPcalc 2.0 

 
In Sections 4 and 6, we have used RPcalc 2.0 (2005) to compute estimates of the mean and sd based upon 
fully parametric ROS (variable denoted by Ln(X-new) in RPcalc 2.0) and robust ROS (variable denoted 
by X-new in RPcalc 2.0) methods on a log-transformed data set. It is noted that in the program, RPcalc 
2.0, variable X-new represents the new data set in raw scale obtained after extrapolation of NDs based 
upon ROS method, and LN(X-new) represents the corresponding log-transformed values.  
 
For the robust ROS method, estimates of the mean and sd as computed by SimCensor are in close 
agreement with the estimates obtained using RPcalc 2.0 as can be seen in columns (6) and (7) of Table 5-
1. The minor insignificant differences in the estimates occur due to the fact that SimCensor (as described 
in ProUCL 3.0 User Guide (2004)) and RPcalc 2.0 (as described in Helsel (2005)) calculate the normal 
quantiles using slightly different methods.  
 
However, we do not agree with the way RPcalc 2.0 calculates the estimates of the mean and sd of the log-
transformed variable, Ln(X-new), based upon the ROS method on log-transformed data. There are other 
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estimation methods (Gilbert (1987) and El-Shaarawi (1989)) also available to compute estimates of the 
mean and sd in the original-scale for the fully parametric ROS method. The differences in the estimates 
obtained in the original scale obtained using the two methods (RPcalc 2.0 and equation (3-22)) can be 
enormously large. It is not known (studied) which of the two methods yields better (in terms of bias) 
estimates. Also note that the program, UNCENSOR 5.1, uses yet another back-transformation method 
(we could not duplicate their results) to obtain estimates of the mean and sd in the original scale from log 
scale. These observations give one more reason to avoid the use of a log-transformation on environmental 
data sets. 
  
For the comparison sake, Table 5-1 with 8 columns summarizes the estimates of the mean and the 
standard deviation for all of the examples (1 through 3 in Section 4 and 4 through 7 in Section 6) 
considered in this report. The estimates as summarized in Table 5-1 are obtained using SimCensor and 
RPcalc 2.0. It should be noted that FP stands for fully parametric. Therefore, fully parametric ROS on raw 
stands for ROS estimates in the original scale based upon the normal distribution assumption (given in 
column 3), FP-ROS on log stands for ROS estimates based upon the lognormal assumption in the log 
scale (column 4 of Table 5-1), and FP-ROS on log (back-transformed) means estimates in the original 
scale obtained using equation (3-22), as given in column (5) of Table 5-1. 

 
Table 5-1. Estimates for FP-ROS and Robust (Helsel’s) ROS Methods Obtained Using SimCensor and  

RPcalc 2.0 Programs 
 

 SimCensor RPcalc 2.0 

 FP-ROS  
on Raw 

FP-ROS 
on log 

Y 

FP-ROS on 
log (back-

transformed)
Helsel’s ROS Helsel’s ROS 

(X-new) 

Helsel’s ROS
Y=(Ln(X-

new)) 

Mean 1751.3592 7.4664 1751.6814 1751.4647 1750.1006 7.4656 Example 1 
(Sulfate, 24) 

Sd 103.2066 0.0611 107.1462 102.9931 104.8811 0.0599 

Mean 2216.5071 7.5773 2311.2887 2441.6013 2437.5324 7.4728 Example 2, 3 
(Sulfate, 27) 

Sd 2574.1029 0.5801 1461.9600 2334.0660 2336.7274 0.8073 

Mean -2.0775 -0.8271 2.0406 3.9853 3.9841 -0.2638 Example 4 
(Manly) 

Sd 24.0534 1.7552 9.3012 20.2760 20.2762 1.8144 

Mean -0.1044 -4.7909 0.0489 0.0361 0.0347 -4.1407 Example 5 
(Blood Lead) 

Sd 0.1823 1.8828 0.2835 0.0668 0.0674 1.2495 

Mean 0.3877 -3.7514 7.5667 1.1650 1.1650 -0.9835 Example 6  
(4,4’ DDT,11) 

Sd 4.1191 3.3986 2438.0786 3.4365 3.4365 1.5074 

Mean 0.0593 -4.2077 0.4213 0.1316 0.1315 -2.8204 Example 6  
(4,4’ DDT,10) 

Sd 0.3363 2.5858 11.9180 0.2588 0.2589 1.2585 

Mean 893.3271 3.2019 102019.01 1271.7664 1271.7652 6.1778 Example 7 
(Aroclor 1254) 

Sd 3479.3181 4.0819 423427416 3105.5848 3105.5853 1.3931 
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The corresponding estimates of the sample mean and sample standard deviation of the log-transformed 
variable Y = Ln(X-new) in the log scale as given in the last column (8) of Table 5-1 have been obtained 
using RPcalc 2.0. The estimates of the mean and sd of Y = Ln(X-new) as given in columns (4) and (8) are 
significantly different. The back-transformed estimates of the mean and sd in the original scale based 
upon these two sets of estimates will be significantly different.  
 
It is noted that the results as given in column (4) are commonly used in the literature as estimates of the 
mean and sd of the log-transformed variable, Y=Ln(X-new). These estimates in column (4) are obtained 
by using the full data set (in log scale) of size, n, with k extrapolated NDs (in log scale) and (n-k) log-
transformed detected values. The MVUEs (assuming a lognormal distribution) of the parameters of 
Y=Ln(X-new) as given in column (4) are often used to compute various upper limits including UPLs and 
UTLs for lognormally distributed, variable X (here, X-new). 
 
Initially, we could not figure out how the estimates in log scale as given in column (8) were computed. It 
seems like the developers of RPcalc 2.0 have used the following well-known equations representing the 
relationship between the means and the standard deviations of variables, X and Y= Ln(X).  
 

Mean of X (raw) = )5.0exp( 2
1 σμμ +=  

Variance of X (raw) = ]1))][exp(2[exp( 222
1 −+= σσμσ  

 
RPcalc 2.0 calculates μ and σ2 for variable Y = Ln(X-new) by solving the above equations for μ and σ2 

given as follows: 
2

1 5.0)ln( σμμ −=  
( )1)(ln 2

1
2
1

2 += μσσ  
 
There is no disagreement in computing the “parameters” (mean and variance) of Y based upon the 
“parameters” of X, and vice versa. However, the performance of the estimates of the mean and variance of 
Y = Ln(X-new) based upon the sample mean and sample variance (which are not even MLEs) of X =X-
new is not known. The estimation method as used in RPcalc 2.0 is an entirely new and different way of 
estimating the mean and variance of the Y = Ln(X-new). It is based upon the simple sample mean and 
sample variance of the X-new variable that is assumed to be lognormally distributed. It should be noted 
that the sample mean and sample variance of X-new as used by RPcalc 2.0 to estimate μ and σ are not the 
MVUE (not even MLE) of μ1 and σ1, even when the distributional assumptions are met. In the literature 
(e.g., Gilbert (1987), El-Shaarawi (1989), Helsel (2005), ProUCL 3.0 User Guide (2004)), the sample 
arithmetic mean and sample variance of the log-transformed variable, Y values are used as estimates of 
the population mean and variance of Y (= Ln(X-new) here). The performance of the estimates as given in 
column (8) of Table 5-1 is not well studied.  
 
As a side note for groundwater monitoring applications, the authors want to point out their disagreement 
with the methods used to calculate the upper confidence bound (UCB) based upon fully parametric and 
Helsel’s robust ROS estimates as incorporated in RPcalc 2.0 (2005). Specifically, the assumptions (e.g., 
normal UCB computation) made may not be justifiable. For example, it is noted that RPcalc 2.0 computes 
a 95%-95% UCB (UTL; that is, an upper 95% tolerance bound to contain at least 95% of the population 
(95th percentile) with at least 95% confidence) assuming a normal distribution for the lognormally 
distributed (assumed) variable, X-new! That is, a normal distribution is used for an assumed lognormal 
variable X-new. The program was developed for groundwater applications. It is desirable that the 
developers of RPcalc 2.0 double-check the assumptions made and, if deemed necessary, make the 
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appropriate corrections. The detailed discussion on the topic of the computation of a UCB (95%-95% 
upper tolerance limit) is beyond the scope of this report; therefore it will not be discussed in the rest of the 
report.  
 
From the discussion and observations presented in this section, it is recommended to avoid the use of a 
lognormal distribution, and use nonparametric methods when a raw data set cannot be modeled by a well-
known statistical distribution.   
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Section 6 
 

Examples Illustrating UCL95 Computations for  
Left-Censored Data 

 
In this section, we discuss the computation of the UCL95 of the population mean or mass using the 
various methods as described in Section 5. Several examples have been considered to illustrate and 
address the various statistical issues when computing an appropriate UCL95 based upon left-censored 
data sets. Specifically, two data sets from the literature, and a few data sets from Superfund sites, have 
been considered to illustrate the impact of outliers and the use of lognormal model on the various UCL 
computation methods. The numerical results have been obtained using two programs: 1) UNCENSOR 5.1 
(2003), a well cited, and freely available software package, and 2) SimCensor developed to conduct the 
simulation study to assess and compare the performances of the various UCL95 methods. 
 
6.1 Example 4 (Manly Data Set) 

 
This data set is taken from the book by Manly (2001). The data set has 75 observations with 20 
observations below the single detection limit = 0.24. The full data set is: 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 
0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 0.24, 1.33, 0.28, 0.47, 18.40, 
168.6, 0.25, 0.25, 0.48, 0.26, 5.56, 0.29, 0.31, 0.33, 3.29, 0.33, 0.34, 0.37, 0.25, 2.59, 0.39, 0.40, 0.28, 
0.43, 6.61, 0.48, 0.49, 0.51, 0.51, 0.38, 0.92, 0.60, 0.61, 0.43, 0.75, 0.82, 0.85, 0.94, 1.05, 1.10, 0.54, 1.53, 
1.19, 1.22, 0.62, 1.39, 1.39, 1.52, 0.33, 1.73, 2.35, 2.46, 1.10, 51.97, 2.61, and 3.06. 
 
It is noted that there may be at least one potential outlier = 168.6 in the data set. This outlier obviously 
will distort all estimates and computations. One may (and should) want to compute the estimates without 
the outlier. In order to save time and some space, no attention is paid to this potential outlier, 168.6. The 
influence of an outlier on the various estimates is considered in Example 6 in greater detail. Based upon 
the simulation results as discussed in Section 8 (not paying attention to potential occurrence of outliers), 
an appropriate UCL95 = 9.72 for this data set is obtained by using the BCA bootstrap method on the KM 
estimates.  
 
6.1.1 Estimates Obtained Using UNCENSOR 5.1 on Raw Data 
 

Censored Values (Using 75-20=55 Detected Data Points) 

Mean: 5.40982 

Variance: 555.62800 

Detection Limit: 0.24000 

No. Below DL: 20 

Sample Size: 75 
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Note: 
 

• It is noted that the sample mean based upon the detected data set is about 5.41, and none of the 
95% CI listed above contains this mean of detected observations.  

 
• All MLE and EM methods resulted in a negative estimate of the population mean, even though no 

sample observation is negative. 
 

Cohen’s Maximum Likelihood 

Mean: -1.28911 

Variance: 590.26027 

Std. Dev.: 24.29527 

95% Confidence Interval on Mean: [-6.46077, 3.30129] 

EM Iterative (Gleit) 

Mean: -0.92193 

Variance: 517.19819 

Std. Dev.: 22.74199 

Bias-Corrected MLE 

Mean: -1.28795 

Variance: 605.36503 

Std. Dev.: 24.60417 

95% Confidence Interval on Mean: [-6.52537, 3.36082] 

RMLE-One-Step 

Mean: -4.61163 

Variance: 795.67765 

Std. Dev.: 28.20776 

95% Confidence Interval on Mean: [-10.61613, 0.71801] 

Winsorization 

Mean: 0.59520 

Variance: 0.62272 

Std. Dev.: 0.78913 

95% Confidence Interval on Mean: [0.41003, 0.78037] 
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6.1.2 Estimates Obtained Using UNCENSOR 5.1 on Log-Transformed Data 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
            
 
 
 
 
 
  
 
  
 
 
 
 
 
          
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

Statistics Based Upon 55 Log-Transformed Detected Observations 

Mean: -0.05513 

Variance: 1.69986 

Detection Limit: 0.24000 

No. Below DL: 20 

Sample Size: 75 

Back-Transformed Values-Detected data 

Mean: 2.16944 

Variance: 17.90691 

Cohen’s MLE Method 

Mean: -0.70167 

Variance: 2.58691 

Std. Dev.: 1.60839 

95% Confidence Interval on Mean: [-1.05387, -0.35935] 

Back-Transformed Values 

Mean: 1.74018 

Variance: 27.21618 

Std. Dev.: 5.21691 

EM-Iterative (Gleit) 

Mean: -0.68436 

Variance: 2.34396 

Std. Dev.: 1.53100 

Back-Transformed Values 

Mean: 1.57627 

Variance: 17.94207 

Std. Dev.: 4.23581 
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Bias-Corrected MLE (UMLE) 

Mean: -0.70160 

Variance: 2.65311 

Std. Dev.: 1.62884 

95% Confidence Interval on Mean: [-1.05827, -0.35492] 

Back-Transformed Values 

Mean: 1.79621 

Variance: 30.72427 

Std. Dev.: 5.54295 

RMLE-One-Step 

Mean: -0.72948 

Variance: 2.78682 

Std. Dev.: 1.66938 

95% Confidence Interval on Mean: [-1.09502, -0.37417] 

Back-Transformed Values 

Mean: 1.86187 

Variance: 37.02247 

Std. Dev.: 6.08461 

Winsorization 

Mean: -0.70967 

Variance: 1.84646 

Std. Dev.: 1.35884 

95% Confidence Interval on Mean: [-1.02852, -0.39082] 

Back-Transformed Values 

Mean: 1.21004 

Variance: 6.50642 

Std. Dev.: 2.55077 
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 1This is actually the FP-ROS method on log-transformed data 
 

Note: 
 
• The method labeled as Helsel’s method in the UNCENSOR 5.1 is not the robust ROS method as 

proposed and recommended by Helsel (1990 and 2005). The Helsel robust method in 
UNCENSOR 5.1 actually is the fully parametric ROS on log-transformed data (Helsel (2005)), 
where the estimates of the mean and the standard deviation are obtained by using the back-
transformation formula (equation (3-22)) from log scale to original scale. Practitioners often tend 
to forget to differentiate between the two ROS methods used on log-transformed data. These 
methods are different and often result in significantly different results as illustrated in this section. 

 
• It is noted that the CI listed above is given in the log scale. No attempt has been made to 

transform the interval end points in the original scale. For a typical user, it is not clear how one 
will interpret and use such an interval in log scale to make remediation, cleanup, or risk 
assessment decisions which have to be made using the estimates of population mean (and not the 
median) in the original raw scale.  

 
• The CI obtained after back-transforming (by simple exponentiation) the end points of the CI 

obtained using log-transformed data will not be a CI for the mean. At best, it may represent a CI 
for population median provided the end points are properly transformed.  

 
• To the best of our knowledge, no well-studied and tested method (in terms of stability and 

coverage probabilities) is available in the literature that can be used to back-transform the end 
points of a CI in log scale to original scale.  

 
• It is noted that the program, UNCENSOR 5.1, produces a 95% two-sided confidence interval for 

the population “mean.”  Therefore, a UCL obtained using UNCENSOR 5.1 represents a 97.5% 

Helsel’s Robust1 

Mean: -0.82700 

Variance: 3.08000 

Std. Dev.: 1.75499 

Back-Transformed Values 

Mean: 1.94170 

Variance: 51.27795 

Std. Dev.: 7.16086 

EPA Delta Log 

Mean: 1.68760 

Variance: 16.84146 

Std. Dev.: 4.10384 

95% Confidence Interval on Mean: [0.24000, 40.37513] 
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UCL (and not a 95% UCL), whereas the UCLs obtained using the SimCensor program represent 
95% UCLs of the population mean. 

 
• The 97.5% UCL as given by the EPA delta method seems to be in error obtained using some 

undocumented method.  
 
• In UNCENSOR 5.1, it is observed that the estimates obtained after back-transformation from log 

scale to original scale have been obtained by some “unknown” formula. They did not use the 
formula (Gilbert, (1987) and El-Shaarawi (1989)) as given in the references and help section of 
UNCENSOR 5.1 (same as equation (3-22) above).  

 
• Often, the bias-corrected MLE method yields incorrect values (both in the raw scale and the log 

scale) as can be seen by the blood data set discussed in Example 5. 
 
• It is well known that when the percent censoring is large (e.g., > 40%), as also recognized in 

UNCENSOR 5.1, the MLE (e.g., CMLE, UMLE, RMLE, and EM) methods yield unreasonable 
estimates, such as negative estimates of the mean. This observation suggests that the use of MLE 
methods for the estimation of the population mean and sd should be avoided for data sets with 
censoring levels exceeding 40%. 
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6.1.3 Estimates Obtained Using SimCensor on Raw Data 
 

                           
                         
  
                   
                   
     

 
     
                            
                       
                   
                           
                     
             
                  
                     
                     
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     
                        
   
                  
                            
                        
 
  
 
 
 
  

Input File: MANLY-EX.TXT 
Detection Limit: 0.2400 

Number of Observations (ND + Detects): 75 
Number of Nondetects: 20 
Mean of Detected Data: 5.4098 

Standard Deviation of Detected Data: 23.3565 
Method Mean Std. Dev. SE of the mean 

DL / 2 3.9992 20.2732  
Cohen’s MLE -1.2384 24.0810  

Restricted MLE -4.6141 28.0284  
Unbiased_MLE -1.1471 24.4442  

EM -1.2923 24.3088  

EM Check 3.9992 24.2489  

Winsorization 0.5952 0.7891  

Kaplan-Meier 4.0339 -.-- 2.3460 

EPA Delta Log 1.6876 4.1038  

Regress Detected -2.0775 16.9433  

FP-ROS (Raw) -2.0775 24.0534  

Helsel’s ROS 3.9853 20.2760  

FP-ROS (Log) 2.0406 9.3012  

UCLs Obtained Using Tiku’s Method 

Cohen’s MLE UCL: 3.5085 

RMLE UCL: 0.9670 

Unbiased MLE UCL: 3.6701 

EM UCL: 3.5001 

EM Check UCL: 8.7625 

UCLs Obtained Using Schneider’s Approximation Method 

Cohen’s MLE UCL: 2.5232 

Unbiased MLE UCL: 2.6716 

EM UCL: 2.5048 

EM Check UCL: 7.8381 
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Note: 
 

• As pointed out before, the data set has a few outliers; therefore, as expected, the bootstrap t-
method resulted in inflated UCL95 values.  
 
 
 
 
 
 
 
 
 

Various Ad Hoc Methods Using Student’s t with (n-1) Degrees 
of Freedom: 

Cohen’s MLE UCL: 3.3933 

Unbiased MLE UCL: 3.5545 

EM UCL: 3.3833 

EM Check UCL: 8.6632 

DL/2 UCL: 7.8985 

Nonparametric Methods on Raw Data 

Kaplan-Meier UCL (Z-cutoff): 7.8935 

Winsorized UCL: 0.7493 

UCLs Obtained Using Standard Bootstrap Method 

DL/2 UCL: 7.8695 

Cohen’s MLE UCL: 1.6652 

Unbiased MLE UCL: 1.7321 

Kaplan-Meier UCL: 8.1638 

EM UCL: 1.4287 

EM Check UCL: 7.8726 

UCLs Obtained Using Bootstrap t-Method 

DL/2 UCL: 30.9891 

Cohen’s MLE UCL: 0.7141 

Unbiased MLE UCL: 0.8852 

Kaplan-Meier UCL: 31.3381 

EM UCL: 0.9853 

EM Check UCL: 41.8488 

UCLs Obtained Using Percentile Bootstrap Method 

DL/2 UCL: 8.4888 

Cohen’s MLE UCL: 1.7980 

Unbiased MLE UCL: 1.8350 

Kaplan-Meier UCL: 8.3853 

EM UCL: 2.0959 

EM Check UCL: 8.3291 
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UCLs Obtained Using BCA Bootstrap Method 

DL/2 UCL: 8.3155 

Cohen’s MLE UCL: 4.9115 

Unbiased MLE UCL: 4.3995 

Kaplan-Meier UCL: 9.7196 

EM UCL: 3.5304 

EM Check UCL: 9.1065 

UCLs Obtained Using Chebyshev Inequality 

Cohen’s UCL: 10.8821 

Unbiased MLE UCL: 11.1562 

Kaplan-Meier UCL: 14.2597 

EM UCL: 10.9429 

EM Check UCL: 16.2042 

Gamma UCLs 

Approximate Estimated Gamma UCL: 7.6252 

Adjusted Estimated Gamma UCL: 7.7262 

UCLs Obtained Using Jackknife Method 

DL/2 UCL: 7.8985 

Cohen’s MLE UCL: 0.9171 

Unbiased MLE UCL: 0.8324 

Kaplan-Meier UCL: 7.9319 

EM UCL: 0.9669 

EM Check UCL: 7.8985 

ROS on Raw Data Using Student’s t-statistic 

ROS UCL: 2.5489 

UCLs Obtained Using Land’s H-Statistic 

Log DL/2 UCL: 2.1232 

Delta UCL: 1.8144 

FP-ROS UCL on Log-transformed Data: 3.8260 
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Note:  
 
The sample size, n is large = 75, and the sd of the detected log-transformed data is moderate = 1.29 (as 
given below); in such cases, the use of H-UCL results in UCL values which are often smaller than the 
sample mean value (mean of detected data = 5.41 here)!  
 
6.1.4 Estimates Obtained Using SimCensor on Log-Transformed Data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

         
                                  
                                  
      
                                         
                          
                                            
                                     
  
                            

 
  
 

Input File: MANLY-EX.TXT 
Detection Limit: 0.2400 

Log of Detection Limit: -1.4271 
Number of Observations (ND + Detects): 75 

Number of Nondetects: 20 
Mean of Detected Log Data: -0.0551 

Standard Deviation of Detected Log Data: 1.2919 
Log-Transformed Back-Transformed 

Method Mean Std. Dev. Mean Std. Dev. 
DL / 2   -0.23071 1.15168 1.5411 2.5636 

Cohen’s MLE -0.69928 1.59772 1.7808 6.1282 

Restricted MLE -0.72970 1.66017 1.9124 7.3421 

Unbiased MLE -0.69322 1.62182 1.8625 6.6837 

EM -0.70294 1.61403 1.8214 6.4481 

EM Check -0.42099 1.60462 2.3784 8.2831 

Winsorization -0.70967 1.35884 1.2381 2.8603 

Kaplan-Meier    -0.41010       SE of the mean is 0.14604 

EPA Delta Log -.-- -.-- 1.6876 4.1038 

Regress Detected   -0.82713 1.74699 2.0115   9.0307 

ROS -0.82713 1.75521 2.0406 9.3012 

Helsel’s ROS -.-- -.-- 3.9853 20.2760 

FP-ROS (Log-trans.)   -.-- -.--     2.0406 9.3012 

UCLs Obtained Using Ad Hoc Methods Based Upon Land’s H-Statistic 

Cohen’s UCL: 3.0465 

RMLE UCL: 3.3893 

Unbiased MLE UCL: 3.2294 

EM UCL: 3.1444 

EM Check UCL: 4.0843 

Log DL/2 UCL: 2.1232 

Delta UCL: 1.8144 

FP-ROS UCL on Log-transformed Data: 3.8260 
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6.1.5 Summary of Results for Example 4 

 
• The main objective of the present study is to evaluate and compare the various UCL95 

computation methods; therefore, no attention was paid to the magnitudes of the observations, 
especially the outlying observations. Based upon the simulation results as given in Section 8, for 
this left-censored data set (assuming no outliers), the most appropriate UCL95 = 9.72, which is 
obtained by using the BCA bootstrap method on the KM estimates (BCA (KM)). 

 
6.2 Example 5 (Blood Pb Data Set) 

 
This blood lead data set has been used and discussed by Helsel (2005). The problem and the data set are 
originated from a study conducted by Golden et al. (2003). The data are: 0.02, 0.02, 0.02, 0.02, 0.02, 
0.018644068, 0.02, 0.02, 0.02, 0.033962264, 0.02, 0.02, 0.02, 0.02, 0.106060606, 0.174074074, 0.02, 
0.023529412, 0.01372549, 0.268965517, 0.049152542, 0.015517241, 0.02, 0.024528302, 0.02, 
0.17704918, and 0.014285714. The data set is of size 27 with DL = 0.02. There are some detected data 
(e.g., 0.018644068) below the DL. However, for the present study, all observations below DL = 0.02 have 
been considered as nondetects. This yields 19 (> 50%) observations below the DL = 0.02. The results 
obtained using UNCENSOR 5.1 and SimCensor programs are summarized as follows. 
 
6.2.1 Estimates Obtained Using UNCENSOR 5.1 on Raw Data 

 
 
 
 
 
 
 
 
 
 
 
 

  
     
    
 
  
 
     
    
    
 
 
  
    
 
 

Censored Values (8 detected values) 

Mean: 0.10717 

Variance: 0.00830 

Detection Limit: 0.02000 

No. Below DL: 19 

Sample Size: 27 

Maximum Likelihood 

Mean: -0.06621 

Variance: 0.02341 

Std. Dev.: 0.15301 

95% Confidence Interval on Mean: [-0.12390, -0.01181] 

EM Iterative (Gleit) 

Mean: -0.01979 

Variance: 0.00928 

Std. Dev.: 0.09634 
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6.2.2 Estimates Obtained Using UNCENSOR 5.1 on Log-Transformed Data  

 
 
 
 
 
 
 

  
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

Bias-Corrected MLE 

Mean: 6.19152 

Variance: 0.02468 

Std. Dev.: 0.15709 

95% Confidence Interval on Mean: [6.13230, 6.24738] 

RMLE One-Step 

Mean: -0.06486 

Variance: 0.02432 

Std. Dev.: 0.15595 

95% Confidence Interval on Mean: [-0.12366, -0.00941] 

Winsorization 

Mean: 0.02245 

Variance: 0.00001 

Std. Dev.: -0.00366 

95% Confidence Interval on Mean: [0.03140, 0.01351] 

Censored Values (n-k detected values) 

Mean: -2.61116 

Variance: 0.94193 

Detection Limit: 0.02000 

No. Below DL: 19 

Sample Size: 27 

Back-Transformed Values 

Mean: 0.11478 

Variance: 0.01731 
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Maximum Likelihood 

Mean: -4.96641 

Variance: 4.00578 

Std. Dev.: 2.00145 

95% Confidence Interval on Mean: [-5.73162, -4.22137] 

Back-Transformed Values 

Mean: 0.04277 

Variance: 0.02692 

Std. Dev.: 0.16408 

EM Iterative (Gleit) 

Mean: -4.36651 

Variance: 1.60086 

Std. Dev.: 1.26525 

Back-Transformed Values 

Mean: 0.02690 

Variance: 0.00202 

Std. Dev.: 0.04497 

Bias-Corrected MLE 

Mean: 76.88986 

Variance: 4.22228 

Std. Dev.: 2.05482 

95% Confidence Interval on Mean: [76.10425, 77.65477] 

Back-Transformed Values 

Mean: 1.66349658386112544E34 

Variance: 4.55321630870951488E69 

Std. Dev.: 6.74775244708155648E34 
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 2It is actually the FP-ROS on log-transformed data 
 
Note:  
 
For both raw and log-transformed data, the mean, sd, and 95% CI obtained using the bias-corrected MLE 
(UMLE) method are unreasonable and incorrect. 
 
 
 
 
 
 
 
 
 
 

RMLE One-Step 

Mean: -4.91228 

Variance: 3.80884 

Std. Dev.: 1.95163 

95% Confidence Interval on Mean: [-5.65844, -4.18578] 

Back-Transformed Values 

Mean: 0.04149 

Variance: 0.02279 

Std. Dev.: 0.15098 

Helsel’s Robust2 

Mean: -4.79204 

Variance: 3.54859 

Std. Dev.: 1.88377 

Back-Transformed Values 

Mean: 0.04182 

Variance: 0.02002 

Std. Dev.: 0.14148 

EPA Delta Log 

Mean: 0.04893 

Variance: 0.00840 

Std. Dev.: 0.09167 

95% Confidence Interval on Mean: [0.02000, 0.41122] 
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6.2.3 Estimates Obtained Using SimCensor on Raw Data 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                           
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Input File: BLOOD_PB.TXT 
Detection Limit: 0.0200 

Number of Data (ND + Detects): 27 
Number of Nondetects: 19 
Mean of Detected Data: 0.1072 

Standard Deviation of Detected Data: 0.0852 
Method Mean Std. Dev. SE of the Mean 

DL / 2   0.0388   0.0654  

Cohen’s MLE -0.0625 0.1485  

Restricted MLE -0.0649 0.1526  

Unbiased MLE -0.0459 0.1655  

EM -0.0737 0.1622  

EM Check 0.0388 0.1415  

Winsorization 0.0235 -0.0000  

Kaplan-Meier 0.0483 -.-- 0.0124 

EPA Delta Log 0.0489 0.0917  

Regress Detected   -0.1044 0.1875  

ROS -0.1044 0.1823  

Helsel’s ROS 0.0361 0.0668  

FP-ROS (Log-trans.)   0.0489 0.2835  

UCLs Obtained Using Schneider’s Approximation Method 

Cohen’s MLE UCL: -0.0239 

RMLE UCL: -0.0252 

Unbiased MLE UCL: -0.0039 

EM UCL: -0.0314 

EM Check UCL: 0.0753 

 
UCLs Obtained Using Tiku’s Method 

Cohen’s MLE UCL: 0.0331 

RMLE UCL: 0.0334 

Unbiased MLE UCL: 0.0560 

EM UCL: 0.0315 

EM Check UCL: 0.1213 
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 3Censoring > 50% 
 4Bootstrap resamples may have too many NDs and repetitive values 

 
 
  

 
 
 

Various Ad Hoc Methods Using Student’s t with (n-1) Degrees of Freedom 

Cohen’s MLE UCL: -0.0137 

RMLE UCL: -0.0148 

Unbiased MLE UCL: 0.0084 

EM UCL: -0.0205 

EM Check UCL: 0.0852 

DL/2 UCL: 0.0603 

Nonparametric Methods on Raw Data (Z-Cutoff) 

Kaplan-Meier UCL: 0.0686 

Winsorized UCL: N/A3 

UCLs Obtained Using Standard Bootstrap Method 

DL/2 UCL: 0.0590 

Cohen’s MLE UCL: 0.0222 

RMLE UCL: 0.0185 

Unbiased MLE UCL: 0.0235 

Kaplan-Meier UCL: 0.0749 

EM UCL: 6074.91164 

EM Check UCL: 0.0595 

UCLs Obtained Using Bootstrap t-Method 

DL/2 UCL: 0.0754 

Cohen’s MLE UCL: 0.0047 

RMLE UCL: 0.0048 

Unbiased MLE UCL: 0.0031 

Kaplan-Meier UCL: 0.0704 

EM UCL: 0.0053 

EM Check UCL: 0.0739 
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UCLs Obtained Using Percentile Bootstrap Method 

DL/2 UCL: 0.0624 

Cohen’s MLE UCL: 0.0085 

Unbiased MLE UCL: 0.0179 

ROS UCL: 0.0091 

Kaplan-Meier UCL: 0.0788 

EM Check UCL: 0.0618 

UCLs Obtained Using BCA Bootstrap Method 

DL/2 UCL: 0.0647 

Cohen’s MLE UCL: 0.0341 

Unbiased MLE UCL: 0.1619 

Kaplan-Meier UCL: 0.1362 

EM Check UCL: 0.0639 

UCLs Obtained Using Chebyshev Inequality 

Cohen’s UCL: 0.0621 

RMLE UCL: 0.0632 

Unbiased MLE UCL: 0.0929 

Kaplan-Meier UCL: 0.1022 

EM UCL: 0.0623 

EM Check UCL: 0.1575 

Gamma UCLs 

Approximate Estimated Gamma UCL: 0.1466 

Adjusted Estimated Gamma UCL: 0.1633 

UCLs Obtained Using Jackknife Method 

DL/2 UCL: 0.0603 

Cohen’s MLE UCL: 0.0277 

RMLE UCL: 0.0227 

Unbiased MLE UCL: 0.0055 

Kaplan-Meier UCL: 0.0678 

EM UCL: 0.0478 

EM Check UCL: 0.0603 
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6.2.4 Estimates Obtained Using SimCensor on Log-Transformed Data  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
                               
 
 
 
 
 
 
 

ROS on Raw Data Using Student’s t-static 

ROS UCL: -0.0445 

Regression on Log Data Using Land’s H-Statistic 

Log DL/2 UCL: 0.1751 

Delta UCL: 0.0440 

Fully Parametric ROS UCL: 0.1957 

Input File: BLOOD_PB.TXT 
Detection Limit: 0.0200 

Log of Detection Limit: -3.9120 
Number of Observations (ND + Detects): 27 

Number of Nondetects: 19 
Mean of Detected Log Data: -2.6112 

Standard Deviation of Detected Log Data: 0.9078 
 Log-Transformed Back-Transformed 

Method Mean Std. Dev. Mean Std. Dev. 
DL / 2   -2.15013   0.58867 0.1385 0.0891 

Cohen’s MLE -4.93297 1.96075 0.0493 0.3331 

Restricted MLE -4.91240 1.92190 0.0466 0.2919 

Unbiased MLE -4.71441 2.18591 0.0978 1.0614 

EM -5.08704 2.14865 0.0621 0.6217 

EM Check -3.52658 1.94670 0.1956 1.2861 

Winsorization -3.74950 0.00000 0.0235 0.0000 

Kaplan-Meier     -3.41222        SE of the mean is 0.14756 

EPA Delta Log -.-- -.-- 0.0489 0.0917 

Regress Detected   -4.79085 1.93249 0.0537 0.3436 

ROS -4.79085 1.88280 0.0489 0.2835 

Helsel’s ROS -.-- -.-- 0.0361 0.0668 

FP-ROS (Log-trans.)   -.-- -.-- 0.0489 0.2835 
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6.2.5 Which UCL95 to Use? 
 

• The data set is a nonparametric data set as it does not follow any of the well-known distributions 
as incorporated in ProUCL 3.0.  

 
• The data set seems to be moderately skewed with sd of log-transformed data as 0.9 (only detected 

data) and about 1.9 are based upon MLE methods.  
 
• The censoring intensity is about ~ 67% (= 19/27). 
 
• After consulting the recommendations described in Sections 8 and 9, one may use a 95% UCL 

based upon KM (BCA) method to estimate the exposure point concentration term. The 95% KM 
(BCA) UCL = 0.1362. 
 

Since several computational errors and discrepancies have been identified in the UNCENSOR 5.1 
program, we only use the SimCensor program on the rest of the examples. It is suggested that the 
developers of the program, UNCENSOR 5.1, fix all errors as mentioned and discussed in this report. 
Also, as concluded earlier, the UCL values obtained using the various ad hoc methods (e.g., Student’s t 
on estimates obtained using log-transformed data) are not appropriate for skewed data distributions; those 
UCL results will not be reported in the rest of this section. 
 
6.3 Example 6 (4,4’–DDT Data Set From a Superfund Site)  

 
This example is considered to demonstrate the influence of a few outliers on the various UCL values and 
to illustrate how the use of a lognormal distribution accommodates outliers and yield unrealistically large 
values of no practical merit. These issues need to be addressed as the use of a lognormal distribution is 
very common on data sets with a few outliers or collected from mixture populations. The data set of 4,4’-
DDT concentrations comes from a Superfund site. The data set of size 11 with 2 nondetects is given by: 
<0.002, <0.002, 0.00215, 0.00425, 0.0185, 0.0215, 0.0305, 0.08, 0.35775, 0.8, and 11.5. All of the data 
values (more than 90%), except the one value = 11.5, are less than 1.0. Therefore, an estimate of the 
population mass should also be about < 1.0. The data set has an obvious outlier = 11.5, and using the 
Shapiro-Wilk goodness-of-fit test, a lognormal model accommodates this outlier leading to the conclusion 
that the data set may have come from a single lognormal population. The use of a lognormal model 
resulted in unrealistic estimates and UCL values, as summarized below. For this example, the results have 
been computed with and without the outlier, 11.5. 

Various Ad Hoc UCLs Based on Land’s H-Statistic on Log-transformed Data 

Cohen’s UCL: 0.2191 

RMLE UCL: 0.1967 

Unbiased MLE UCL: 0.6025 

EM UCL: 0.3619 

EM Check UCL: 0.8533 

Log DL/2 UCL: 0.1751 

Delta UCL: 0.0440 

FP-ROS UCL: 0.1957 
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6.3.1 Estimates Obtained Using SimCensor on Raw Data with Outlier, 11.5  

 
                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: 
 

• The sd based upon the EPA delta lognormal method and the fully parametric ROS on log-
transform method are really inflated and hence of no practical merit.  
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 

Input File: LOG-44DDT.TXT 
Detection Limit: 0.0200 

Number of Observations (ND + Detects): 11 
Number of Nondetects: 2 
Mean of Detected Data: 1.4239 

Standard Deviation of Detected Data: 3.5712 
Method Mean Std. Dev. SE of the Mean 

DL / 2   1.1651 3.4365  

Cohen’s MLE 0.6675 3.7187  

Restricted MLE 0.3742 4.1177  

Unbiased MLE 0.7450 4.0573  

EM 0.6318 3.9515  

EM Check 1.1652 3.9451  

Winsorization 0.1122 0.2654  

Kaplan-Meier 1.1654 -.-- 1.0478 

EPA Delta Log 2.1344 91.1078  

Regress Detected   0.3877 3.5134  

FP-ROS (Raw) 0.3877 4.1191  

Helsel’s ROS 1.1650 3.4365  

FP-ROS (Log-trans.)   7.5667 2438.0786  

UCLs Obtained Using Tiku’s Method 

Cohen’s MLE UCL: 2.6754 

RMLE UCL: 2.5940 

Unbiased MLE UCL: 2.9359 

EM UCL: 2.7641 

EM Check UCL: 3.3071 
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UCLs Obtained Using Schneider’s Approximation Method 

Cohen’s MLE UCL: 2.1705 

RMLE UCL: 2.0068 

Unbiased MLE UCL: 2.3862 

EM UCL: 2.2218 

EM Check UCL: 2.8028 

Ad Hoc UCL Methods Using Student’s t with (n-1) Degrees of Freedom 

Cohen’s MLE UCL: 2.6997 

RMLE UCL: 2.6245 

Unbiased MLE UCL: 2.9622 

EM UCL: 2.7912 

EM Check UCL: 3.3211 

DL/2 UCL: 3.0431 

Nonparametric Methods on Raw Data (Z-cutoff) 

Kaplan-Meier UCL: 2.8892 

Winsorized UCL: 0.2677 

UCLs Obtained Using Standard Bootstrap Method 

DL/2 UCL: 2.7664 

Cohen’s MLE UCL: 2.0919 

RMLE UCL: 1.8613 

Unbiased MLE UCL: 2.2220 

ROS UCL: 2.0357 

Kaplan-Meier UCL: 2.9908 

EM UCL: 2.0636 

EM Check UCL: 2.8665 
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UCLs Obtained Using Bootstrap t-Method 

DL/2 UCL: 37.8245 

Cohen’s MLE UCL: 19.9861 

RMLE UCL: 12.0291 

Unbiased MLE UCL: 23.7025 

ROS UCL: 10.8885 

Kaplan-Meier UCL: 37.3964 

EM UCL: 18.4816 

EM Check UCL: 37.2462 

UCLs Obtained Using Percentile Bootstrap Method 

DL/2 UCL: 3.1507 

Cohen’s MLE UCL: 2.4434 

RMLE UCL: 2.3712 

Unbiased MLE UCL: 2.5991 

ROS UCL: 2.2603 

Kaplan-Meier UCL: 3.2185 

EM UCL: 2.8392 

EM Check UCL: 3.1776 

UCLs Obtained Using BCA Bootstrap Method 

DL/2 UCL: 3.2137 

Cohen’s MLE UCL: 2.1125 

Unbiased MLE UCL: 2.9006 

Kaplan-Meier UCL: 4.1978 

EM UCL: 2.2068 

EM Check UCL: 2.2926 

UCLs Obtained Using Chebyshev Inequality 

Cohen’s MLE UCL: 5.5549 

RMLE UCL: 5.7860 

Unbiased MLE UCL: 6.0772 

Kaplan-Meier UCL: 5.7327 

EM UCL: 5.8251 

EM Check UCL: 6.3500 
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6.3.2 Recommended UCL Based Upon Statistics Computed Using the Outlier 
 

• If, for a moment, it is assumed that this data set does not have any outliers, then the most 
appropriate UCL is given by the 99% UCL obtained using the Chebyshev inequality on KM 
estimates.  

 
• Consulting the recommendations summarized in Sections 8 and 9, a 99% KM (Chebyshev) UCL 

is needed as the sd of log-transformed data is quite high = 2.55 (using detected data) and the 
estimated sd of log-transformed data is > 3.0 (based upon other MLE methods).  

 
• However, since the data set consists of an outlier, 11.5, the use of an inflated 99% KM 

(Chebyshev) UCL based upon an inflated estimate of skewness (with sd of log data = 2.55) will 
not be appropriate as an estimate of the population mass with more than 90% of the observations 
< 1.0. 

 
• This sd (and hence the skewness) can be reduced significantly by not including the outlier in the 

data set and the computations. Therefore, as before, it is recommended to preprocess a data set, 
and identify all outliers and multiple populations. All outliers need separate investigation. If more 
than one population is present (perhaps with consultation and agreement of all parties) in the data 
set, then a separate UCL95 should be computed for each of the identified population.  

 

Gamma UCLs 

Approximate Estimated Gamma UCL: 8.2255 

Adjusted Estimated Gamma UCL: 11.9472 

UCLs Obtained Using Jackknife Method 

DL/2 UCL: 3.0431 

Cohen’s MLE UCL: 1.7505 

Unbiased MLE UCL: 1.8246 

Kaplan-Meier UCL: 3.0430 

EM UCL: 1.7305 

EM Check UCL: 3.0431 

ROS on Raw Data Using Student’s t-statistic 

ROS UCL: 2.6388 

UCLs Based Upon Land’s H-Statistic 

Log DL/2 UCL: 133.1102 

Delta UCL: 113.2992 

Fully Parametric ROS on Log-
transformed Data UCL: 68611.6019 
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6.3.3 Estimates Obtained Using SimCensor on Log-Transformed Data with Outlier, 11.5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: 
 

• Obviously, the results summarized above cannot be used in the decision-making process. The 
standard deviations as given above (after back-transformation) are inflated due to the use of a 
lognormal distribution on a data set with an outlier. 

 
• Compare the differences in the estimates based upon raw data and the log-transformed data after 

back-transformation. 
 
• AVOID the use of a lognormal model as its use often yields unrealistic and meaningless statistics 

and results. 
 
• Whenever possible, use nonparametric methods to compute UCL95 for left-censored data.  

Input File: LOG-44DDT.TXT 
Detection Limit: 0.0200 

Log of Detection Limit: -6.2146 
Number of Observations (ND + Detects): 11 

Number of Nondetects: 2 
Mean of Detected Log Data: -2.6953 

Standard Deviation of Detected Log Data: 2.5487 
 Log-Transformed Back-Transformed 

Method Mean Std. Dev. Mean Std. Dev. 
DL / 2   -2.77017 2.42366 1.1816 22.2542 

Cohen’s MLE --3.65776 3.14378 3.6107 505.4961 

Restricted MLE -3.67375 3.18558 4.0560 648.1496 

Unbiased MLE -3.59231 3.42999 9.8761 3542.3449 

EM -3.68731 3.35198 6.8934 1897.7518 

EM Check -3.33514 3.34279   9.5066 2537.9067 

Winsorization -3.71063 3.49365 10.9373 4890.2110 

Kaplan-Meier     -3.32199         SE of the mean is 0.85108 

EPA Delta Log -.-- -.-- 2.1344 91.1078 

Regress Detected   -3.75144 3.58147 14.3251 8738.2348 

ROS -3.75144 3.39859 7.5667 2438.0786 

Helsel’s ROS -.-- -.-- 1.1650 3.4365 

FP-ROS (Log-trans.)   -.-- -.-- 7.5667 2438.0786 
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6.4 Example 6 (4,4’–DDT Data Set without Outlier, 11.5)  

 
The various estimates of the population mass (mean) based upon the data set without the outlier, 11.5, are 
summarized as follows. 
 
6.4.1 Estimates Obtained Using SimCensor on Raw Data without Outlier, 11.5 

 
                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
                   
          
                
                  
                            
                      
 
 

Detection Limit: 0.0020 
Number of Observations (ND + Detects): 10 

Number of Nondetects: 2 
Mean of Detected Data: 0.1643 

Standard Deviation of Detected Data: 0.2646 
Method Mean Std. Dev. SE of the Mean 

DL / 2   0.1317 0.2588  

Cohen’s MLE 0.0922 0.2859  

Restricted MLE 0.0770 0.3098  

Unbiased MLE 0.0996 0.3155  

EM 0.0887 0.3067  

EM Check 0.1317 0.3058  

Winsorization 0.0321 0.0619  

Kaplan-Meier 0.1319 -.-- 0.0830 

EPA Delta Log 0.2223 1.9236  

Regress Detected   0.0593 0.3299  

FP-ROS (Raw) 0.0593 0.3363  

Helsel’s Regress 0.1316 0.2588  

FP-ROS (Log-trans.)   0.4213 11.9180  

UCLs Obtained Using Tiku’s Method 

Cohen’s MLE UCL: 0.2602 

RMLE UCL: 0.2582 

Unbiased MLE UCL: 0.2848 

EM UCL: 0.2685 

EM Check UCL: 0.3129 
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UCLs Obtained Using Schneider’s Approximation Method 

Cohen’s MLE UCL: 0.2175 

RMLE UCL: 0.2103 

Unbiased MLE UCL: 0.2376 

EM UCL: 0.2220 

EM Check UCL: 0.2693 

UCLs Based Upon Ad Hoc Methods Using Student’s t with (n-1) df 

Cohen’s MLE UCL: 0.2579 

RMLE UCL: 0.2566 

Unbiased MLE UCL: 0.2824 

EM UCL: 0.2665 

EM Check UCL: 0.3090 

DL/2 UCL: 0.2817 

Nonparametric Methods on Raw Data (Z-cutoff) 

Kaplan-Meier UCL: 0.2684 

Winsorized UCL: 0.0716 

UCLs Obtained Using Standard Bootstrap Method 

DL/2 UCL: 0.2566 

Cohen’s MLE UCL: 0.2285 

RMLE UCL: 0.2063 

Unbiased MLE UCL: 0.2250 

Kaplan-Meier UCL: 0.2705 

EM UCL: 0.2264 

EM Check UCL: 0.2571 

UCLs Obtained Using Bootstrap t-Method 

DL/2 UCL: 1.3265 

Cohen’s MLE UCL: 0.8586 

RMLE UCL: 0.7143 

Unbiased MLE UCL: 0.9147 

Kaplan-Meier UCL: 1.3458 

EM UCL: 0.7974 

EM Check UCL: 1.2174 
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UCLs Obtained Using Percentile Bootstrap Method 

DL/2 UCL: 0.2676 

Cohen’s MLE UCL: 0.2484 

RMLE UCL: 0.2341 

Unbiased MLE UCL: 0.2385 

Kaplan-Meier UCL: 0.2867 

EM UCL: 0.2473 

EM Check UCL: 0.2801 

UCLs Obtained Using BCA Bootstrap Method 

DL/2 UCL: 0.2761 

Cohen’s MLE UCL: 0.2322 

RMLE UCL: 0.2248 

Unbiased MLE UCL: 0.2306 

Kaplan-Meier UCL: 0.3186 

EM UCL: 0.2072 

EM Check UCL: 0.2914 

UCLs Obtained Using Chebyshev Inequality 

Cohen’s MLE UCL: 0.4863 

RMLE UCL: 0.5040 

Unbiased MLE UCL: 0.5344 

Kaplan-Meier UCL: 0.4935 

EM UCL: 0.5114 

EM Check UCL: 0.5532 

Gamma UCLs 

Approximate Estimated Gamma UCL: 0.8630 

Adjusted Estimated Gamma UCL: 1.2652 
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6.4.2 Recommended UCL Based Upon Statistics Computed without the Outlier, 11.5 
 

• This sd (and hence the skewness) reduced significantly by not including the outlier in the data set 
and the computations. The sd of the log-transformed data without the outlier is about 1.9 
(detected observations). 

 
• The censoring intensity is about 18%. Consulting the recommendations made in Sections 8 and 9, 

for a sample of size 10, % censoring ~18%, and sd of log-transformed data ~ 1.9, an appropriate 
estimate of the population mass can be computed using a 99% Chebyshev (KM) UCL. 

 
• Note that a 95% Chebyshev (KM) UCL is based upon the full data set with outlier = 5.73, and the 

corresponding 95% Chebyshev (KM) UCL without the outlier = 0.4935.  
 
• Recommended Estimate of the Population Mass: For this data set, the most appropriate 

estimate of the population mass is given by the 99% Chebyshev (KM) UCL based upon the data 
set without the outlier, 11.5. 

 
Note: All of the estimation methods (e.g., Chebyshev inequality on KM estimates) to compute 95%, 
97.5%, and 99% UCL of the population mean will be available in ProUCL 4.0,  which is expected to be 
released by the fall of 2006 or early 2007 (after comments and reviews).  
 

UCLs Obtained Using Jackknife Method 

DL/2 UCL: 0.2817 

Cohen’s MLE UCL: 0.2268 

RMLE UCL: 0.2065 

Unbiased MLE UCL: 0.2255 

Kaplan-Meier UCL: 0.2816 

EM UCL: 0.2286 

EM Check UCL: 0.2817 

UCLs Based Upon Land’s H-Statistic 

Log DL/2 UCL: 3.4247 

Delta UCL: 2.5838 

Fully Parametric ROS on Log-
transformed UCL: 152.1860 

ROS on Raw Data Using Student’s t-statistic 

ROS UCL: 0.2542 
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6.4.3 Estimates Obtained Using SimCensor on Log-Transformed Data 
 
                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Detection Limit: 0.0020 
Log of Detection Limit: -6.2146 

Number of Observations (ND + Detects): 10 
Number of Nondetects: 2 

Mean of Detected Log Data: -3.3375 
Standard Deviation of Detected Log Data: 1.8963 

 Log-Transformed Back-Transformed 
Method Mean Std. Dev. Mean Std. Dev. 

DL / 2   -3.29142 1.79052 0.1848 0.8993 

Cohen’s MLE -4.18937 2.45911 0.3117 6.4022 

Restricted MLE -4.19209 2.46628 0.3164 6.6148 

Unbiased MLE -4.12617 2.71363 0.6413 25.4648 

EM -4.21884 2.64727 0.4893 16.2602 

EM Check -3.91288 2.63793 0.6482 21.0169 

Winsorization -4.27846 2.80997 0.7186 37.2361 

Kaplan-Meier     -3.89842        SE of the mean is 0.68749 

EPA Delta Log -.-- -.-- 0.2062 2.1183 

Regress Observed   -4.20770 2.73295 0.6230 26.0767 

FP-ROS (Log-
transform) -4.20770 2.58580 0.4213 11.9180 

Helsel’s Regress -.-- -.-- 0.1316 0.2588 

FP-ROS (Log-trans.)   -.-- -.-- 0.4213 11.9180 

Various Ad Hoc Methods Using Land’s H-Statistic 

Cohen’s MLE UCL: 65.2618 

RMLE UCL: 68.2755 

Unbiased MLE UCL: 412.8559 

EM UCL: 232.5458 

EM Check UCL: 295.3939 

UCLs Based Upon Land’s H-Statistic 

Log DL/2 UCL: 3.4247 

Delta UCL: 2.5838 

FP-ROS on Log-transformed Data UCL: 152.1860 
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6.4.4 Comparison of Results with and without Outlier, 11.5 
 

• As mentioned before, the main objective of computing a UCL95 is to estimate the population 
mean (mass) based upon the majority of the data set representing the dominant population (e.g., 
AOC, EA, RU). Inclusion of a single outlier (= 11.5) resulted in distorted and unrealistic 
estimates. This is especially true when the statistics were computed based upon log-transformed 
data. 

 
• It is also noted that the UCL95 obtained using Land’s H-statistic on MLE estimates obtained 

using the log-transformed data without the outlier still are elevated. Based upon these 
observations, it is recommended not to use ad hoc UCL computation methods based upon Land’s 
H-statistic and MLE estimates obtained using log-transformed data. 

 
6.5 Example 7 (Aroclor 1254 Data Set From a Superfund Site) 

 
This is another data set of a larger size, n = 53, representing Aroclor 1254 concentrations from a 
Superfund site. The data values are given by: 0.02, 0.02, 0.02, 0.02, 0.02, 0.1, 0.11, 0.185, 0.2, 0.21, 0.43, 
0.6, 0.64, 1, 1.5, 2, 2, 3.15, 3.3, 5.9, 6.6, 16, 20, 21, 21.5, 35, 41, 44, 46, 48, 49, 140, 160, 210, 220, 310, 
330, 360,  880,  924, 1300, 1300, 1600, 1600, 1700, 3400, 3900, 4400, 5000, 5400, 6600, 8300, and 
19000. The detection limit is 0.02. The various statistics available in SimCensor are given as follows. The 
data set has some potential outliers (e.g., 8300, 19000). This data set can also be modeled by a lognormal 
distribution. As expected, methods based upon the lognormal model yield unreasonable and meaningless 
estimates and UCL values. 
 
6.5.1 Estimates Obtained Using SimCensor on Raw Data  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     

Detection Limit: 0.0020 
Number of Observations (ND + Detects): 53 

Number of Nondetects: 5 
Mean of Detected Data: 1404.2380 

Standard Deviation of Detected Data: 3203.4921 
Method Mean Std. Dev. SE of the Mean 

DL / 2   1271.7637 3105.5859  

Cohen’s MLE 1057.9383 3278.5122  

Restricted MLE 904.1001 3504.8772  

Unbiased MLE 1065.0644 3330.9423  

EM 1055.2397 3313.7903  

EM Check 1271.7637 3312.4700  

Winsorization 851.0175 1865.4543  

Kaplan-Meier 1271.7722 -.-- 427.0125 

EPA Delta Log 22695.5871 11640702.1138  

Regress Detected   893.3271 2837.4059  

FP-ROS (Raw) 893.3271 3479.3181  

Helsel’s ROS 1271.7664 3105.5848  

FP-ROS (Log-trans.)   102019.0074 423427416.1488  



 

 83

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

UCLs Obtained Using Tiku’s Method 

Cohen’s MLE UCL: 1754.7188 

RMLE UCL: 1646.0303 

Unbiased MLE UCL: 1772.8459 

EM UCL: 1759.3141 

EM Check UCL: 1978.9716 

UCLs Obtained Using Schneider’s Approximation Method 

Cohen’s MLE UCL: 1685.1526 

RMLE UCL: 1568.6211 

Unbiased MLE UCL: 1702.0409 

EM UCL: 1688.8176 

EM Check UCL: 1911.1992 

Various Ad Hoc Methods Using Student’s t with (n-1) Degrees of Freedom 

Cohen’s MLE UCL: 1812.1148 

RMLE UCL: 1710.3488 

Unbiased MLE UCL: 1831.3017 

EM UCL: 1817.5315 

EM Check UCL: 2033.7517 

DL/2 UCL: 1986.1609 

Nonparametric Methods on Raw Data (Z-cutoff) 

Kaplan-Meier UCL: 1974.2979 

Winsorized UCL: 1282.0006 

UCLs Obtained Using Standard Bootstrap Method 

DL/2 UCL: 1963.4956 

Cohen’s MLE UCL: 1704.5589 

RMLE UCL: 1520.4657 

Unbiased MLE UCL: 1702.1442 

Kaplan-Meier UCL: 2005.0762 

EM UCL: 1683.7905 

EM Check UCL: 1993.2583 
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UCLs Obtained Using Bootstrap t-Method 

DL/2 UCL: 2608.4037 

Cohen’s MLE UCL: 2072.1922 

RMLE UCL: 1885.2621 

Unbiased MLE UCL: 2168.7201 

Kaplan-Meier UCL: 2682.3231 

EM UCL: 2166.6755 

EM Check UCL: 2683.8457 

UCLs Obtained Using Percentile Bootstrap Method 

DL/2 UCL: 2032.2509 

Cohen’s MLE UCL: 1777.6320 

RMLE UCL: 1640.5575 

Unbiased MLE UCL: 1782.7380 

Kaplan-Meier UCL: 2123.7534 

EM UCL: 1761.5033 

EM Check UCL: 1984.0694 

UCLs Obtained Using BCA Bootstrap Method 

DL/2 UCL: 1988.9692 

Cohen’s MLE UCL: 1640.4284 

RMLE UCL: 1528.8293 

Unbiased MLE UCL: 1837.4074 

Kaplan-Meier UCL: 2110.6929 

EM UCL: 1714.9544 

EM Check UCL: 1883.3406 

UCLs Obtained Using Chebyshev Inequality 

Cohen’s MLE UCL: 3020.9173 

RMLE UCL: 3002.6131 

Unbiased MLE UCL: 3059.4355 

Kaplan-Meier UCL: 3133.0763 

EM UCL: 3039.3413 

EM Check UCL: 3255.0747 
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Gamma UCLs 

Approximate Estimated Gamma UCL: 2600.9884 

Adjusted Estimated Gamma UCL: 2655.4368 

UCLs Obtained Using Jackknife Method 

DL/2 UCL: 1986.1609 

Cohen’s MLE UCL: 1680.2545 

RMLE UCL: 1480.3708 

Unbiased MLE UCL: 1682.7124 

Kaplan-Meier UCL: 1986.1677 

EM UCL: 1679.7116 

EM Check UCL: 1986.1609 

ROS on Raw Data Using Student’s t-statistic 

ROS UCL on Raw Data: 1693.6963 

Regression on Log Data Using Land’s H-Statistic 

Log DL/2 UCL: 853531.3852 

Delta UCL: 153553.3415 

FP-ROS (Log-transform) UCL: 4072707.4758 
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6.5.2 Estimates Obtained Using SimCensor on Log-Transformed Data 
 
 
 
                
 
                      
                         
         
 

 
                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Note: 
 

• This data set is known to have outliers (e.g., 19,000) that should be removed before computing 
any statistics. The use of a lognormal model accommodated the outliers, resulting in elevated, 
unstable, and impractical UCL values.  

 
• Consulting the recommendations as summarized in Section 9, the most appropriate estimate of 

population mass (in terms of coverage and practical merit) is given by a UCL based upon 
Chebyshev inequality and KM estimates. The confidence coefficient to be used depends upon the 
skewness. For highly skewed data sets, a higher (e.g., 97.5%, 99%) confidence coefficient may 
have to be used to estimate the population mass. 

 
• The higher is the skewness, the higher is the confidence coefficient.  
 
• A 95% Chebyshev (KM) UCL is given by = 3133.08. Note that this UCL is inflated as it is based 

upon a data set with potential outliers (e.g., 19,000). 
 

Input File: LOG-CLOR.TXT 
Detection Limit: 0.0200 

Log of Detection Limit: -3.9120 
Number of Observations (ND + Detects): 53 

Number of Nondetects: 5 
Mean of Detected Log Data: 3.9385 

Standard Deviation of Detected Log Data: 3.4818 
 Log-Transformed Back-Transformed 

Method Mean Std. Dev. Mean Std. Dev. 
DL / 2   3.38238 3.77045 35973.1529 43954757.7851 

Cohen’s MLE 3.02058 4.39648 322903.0923 5085402560.6239 

Restricted MLE 3.03660 4.32404 239254.1758 2747512477.9080 

Unbiased MLE 3.03013 4.46679 445185.6543 9574433367.5194 

EM 3.01749 4.44579 400321.5539 7840422495.5001 

EM Check 3.19786 4.44347 474517.1291 9197989531.6861 

Winsorization 3.29619 4.62869 1212964.5656 54472860413.1406 

Kaplan-Meier      3.34969         SE of the mean is 0.52507 

EPA Delta Log -.-- -.-- 22695.5871 11640702.1138 

Regress Detected   3.20194 4.09042 105629.2730 453926320.8632 

ROS 3.20194 4.08191 102019.0074 423427416.1488 

Helsel’s ROS -.-- -.-- 1271.7664 3105.5848 

Regress Transform    -.-- -.-- 102019.0074 423427416.1488 
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• Outliers have inflated the sd of log-transformed data and hence, the skewness. Just as in Example 
6, the exclusion of a few outliers (8,300, 19,000) will reduce the skewness. 

 
• It is likely that the data set represents a mixture sample with a few potential outliers (e.g., 19,000, 

8,300).  
 
• One may want to preprocess the data set, and recompute the estimate(s) of the population mass 

accordingly perhaps without the outlier, 19,000 (and also without 8,300). 
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Section 7 
 

Description of the Simulation Experiments 
 

Singh and Nocerino (2002) and many others (e.g., Gilliom and Helsel (1986), Gleit (1985), and Haas and 
Scheff (1990)) compared the performances of the various parametric (e.g., MLE and ROS) procedures to 
estimate the population mean and the standard deviation for Type 1 left-censored data sets. The 
performance measures used were the bias and mean square error (MSE). Bias of an estimate,θ̂ , of a 
parameter, θ, is defined as its departure (θ̂ -θ ) from the parameter. For a simulation experiment with N 

iterations, Bias = ∑
=

−
N

i
i Nθθ

1

/)ˆ(  and MSE = ∑
=

−
N

i
i Nθθ

1

2 /)ˆ( , where iθ̂  is an estimate (computed in 

the same manner as θ̂ ) of θ, obtained from the sample generated at the ith iteration, i: = 1, 2, ..., N. Those 
studies concluded that the various substitution methods (replacement by 0, DL/2, and DL), regression 
method (ROS on raw data), and generation of NDs from a uniform distribution, U(0, DL], do not perform 
well as they yield biased estimates of the population mean and the standard deviation.  
 
In this report, extensive simulation experiments covering a wide range of skewed distributions have been 
conducted to evaluate and compare the performances of the various parametric and nonparametric UCL95 
computation methods. The performance measure used is the coverage percentages (probabilities) for the 
population mean achieved by the various UCL95 computation methods. 
 
The substitution methods are simple but do not perform well in most cases as they yield estimates with a 
larger bias and MSE than those obtained using the MLE methods and other nonparametric methods. 
Therefore, those proxy methods (e.g., replacement of NDs by “0,” DL, or values obtained using the 
uniform distribution in (0, DL]) are not included in this study. However, since the DL/2 substitution 
method and ROS on log-transformed data method are the most commonly cited and used methods, these 
methods have been included in the simulation experiments. Helsel reviewed an earlier version of this 
report in November 2005 and suggested including the robust ROS on log-transformed data method in the 
simulation experiments. Specifically, he suggested evaluating the performances of the UCL95 based upon 
the robust ROS method followed by jackknife and bootstrap methods. Those results are graphed in the 
two newly added appendices, D and E of the report. 
 
The simulation study, as considered in this report, is probably the first extensive study to compare the 
performances of the various UCL95 computation methods, including the nonparametric KM method and 
various bootstrap and jackknife methods on left-censored data sets covering a wide range of skewness. 
One of the problems associated with such studies is that these methods are computer-intensive and very 
time-consuming. For example, on a fast personal computer, each simulation experiment (for a fixed or a 
computed detection limit) with 5,050 iterations (and 1,000 bootstrap resamples) took about 30 hours on 
the average. Some distributions, such as the lognormal distribution, LN(5, 2) with detection limits based 
upon higher censoring intensities (e.g., 50% or 60%) took even longer than 30 hours on a fast personal 
computer. 
 
Two detection limit cases as discussed in the literature (e.g., Haas and Scheff (1990) and Gleit (1985)) 
have been considered. These cases are: 1) the fixed detection limit case in which DL stays fixed for 
samples of all sizes; and 2) the computed detection limit (% censoring) case where DL (as percentiles) is 
computed based on the distribution and the censoring intensity. Type 1 left-censored data sets have been 
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generated from three distributions: normal, lognormal, and gamma. Generation of normal and lognormal 
deviates is well documented and established in the literature. The simulation process used to generate 
gamma-distributed data sets is similar to the one as described in Singh, Singh, and Iaci (2002) and Singh 
and Singh (2003). Values below the detection limit, DL (fixed or computed), are considered as 
nondetects. Several combinations of distribution and fixed DL have been considered. 
 
7.1 Fixed Detection Limit Case 

 
Depending upon the distribution, the detection limit (DL) has been fixed at a certain value, such as 10, 20. 
In this setting, the number of NDs represents a random variable. The following combinations of 
distribution and fixed detection limit have been considered. 

 
 Distribution Censoring Intensity Fixed Detection Limit, DL 
    
1 N(100, 30)  0.62% DL Fixed at 25 

2 N(100, 30)  4.77% DL Fixed at 50   

3 LN(5, 1)  5.50% DL Fixed at 30   

4 LN(5, 1.5) 14.33% DL Fixed at 30 

5 LN(5, 2) 21.18% DL Fixed at 30 

6 G(0.75, 100) 34.67% DL Fixed at 25 

7 G(2, 30) 20.33% DL Fixed at 25 

8 G(3, 20) 13.06% DL Fixed at 25 

 
7.2 Computed Detection Limit Case 

 
In this setting, the detection limit, DL, changes with the censoring intensity. For a normal distribution, the 
“computed” detection limit, DL, for α100% censoring intensity is given by the equation, DL = μ + σzα, 
where zα, the critical value of the standard normal distribution is given by P(Z ≤ zα) = α. For a normal 
distribution, N(5, 2), with mean, 5 and sd, 2, and censoring intensities of 30%, and 60%, DL is given by 5 
+ 2z0.30 ~ 5 - 2 * 0.525 = 3.95 and 5 + 2z0.6 ~ 5 + 2 * 0.255 = 5.51, respectively. Similarly, the DL for the 
lognormal distribution is computed by exponentiation. Specifically, for a lognormal distribution, LN(5, 
2), a 30% detection limit is computed by using the equation: 
 

exp(5 + 2*z0.30 ) = exp(5 – 2*0.525)  = exp(3.95) ~ 52 
 
The α100% detection limit (percentile) for a gamma distribution can be computed using the relationship 
between a chi-square distribution and a gamma distribution. Specifically, the relationship between a 
gamma random variable, X = G(k, θ), and a chi-square variable, Y, is given by X = Yθ/2.0, where Y 
follows a chi-square distribution with 2k degrees of freedom. Thus, the percentiles of a chi-square 
distribution (which are programmed in ProUCL 3.0 and SimCensor) can be used to determine the 
percentiles of a gamma distribution. In practice, the shape parameter, k, is replaced by its MLE. Thus, 
once a α100% percentile, y(α), of a chi-square distribution with 2k degrees of freedom is obtained, the 
α100% percentile (a DL with α100% censoring intensity) for a gamma distribution can be obtained by 
using  xα = yαθ /2.0. 
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7.3 Distributions, Sample Sizes, and Censoring Intensities Considered 
 

For the computed detection limit case, several parameters have been considered covering a wide range of 
skewness. It is necessary to cover a wide range of skewness, because a method that performs well by 
providing adequate coverage for the population mean of a mildly skewed distribution may not perform 
well for moderately skewed to highly skewed distributions. The detection limits are computed following 
the procedure as described above for normal, lognormal, and gamma distributions. Seven combinations of 
distributional parameters have been considered. The seven distributions considered are: N(100, 30)-
symmetric, LN(5, 0.75)-mild skewness, LN(5, 1.5)-moderate-to-high skewness, LN(5, 2) high skewness, 
G(0.5, 100)-high skewness, G(0.75, 100)-high skewness, and G(2, 100)-moderate-to-mild skewness.  
 
It should be noted that for the four bootstrap methods, the number of bootstrap runs, B, used was set at B 
= 1000. The bootstrap procedure for censored data sets (Efron (1981)), as described in the bootstrap 
section, has been used on left-censored data sets. That is, for bootstrap resamples, an indicator variable, I, 
was used to keep track of detect or nondetect status of an observation. For all of the simulation 
experiments (fixed DL or computed DL), the sample sizes, n, considered are: 10, 15, 20, 25, 30, 35, 40, 
50, 75, and 100. For the computed detection limit cases, the censoring levels (intensities) considered are: 
10%, 15%, 20%, 25%, 40%, 50%, 60%, and 70%. Initially, 5,050 simulation iterations were used for each 
combination of the distribution, sample size, and censoring level.  
 
Some convergence problems were observed with the MLE methods, EM method, and some bootstrap 
methods (e.g., for small sample sizes) based upon the ML estimates. Specifically, for higher censoring 
levels, the MLE and the EM methods do not converge properly and sometimes yield absurd and 
unreliable values (e.g., yielding negative MLEs of the mean even when all sample values are > 0). This is 
especially true when dealing with low detected values, as can be seen in the examples dealing with the 
Manly (2001) data set in Section 6.1 and the Blood Lead (Helsel (2005)) data set in Section 6.2. 
 
Also, as mentioned before, a data set with potential outliers (e.g., Examples 6 and 7) or a mixture sample 
can be easily modeled by a lognormal distribution. Just as for the full data sets (e.g., Singh, Singh, and 
Iaci (2002)), the UCL95 computed from a left-censored data and the lognormal distribution assumption 
can be unrealistically large. In such cases, the bootstrap t-method also yields unrealistic UCL 95 results. It 
is well known that bootstrap t-estimates are not stable in the presence of outliers (Efron and Tibshirani 
(1993) and ProUCL 3.0 User Guide (2004)). These observations give more reasons to use nonparametric 
methods, such as the KM method, rather than parametric MLE or ROS methods when dealing with left-
censored skewed data sets. However, it should be noted that in order to use bootstrap methods on left-
censored data sets, the sample size should not be very small. When the sample size is small (e.g., n < 10-
15) or the censoring level is high (e.g., > 40-50%), a bootstrap sample can result in all (or most) values 
equal to NDs, or all (or most) observations having the same detected numerical value. Statistics computed 
based upon such samples are meaningless. In order to take care of some of these problems (e.g., when a 
bootstrap resample has no detected value or has very few detected values such as < 4), some guidelines 
and necessary steps were taken to generate an appropriate number of detected observations in bootstrap 
samples. These steps are listed as follows.  
 
7.4 Steps Used in Data Generation and Bootstrap Resampling Methods 

 
First of all, when the number of detects in a data set is small (such as less than 8-10), it is desirable not to 
use statistical methods (including those described in this report). In order to get reasonable and reliable 
estimates, it is recommended to have at least ten (10) observations in a data set; more than 10 
observations are preferable. The minimum sample size considered in the simulation experiments is 10. It 
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should be noted that the sample of size of 10 might not be adequate enough to compute reliable UCL95 
for higher censoring levels (e.g., >20-25%).  
 
Secondly, in order to calculate meaningful and reliable statistics, for the simulation experiments, it is 
assumed that a data set has at least four detected values (more detected values are preferred). Estimation 
of the mean, standard deviation, and computation of a UCL95 (and of other limits) based upon data sets 
with less than 4-5 detected values cannot be considered reliable for both parametric (e.g., the example 
discussed on page 59 in Helsel (2005)) as well as nonparametric data sets. For a bootstrap method, it may 
not even be possible to compute a reliable UCL95 as the bootstrap samples may consist of all ND values 
or all values may be equal to the same detected value. The following steps were taken to avoid such 
situations and samples. 

 
• Generated samples with less than four detected values were rejected. The number of total 

iterations, 5,050 (or 10,101 iterations in later experiments), is decreased by the number of rejected 
samples. This is done separately for each sample size considered. 

 
• MLE methods do not perform well on small data sets. Therefore, samples with all nondetects or 

with less than four detected values (e.g., when k > n-3) were not considered in the simulation 
experiments. Also, whenever a bootstrap sample had all nondetects, or too few detected values  
(< 4-5), that sample was not included in the calculations; instead, another bootstrap resample was 
drawn. The occurrences of these situations are time-consuming. 

 
• As noted earlier, sometimes the MLE methods do not converge well and yield incorrect or 

negative values for the mean, sd, and UCL95. When a MLE method fails, especially while using 
a bootstrap t or a standard bootstrap method, a flag was used for those failed bootstrap methods. 

 
• The simulation program (SimCensor) automatically rejects samples (out of 5,050) having less 

than five values greater than the detection limit, DL. For example, for a sample of size 10 with 
60% NDs, the average number of NDs will be 6. Bootstrapping such samples or using MLE 
methods on such samples may yield unstable and unreliable estimates of the mean, sd, and 
UCL95. In the simulation experiments, several counts and percentages were computed to keep 
track of the rejected samples (all summarized in Appendix C) before computing the appropriate 
statistics.  

 
• Due to above-mentioned limitations with bootstrap and MLE methods, in some cases (especially 

for skewed data sets), the final number of simulated samples used may be smaller than the 5,050 
number of generated samples for each combination of parameters, sample size, distribution, and 
censoring intensity. All of these statistics are included in the simulation results, as given in 
Appendix C. 

 
• It should be noted that a rejected value (obtained from the rejected sample) was not used in the 

summation to compute the average UCL values or to compute the coverage percentages (e.g., 
number of times, UCL > population mean). The fail count for that UCL method was incremented 
each time a sample was rejected. The average UCL and the coverage probabilities were computed 
appropriately by adjusting for the number of iterations, 5,050 minus the number of rejected 
samples.  

 
• In order to avoid an endless bootstrap loop (for highly skewed data sets perhaps with a few 

potential outliers), if the rejected number of bootstrap samples (for a single generated sample) 
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exceeded the number of bootstrap samples (1,000 here) used, that sample was rejected (from 
5,050) for the UCL and coverage calculations, and the fail count was adjusted accordingly. This 
is one of the reasons that the process takes longer to get all of the results for skewed distributions, 
such as a lognormal, LN(5, 2) distribution with censoring intensities higher than 50% or 60%.  

 
7.5 Methods Selected for Graphical Comparisons 

 
After working through Examples 6 and 7 of Section 6 and carefully and thoroughly reviewing the 
simulation results based upon 5,050 simulation runs (Appendix C) for each combination of distribution, 
sample size, and censoring level, several methods, such as the EM method, ROS on raw data, EPA delta 
lognormal method, Winsorization method, and the Bootstrap t-Method, have not been included in the 
graphical displays and comparisons of the UCL95 computation methods as summarized in Appendices A 
and B. Methods listed as follows have been selected to graphically represent and compare the coverage 
performances (percent coverage of the population mean by UCL95) and average UCL values. Interested 
readers may want to review the numerical simulation results for all methods, as summarized in Appendix 
C. 

 
Normal Distribution Lognormal Distribution Gamma Distribution 

   

KM (z) KM (z) KM (z) 

DL/2 (t) DL/2 (t) DL/2 (t) 

Cohen’s MLE (Tiku) Gamma ROS (Appx.) Gamma ROS (Appx.) 

Cohen’s MLE (t) KM (%) KM (%) 

UMLE (Tiku) KM (BCA) KM (BCA) 

KM (%) KM (Chebyshev) KM (Chebyshev) 

KM (BCA) FP-ROS (Land) KM (jackknife) 

 
Since only 7 methods were selected for graphical comparisons, a smaller simulation study was conducted 
using 10,101 iterations (instead of 5,050) for the 7 selected methods for each combination of distribution, 
sample size, and the detection limit. The main reasons to undertake such a step are: 1) the use of a larger 
number of iterations, 10,101 (instead of 5,050) yields more stable statistics; 2) the number of rejected 
samples decreased considerably as the troublesome methods (e.g., EM method, bootstrap t, standard 
bootstrap methods) causing failures and rejections were not included in this simulation study; and 3) 
finally, it was much easier to manage and deal with the smaller number of spreadsheets with all of the 
results in one file. In the earlier simulation runs, separate UCL and percent coverage files were created for 
each UCL95 computation method (e.g., BCA bootstrap, Chebyshev). The compiling and extraction of 
useful data for the graphical displays of the selected methods (listed above) from the earlier version of the 
output files became very tedious and time-consuming. The time was saved by putting all of the results in 
one output file for the simulation experiment of 10,101 iterations. This effort reconfirms the adequacy of 
the results obtained in two sets of simulation experiments. The results of the two simulation experiments 
(given in Appendix C and graphical displays in Appendices A and B) are in good agreement.  
 
The graphical comparisons for the selected methods (based upon 10,101 iterations) listed above are given 
in Appendix A (percent coverage by UCLs) and Appendix B (average UCL values). Based upon the 
graphical comparisons, several observations are made, which are summarized in Section 8. For all 
interested readers, Appendix C has all of the numerical results obtained using 5,050 simulation runs for 
all of the methods considered for each combination of sample size, distribution, and % censoring 
intensity.  
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7.6 Additional Simulation Runs to Evaluate Helsel’s Robust ROS Method 

 
An earlier version of this report was peer reviewed during November-December 2005. In the November 
2005 review of the report, Helsel suggested evaluating the performance of the UCL95 based on the robust 
ROS on log-transformed data. He specifically suggested comparing the performance of the UCL95 
method on Helsel’s robust ROS followed by jackknife (as used in Shumway, Azari, and Kayhanian 
(2002)) and bootstrap methods with other methods as considered in this report. It is noted that on a full 
data set obtained using robust ROS on log-transformed data, one can use ProUCL 3.0 to compute a 
UCL95. ProUCL 3.0 has both jackknife and bootstrap methods to compute a UCL95 based upon a full 
data set. Depending upon the sample size and data skewness (Singh and Singh (2003)), the ProUCL 3.0 
program selects the most appropriate UCL method to compute an appropriate UCL95. 
 
However, in order to address Helsel’s comments and suggestions, additional simulations were conducted 
to evaluate and directly compare the performance of Helsel’s robust ROS (or equivalently robust ROS) 
UCL95 method with other methods, such as the KM UCL95 method. The main objective of this 
additional simulation study is to evaluate the robustness of the robust ROS method, and also to determine 
if the UCLs based upon the robust ROS method provide adequate coverage for the population mean of 
skewed data distributions. Simulation experiments using 10,101 iterations were conducted for the same 
combinations of sample size, distributions, and censoring intensities as used in the earlier simulation 
study described in Section 7.3. It should be noted that normal and symmetric distributions are not 
considered in this experiment as there are other better well established UCL computation methods 
available (e.g., see Sections 8.2.1 and 9.1) for normally distributed data sets. Also, steps as described in 
Section 7.4 were used during data generation and bootstrap resampling methods. The findings of the 
additional simulation results are summarized in Section 8.3. The methods considered in the additional 
simulation experiments are listed as follows. 

 
Lognormal Distribution Gamma Distribution 
  

KM (t) KM (t) 

H-ROS (jackknife) H-ROS (jackknife) 

Gamma ROS (Appx.) Gamma ROS (Appx.) 

KM (%) KM (%) 

KM (BCA) KM (BCA) 

KM (Chebyshev) KM (Chebyshev) 

H-ROS (%) KM (jackknife) 

 H-ROS (BCA) 

 H-ROS (%) 

 
As noted earlier, most of the existing work (e.g., Kroll, C.N. and J.R. Stedinger (1996), Shumway, Azari, 
and Kayhanian (2002)) evaluated the robust ROS on log-transformed data or ROS on robust MLE method 
for mildly skewed cases with sd of log-transformed data = 0.2 (with sd of raw data = 0.56). Those results 
cannot be generalized to moderately skewed and highly skewed distributions. In this report, the robust 
ROS on log-transformed data has been evaluated for highly skewed distributions. It should be noted that a 
UCL95 based upon robust ROS followed by a jackknife procedure is similar to Student’s t-UCL95. 
Therefore, the robust ROS method followed by the jackknife method is not included in most of the 
additional simulation experiments. It is also well known that when skewness is high (e.g., sd of log-



 

 95

transformed data > 1.0), Student’s t-UCL95 (and, therefore, robust ROS followed by jackknife) does not 
provide adequate coverage to the population mean (Singh and Singh (2003) and ProUCL 3.0 User Guide 
(2004)).  
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Section 8 
 

Summary of the Simulation Results 
 

The main objectives of this report are: 1) to evaluate and compare the performances of the various 
parametric and nonparametric UCL95 (and not of point estimates of the mean and sd) computation 
methods based upon left-censored data sets; and 2) to make appropriate recommendations for the 
computations of UCL95 often used in various environmental applications, including risk assessment and 
background evaluations. It needs to be pointed out that in this process of computing and estimating the 
population mass or mean, EPC terms, and background statistics (e.g., UPLs, UTLs), the objective is to 
compute accurate and meaningful statistics based upon the “majority” of the data representing the main 
dominant population. It is not desirable to compute and use distorted estimates (often exceeding the 
maximum value in a data set) of mass or mean of the entire population by accommodating a few potential 
outlying observations (if any) occurring with lower probabilities. The inclusion of a few outliers distorts 
the statistics of interest for the entire population (e.g., study area, EA, RU, AOC). Those few extreme 
observations need separate investigation. This is specifically true when one is trying to establish 
background threshold values based upon the various upper limits. 
 
Just as in earlier studies, it is again recommended to avoid the use of transformations (Singh, Singh, 
Engelhardt (1997) and Singh, Singh, and Iaci (2002)) on raw data to achieve symmetry (approximate 
normality), even when the log-transformed data appear to be normally distributed (Examples 6 and 7). 
Typically, the parameter (hypothesis of interest) in the transformed space (median) is not of interest to 
make remediation and cleanup decisions in the original scale (mean). Moreover, the practitioners often do 
not know how to interpret and use the transformed results or back-transform the results to the original 
scale, and draw conclusions based upon the statistics thus obtained. This issue was discussed in detail in 
Section 5. The estimates of the back-transformed parameters (from transformed space) in the original 
space suffer from a significant and unknown amount of transformation bias. The transformation bias can 
be unrealistic for skewed data sets with a few outliers, as illustrated in Example 6. Even though equation 
(3-22) is a well-documented equation in the environmental literature (Gilbert (1987), El-Shaarawi (1989), 
Singh and Nocerino (2002)), it is recommended not to use equation (3-22) to back-transform estimates 
from log scale to original scale, as illustrated in Section 6.  
 
The question now arises – how one should back-transform results from a log scale (or any other 
transformed scale) to the original scale? Unfortunately, no defensible guidance is available in the 
environmental literature to address this question. Moreover, the back-transformation formula will change 
from transformation to transformation (e.g., BC-type transformations), and the bias introduced by such 
transformations will stay unknown. In many cases, the derivation of a back-transformation formula (e.g., 
for a BC-type transformation) may be quite involved and complicated. This in turn may force the user to 
report the results and estimates in the transformed space. However, the estimates obtained in transformed 
space may not be of much use as the remediation and cleanup decisions have to be made in the original 
raw scale. Therefore, in the cases when a data set in the “raw” scale cannot be modeled by a parametric 
distribution, it is desirable to use nonparametric methods rather than testing or estimating some parameter 
in the transformed space. The use of nonparametric methods will spare the user from: 1) developing back-
transformation formulae associated with the various transformations and 2) assessing bias in estimates 
thus obtained.  
 
 
 



 

 98 

8.1 General Observations Based Upon the Simulation Results 
 

Some observations based upon the graphical displays (Appendices A, B, D, and E) and simulations 
results as presented in Appendix C are described as follows: 
 

• Coverage increases with censoring level: It is observed that, except for the DL/2 (t) UCL method, 
the coverage of the population mean by the various UCL95 (e.g., KM (BCA), KM (%)) increases 
as the censoring intensity increases from 10% to 70% (figures in Appendix A). 

 
• Coverage increases with sample size: It is noted that the coverage for the population mean 

increases for all methods except for the DL/2 (t) method as the sample size increases. This is true 
for all distributions and censoring levels. 

 
• DL/2 (t) method does not perform well for all sample sizes: It is noted that the coverage for the 

mean by the UCL95 based upon DL/2 (t) decreases as the sample size increases for all censoring 
levels. 

 
• DL/2 (t) method does not perform well for low as well as high censoring levels: The coverage for 

the population mean, provided by the DL/2 (t), decreases as the censoring intensity increases. 
This is true for all symmetric and skewed distributions. The performance of the UCL95 based 
upon the DL/2 (t) method is the worst (coverage much smaller than 95%) for symmetric 
distributions.  
 

– Thus, contrary to the general rule of thumb, it should be noted that the DL/2 (t) does not 
perform well even for low censoring levels (Figures 2a-2c, 3a-3c, and so on), such as 
10%, 20%, and 30%. The coverage deteriorates fast as the censoring level increases 
(Figures 2d-2f, 3d-3f, and so on, Appendix A). 

 
• The H-statistic-based UCL95: The H-statistic-based UCL95, computed by using the k 

extrapolated NDs and the (n-k) detected values obtained using ROS on log-transformed data 
(fully parametric ROS = FP-ROS), does provide approximately 94-95% coverage for the 
population mean (Figures 3, 3a, 3b, 3i, 8a, and 8i of Appendix A).  
 

– However, for moderately skewed to highly skewed data sets (with sd of the log-
transformed data >1, 1.5, 2.0), just like in the case of full data sets, the H-UCL based 
upon k extrapolated NDs obtained using ROS on log-transformed data (FP-ROS method) 
and (n-k) observed values behave in an erratic and unstable manner. That is, Land’s H-
UCL results in impractically large UCL values. This can be seen in Figures 5, 6a-6i, 7a-
7i, and 8a-8i of Appendix B. 

 
• Bootstrap t and standard bootstrap methods: From the simulation results summarized in 

Appendix C, it is noted that the bootstrap t and standard bootstrap methods on MLE and EM 
estimates often yield erratic and impractically large UCL95 values. Therefore, coverages and 
UCL95 values based upon those two bootstrap methods have not been graphed in Appendices A 
and B. 
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• The delta lognormal method: The use of the delta lognormal method (USEPA (1991), Hinton 
(1993)) yields unstable UCL95 values, as can be seen from the results presented in Appendix C. 
Therefore, this method was not included in the graphical displays of Appendices A and B. 

 
• For symmetric distributions, Tiku’s method performs better than the Schneider UCL method: It is 

noted that Tiku’s (1971) approximate UCL95 method performs better (in terms of coverages 
provided by respective UCL95 values) than the Schneider (1986) UCL95 method. Therefore, 
coverages and UCL95 for Schneider’s method have not been graphed in Appendices A and B. 

 
• The Winsorization UCL method works only for symmetric distribution: UCL95 based on 

Winsorization method provides adequate coverage to the mean only for symmetrical distributions 
(Appendix C). The coverage provided by this method is far from 0.95 for asymmetrical 
distributions. 

 
• UCL methods based upon KM estimates perform better than other UCL methods: UCLs based 

upon the KM method (KM (z), KM (t), KM (%), KM (BCA)) seem to perform better than the 
various other methods as can be seen from the various figures included in Appendices A, B, D, 
and E. 

 
• MLE UCL methods work only for symmetric distributions for censoring levels lower than 40%: 

The various parametric MLE methods (CMLE, UMLE, and RMLE) provide 95% coverage to the 
population mean only for normally distributed data sets. These MLE methods do not work well 
for skewed distributions including lognormal and gamma distributions. This can be seen from the 
various results as presented in Appendix C. This observation also suggests that ROS on MLE 
method (which is based upon log-transformed data) may not perform well for skewed data sets. 

 
• Convergence problems associated with iterative MLE methods: It is noted that the MLE 

estimation methods (CMLE, RMLE, and UMLE) and the EM method sometimes fail to converge, 
and as a result yield unreliable estimates of the population mean. This is true even for normally 
distributed data sets, especially for data sets with higher censoring intensities (e.g., > 40%). 
Therefore, coverages and average UCL95 values have been graphed (Appendices A and B) only 
for a few of those methods such as UMLE and CMLE methods.  

 
• Bootstrap methods on MLE and EM methods do not perform well: For higher censoring levels, it 

is observed that the bootstrap UCL95 based upon MLE and EM estimation methods become 
unrealistic and unstable. Therefore, the bootstrap results obtained using MLE and EM methods 
have not been graphed in Appendices A and B.  

 
• The jackknife UCL method works only for symmetric distributions: For symmetric distributions, 

the jackknife method used on the KM estimates seems to work well as it provides adequate 95% 
coverage for the population mean.  
 

– However, the coverage by the jackknife UCL95 for the mean deteriorates (decreases) for 
skewed distributions, especially for lognormal distributions with standard deviation of 
log-transformed data exceeding 1.  

 
– The KM (jackknife) results have been graphed for the gamma distribution as can be seen 

in Figures 9a, 9b, ..., 9i, 13a, ..., 13i, and 14 of Appendices A and B. It can be seen that 
for gamma distribution, the KM (jackknife) method does not provide adequate 95% 
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coverage to the population mean for censoring levels < 40% (e.g., Figures 9a, 9b, ...., 9i 
in Appendix A). 

 
Thus, based upon the above observations, percent coverages (Appendix A and D) and the UCL95 
averages (Appendix B and E) have been graphed only for the following methods. 

 
Table 8-1. Methods Included in Graphical Displays 

 
Methods Explanation 
Cohen’s MLE (Tiku) UCL based upon Cohen’s maximum likelihood estimates using Tiku’s method. 

Cohen’s MLE (t) UCL based upon Cohen’s maximum likelihood estimates using Student’s t-distribution 
cutoff value. 

DL/2 (t) UCL based upon DL/2 method using Student’s t-distribution cutoff value. 

FP-ROS (Land) UCL based upon fully parametric ROS method using Land’s H-statistic.  

Gamma ROS (BCA)  UCL based upon Gamma ROS method using the bias-corrected accelerated percentile 
bootstrap method. 

Gamma ROS (Appx.) UCL based upon Gamma ROS method using gamma approximate-UCL method. 

H-ROS (BCA) UCL based upon Helsel’s robust method using the bias-corrected accelerated percentile 
bootstrap method. 

H-ROS (%) UCL based upon Helsel’s robust method using the percentile bootstrap method. 

H-ROS (jackknife) UCL based upon Helsel’s robust method using the jackknife method. 

KM (z) UCL based upon Kaplan-Meier estimates using standard normal distribution cutoff value. 

KM (t) UCL based upon Kaplan-Meier estimates using Student’s t-distribution cutoff value. 

KM (%) UCL based upon Kaplan-Meier estimates using the percentile bootstrap method. 

KM (BCA) UCL based upon Kaplan-Meier estimates using the bias-corrected accelerated percentile 
bootstrap method. 

KM (Chebyshev) UCL based upon Kaplan-Meier estimates using the Chebyshev theorem. 

KM (jackknife) UCL based upon Kaplan-Meier estimates using the jackknife method. 

UMLE (Tiku) UCL based upon unbiased maximum likelihood estimates using Tiku’s method. 

 
8.2 Observations Based Upon the Graphical Displays of Appendices A 

and B 
 

The performance of the various estimation and UCL95 computation methods for left-censored data sets 
depends upon several things such as the sample size, skewness, censoring intensity, and data distribution. 
Using the graphical displays of Appendices A and B, detailed discussion of the observations made and 
conclusions derived for each of the distribution included in the simulation study are summarized as 
follows.  
 
8.2.1 Normal Distribution 

 
The normal distribution is symmetric and is the easiest distribution to compute the UCL95 based upon 
left-censored data sets. In this report, the normal distribution, N(100, 30), for the various censoring levels, 
10%, 15%, ... , up to 70%, has been considered. Figures 1a (% censoring = 0.62%), 1b (% censoring = 
4.8%), 2a (% censoring = 10%), and 2b, ..., 2i (% censoring = 70%) of Appendix A represent the 
coverages provided by the various UCL95 methods as a function of the sample size, while the 
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corresponding figures in Appendix B represent the average UCL values for the various censoring 
intensities and sample sizes. From these figures, the following observations have been made. 
 

• Coverage for the mean by a UCL95 increases with sample size and censoring intensity: As 
mentioned before, for all UCL methods (except for the DL/2 (t) UCL method), the coverages 
provided by the various UCL95 methods increase as the censoring intensity and sample sizes 
increase. This can be seen in Figures 1a, 1b, 2a, ..., 2i of Appendix A. Coverages provided by the 
KM UCL95 methods, including the KM (z), KM (t), KM (%), and KM (BCA) methods, are at or 
above 0.95 coverage for all censoring levels and sample sizes. Therefore, any of these methods 
can be used to compute a UCL95. 

 
• Do not use DL/2 (t) method to compute a UCL: The coverage to the population mean provided by 

the DL/2 (t) UCL method decreases steadily as the sample size increases and the censoring 
intensity increases. Even, for normally distributed data sets, it is observed that, for censoring 
levels as low as 5% or 10%, the DL/2 (t) UCL95 does not provide the specified coverage (of 
95%) for samples of sizes 20 and larger, as can be seen in Figures 1b, 2a,…, 2i of Appendix A. 
Therefore, the use of the DL/2 (t) UCL should be avoided, even for low censoring levels, such as 
10% and 15%. This is contrary to the general recommendation (conjecture) made to use the DL/2 
method for censoring levels up to 20%, USEPA (2000) and SW-846 (USEPA (1993)). 
Obviously, the UCL averages for the DL/2 (t) method become even smaller than the population 
mean, 100, for larger censoring intensities, as can be seen in Figures 1a, 1b, 2a, ..., 2i of Appendix 
B. 

 
• Do not use ad hoc UCL methods based upon Cohen’s MLE (t) or other MLE and EM (t) methods: 

It is noted that for the ad hoc UCL95 method based upon Cohen’s MLE (t), the coverage for the 
population mean decreases gradually as the censoring intensity increases. The coverage provided 
by Cohen’s MLE (t) falls below 90% when the censoring level reaches 50% or higher. 

 
• MLE methods do not behave properly for higher censoring levels: Cohen’s MLE (Tiku) and 

UMLE (Tiku) perform well for lower censoring levels. However, many times, the parametric 
MLE methods, such as Cohen’s MLE, UMLE, and the EM method, do not converge properly. 
This is especially true when the censoring intensity becomes large (e.g., > 40%), as can be seen in 
Figures 2g, 2h, and 2i (Appendix B). In such cases, it is preferable to use nonparametric UCL95 
methods based upon the KM estimation method. 

 
• Use UCL95 computation methods based upon the KM estimation method: From Figures 1a, 1b, 

2a, ...., 2i of Appendix A, it is noted that the KM (BCA) UCL method provides slightly higher 
than 95% coverage for all censoring levels and sample sizes. Therefore, for symmetric 
distributions, the most appropriate methods to compute a UCL95 are the KM (z), KM (t), and 
KM (%) methods. 

 
8.2.1.1 Recommended UCL95 Methods for Normal (Approximate Normal and Symmetric) 

Distributions  
 

• For normal and approximate normal (e.g., symmetric) distributions: The most appropriate 
UCL95 computation methods are KM (z), KM (t), or KM (%) methods. These methods perform 
equally well for all of the censoring levels and sample sizes.  
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• MLE methods: Even though the MLE (Tiku) and UMLE (Tiku) perform well at least for 
censoring levels lower than 40%, their use is not recommended here. The main reason behind this 
recommendation is the availability of several equally good nonparametric UCL computation 
methods (KM (z), KM (t), or KM (%)) that perform well for all censoring levels considered in 
this report. 

 
Note: These recommended methods for normally distributed data sets will be available in the ProUCL 4.0 
software package. Additionally, some parametric UCL methods, such as CMLE (Tiku) and UMLE 
(Tiku), will also be available in ProUCL 4.0. 
 
8.2.2 Gamma Distribution 

 
The gamma distribution can be used to model asymmetric (skewed) distributions (Singh, Singh, and Iaci 
(2002)). Several gamma distributions have been considered in the simulation experiments, as summarized 
in this report. These are: G(0.5, 100)-highly skewed with 10%, 15%, ..., 70% censoring (Figures 9a, …, 
9i); G(0.75, 100)-skewed with 34.67% censoring (fixed DL = 25, Figure 10), and 10%, 15%, ..., 70% 
censoring (Figures 11a, ...,11i); G(2, 30)-moderately skewed with fixed DL = 25 = 20.33% censoring 
(Figure 12), and 10%, 15%, ..., 70% censoring (shown in Figures 13a, ...,13i); and G(3, 20)-mildly 
skewed with fixed DL = 25 with 13.06% censoring (Figure 14). The graphs for the percent coverages by 
the UCL95 values are given in Appendix A, and the corresponding graphs for average 95% UCLs are 
given in Appendix B. From these figures, the following observations have been made. 

 
• Coverages for population mean by UCL95s increase with sample size and censoring intensity: 

Just as in the case of normal distribution, it is observed that, for the gamma distribution, the 
coverages for the population mean provided by the various UCL95 methods (except for the DL/2 
(t) method) increase as the censoring intensity and the sample sizes increase, as can be seen in 
Figures 9a, …, 9i, 10, ..., 13a, ..., 13i, and 14 in Appendix A. 

 
• Do not use DL/2 (t) method to compute a UCL: The DL/2 (t) method does not work for any of the 

gamma distributions (mildly skewed to highly skewed). The coverage provided by DL/2 (t) 
decreases gradually as the censoring level increases. It is not recommended to use the DL/2 (t) 
method for any of the censoring levels, including the low censoring levels of 10%, 20%, and so 
on (e.g., Figures 13d, 13e, 3f, 13g, and so on). 

 
• Use the KM (Chebyshev) UCL for highly skewed gamma (k = 0.5, 0.75, < 1) distributions with 

censoring levels < 30% for all sample sizes: For highly skewed gamma, G(k, θ), distributed data 
sets (with estimated shape parameter, k = 0.5, 0.75, < 1) with censoring levels lower than < 30%, 
none of the methods, except for the KM (Chebyshev) and the estimated approximate gamma 
UCL95, provide 95% coverage for the population mean (Figures 9a, …, 9i, 11a, …,11i). Since 
both methods provide roughly the same coverage, the nonparametric KM (Chebyshev) method is 
preferred (as in practice, it may be hard to verify distributional assumptions on real data sets) to 
compute UCL95 for censoring levels < 30%. It should be noted that these two methods may yield 
“conservative UCL95” (a UCL providing at least (often higher) 95% coverage for the population 
mean) values; that is, the actual coverages provided by these two UCL methods tend to be higher 
than the specified coverage of 0.95.  

 
• Use the KM (BCA) UCL for highly skewed gamma (k = 0.5, 0.75, < 1) distributions with 

censoring levels in the interval, 30-50%, for samples of all sizes: From Figures 9e, 9f, 9g, 11e, 
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11f, and 11g, it is observed that the UCL95% based upon the KM (BCA) method starts providing 
about 95% coverage for the population mean. 
 

- As the censoring level approaches 50% and becomes larger than 50%, even the KM (%), 
KM (z), and KM (t) methods, and the KM (jackknife) method, start providing about 95% 
coverage for the population mean (Figures 9g, 9h, 9i, 11g, 11h, and 11i). Therefore, for 
censoring levels exceeding 50%, the KM (z) or KM (t) UCL95 method may be used to 
compute UCL95 for samples of all sizes. Note that the KM (t) UCL95 method has been 
included in the new simulation experiments, as graphed in Appendices D and E. 

 
• For moderately skewed gamma distributions, G(k, θ), with shape parameter 1 < k ≤ 2: 
 

– For censoring level ≤ 10% (Figure 13a), one may use the KM (Chebyshev) UCL for         
samples of all sizes.  

 
– For censoring levels in the interval: 10-20%, one can use the KM (BCA) UCL method for 

samples of all sizes.  
 

– For censoring levels between 25% and 40%, one can use the KM (%) method. 
 

– For censoring levels ≥ 40%, any of the KM UCL95 methods, such as KM (%), KM (z) 
and KM (t), can be used, as can be seen in Figures 13f, 13g, 13h, and 13i. 

 
• For mildly skewed gamma distributions, G(k, θ), with k > 2 (Figure 14): 
 

– Use the KM (BCA) method for lower censoring levels (≤ 20%), 
 

– Following a similar pattern as for the case when the shape parameter ≤ 2, for censoring     
levels > 20%, one can use the KM (%) method, and 

 
– For censoring ≥ 40%, one can use the KM (z) or KM (t) UCL computation method for 

samples of all sizes. 
 

Note: Observations and findings about the use of the robust ROS (Helsel’s method) method on gamma 
distributed left-censored data sets to compute appropriate UCL95 values are summarized in Section 8.3.  

 
8.2.2.1 Recommended UCL95 Methods for Gamma Distributions 

 
• For highly skewed gamma distributions with shape parameter, k ≤ 1: 
 

– Use the nonparametric KM (Chebyshev) method to compute a UCL95 for censoring 
levels < 30%, 

 
– Use the nonparametric KM (BCA) method to compute a UCL95 for censoring levels in 

the interval [30%, 50%), and 
 

– Use the nonparametric KM (z) or KM (t) method to compute a UCL95 for censoring 
levels ≥ 50%.  
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• For moderately skewed gamma distributions, G(k, θ), with shape parameter, 1 < k ≤ 2: 
 

– For censoring level ≤ 10%, use the KM (Chebyshev) UCL method, 
 

– For censoring levels in the interval (10%, 25%), use the KM (BCA) UCL method, 
 

– For censoring levels in the interval [25%, 40%), use the KM (%) UCL method, and 
 

– For censoring levels ≥ 40%, use KM (z) or KM (t) UCL95 method. 
 
• For mildly skewed gamma distributions, G(k, θ), with k > 2: 

 
– Use the KM (BCA) UCL method for censoring levels lower than ≤ 20%, 

 
– For censoring levels in the interval (20%, 40%), use the KM (%) UCL computation 

method, and 
 

– For censoring levels ≥ 40%, use the KM (z) or KM (t) UCL computation method. 
 

Note: The recommended UCL methods for gamma distributed data sets will be available in the ProUCL 
4.0 software package. 
 
8.2.3 Lognormal Distribution 

 
It is noted that the UCL95 for the various methods, including the conservative KM (Chebyshev) UCL, 
based upon a lognormal model does not perform well, as can be seen in Figures 5, 6a, …, 6i, 7, and 8a, ..., 
8i in Appendix A. It is noted that most of the available methods (including the robust ROS method) fail to 
provide the specified 95% coverage to the population mean. This is especially true for moderately skewed 
to highly skewed data distributions with the standard deviation, σ, of the log-transformed variable, Y 
exceeding 1.0. It is also noted that several of the methods included in this study assume the lognormality 
of the data distribution. These methods are the ROS on log-transformed data (both fully parametric 
version and robust ROS on log-transformed data) and the EPA delta lognormal methods.  
 
For fully parametric ROS on log-transformed data and the EPA delta log method, Land’s H-statistic-
based UCL95 has been computed. It is observed that just like for the full uncensored data sets (Singh, 
Singh, and Iaci (2002) and the ProUCL 3.0 User Guide (2004)), the UCL95 based upon Land’s H-statistic 
(1971) does provide the approximate 95% coverage for the mean of the lognormal distributions 
considered (e.g., in Figures 5, 6a, …, 6i, 7, and 8a, ..., 8i, Appendix A), but the resulting H-UCL95 values 
are unstable and of no practical merit (e.g., Figures 5, 6a, …, 6i, 7, and 8a, ..., 8i in Appendix B), 
especially when the sd, σ̂ , of the log-transformed data starts exceeding 1.0. A similar pattern is observed 
for the various ad hoc H-UCL values based upon the various MLE and EM estimates obtained using log-
transformed data sets.  
 
Moreover, as mentioned before, the parametric MLE and EM methods sometimes fail to converge and 
yield unreliable values for higher (e.g., > 40%) censoring levels. Therefore, none of these methods based 
upon the lognormal assumption have been included in the graphical displays provided in Appendices A 
and B. Based upon all of these observations, in addition to the fully parametric ROS UCL95 (based upon 
the H statistic) and Gamma ROS Appx. UCL95 (based upon an approximate gamma UCL obtained using 
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estimated gamma parameters), only the nonparametric methods (e.g., bootstrap and Chebyshev 
inequality) using the KM estimates have been considered and graphed in Appendices A and B.  
 
Just like for uncensored full data sets (ProUCL 3.0 User Guide (2004)), the recommendations on how to 
compute a UCL95 based upon left-censored data sets from lognormal and other skewed nonparametric 
distributions have been made as a function of σ̂ , the sd of log-transformed data. It should be noted that 
both the skewness and CV of a lognormal distribution are functions of σ̂ , the sd of log-transformed data. 
The higher σ̂ , the higher is the skewness. These relationships between skewness, CV, and σ̂  have been 
illustrated earlier in Tables 3-1 and 3-2 of Section 3.1. It is pointed out that as σ̂  increases (even a small 
increase, such as from 2.0 to 2.2), the coverages provided by the various UCL95 methods start 
decreasingly rapidly. Also, the H-UCL based upon the FP-ROS method on log-transformed data starts 
behaving in an unstable manner, yielding unrealistically large UCLs (Figures 6a to 6i, 7, and 8a to 8i, 
Appendix B). A similar setting (in terms of σ̂ ) was used in the ProUCL 3.0 User Guide (2004) to make 
recommendations for the computation of a UCL95 based upon uncensored full data sets obtained from 
skewed lognormal or nonparametric distributions. Using the graphical displays of Appendices A and B, 
the following observations have been made.  

 
• Coverages for population mean by various UCL95s increase with sample size and censoring 

intensity: It is observed that, for the lognormal distribution, the coverages for the population mean 
provided by the various UCL95 methods increase as the censoring intensity and the sample sizes 
increase as shown in Figures 4, 5, 6a, …, 6i, 7, and 8a, ..., 8i, in Appendix A. 

 
• Do not use the DL/2 (t) UCL method: The UCL95 based upon the DL/2 (t) method does not 

provide the specified 95% coverage for the population mean of skewed lognormal or other 
skewed distributions for any censoring level (low or high) and sample size. 

 
• For mildly skewed data sets with σ̂  ≤ 1: 

 
– For lower censoring levels (≤ 20%), one can use the KM (Chebyshev) UCL95 for 

samples of sizes less than 50-70. This may yield slightly conservative (but stable) UCL 
values providing a higher than 95% coverage for the population mean or mass. 
 

– For lower censoring levels (≤ 20%), one can use the KM (BCA) UCL95 for samples of 
sizes greater than 50-70. 

 
– For censoring levels in the interval (20%, 40%), other UCL95 methods, such as the KM 

(BCA) method, can be used for samples of all sizes.  
 

– For censoring levels ≥ 40%, most of the methods (except the DL/2 (t) method) provide at 
least 95% coverage for the population mean. Therefore, one can use the KM (%), KM (t), 
or KM (z) method to compute a UCL95. 
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• For moderately skewed to highly skewed data sets with σ̂  in (1, 1.5]: 
 

– For censoring levels (≤ 50%), even the KM (Chebyshev) UCL95 method fails to provide 
the specified 95% coverage for the population mean. This is especially true for smaller 
sample sizes (e.g., < 40). For such highly skewed data sets, a higher value for the 
confidence coefficient (e.g., 0.975 or 0. 99) may be used to achieve the specified (~0.95) 
amount of coverage by the UCL. Typically a higher confidence level (~0.975) is used for 
smaller samples, and a smaller confidence coefficient (~0.95) is used for larger samples. 

 
– For smaller sample sizes, n < 40, and censoring levels ≤ 50%, one may want to use a 

97.5% KM (Chebyshev) UCL to estimate the population mass, EPC term, or some other 
threshold for the population mass.  

 
– For larger sample sizes, n ≥ 40, and censoring levels ≤ 50%, one may want to use a 95% 

KM (Chebyshev) UCL to estimate the population mass or some other threshold value.  
 

– For censoring levels > 50%, one may want to use a KM (BCA) UCL95 to compute a 
UCL of the mean based upon left-censored data sets for samples of all sizes (Figures 6h 
and 6i in Appendix A). 

 
• For highly skewed data sets with σ̂  in the interval (1.5, 2]: 

 
– The H-UCL for fully parametric ROS on log-transformed data becomes very unstable 

and erratic (Figures 8a, 8b, ..., 8i). It is noted that for all censoring levels (≤ 70%), even 
the KM (Chebyshev) UCL95 method fails to provide the 95% coverage for the 
population mean.  

 
– For smaller sample sizes, n < 40, and censoring levels < 50%, one may want to use a 99% 

KM (Chebyshev) UCL to estimate the population mass, or EPC terms. In some cases, this 
may yield conservative, but stable, estimates of the population mass.  

 
– For sample sizes, n ≥ 40, and censoring level< 50%, one can use a 97.5% KM 

(Chebyshev) UCL to estimate the population mass. 
 

– For sample sizes less than 40-50, and censoring levels ≥ 50%, use a 97.5% KM 
(Chebyshev) UCL.  

 
– For sample sizes ≥ 40-50, and censoring levels ≥ 50%, use a 95% KM (Chebyshev) UCL.  

 
• For extremely highly skewed data sets with σ̂  exceeding 2: 

 
– The UCL95 computation recommendation pattern, as described above, can be 

generalized to more highly skewed data sets with σ̂  >2.0. For such highly skewed (see 
Tables 3-1 and 3-2) distributions, for lower sample sizes (e.g., <50-60), one may simply 
use a 99% KM (Chebyshev) UCL to estimate the population mean, EPC term, and other 
relevant threshold values. For sample sizes greater than 50-60, one may use a 97.5% KM 
(Chebyshev) UCL as an estimate of the population mean or mass.  
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Note: These methods and recommendations for the lognormal distribution will be available in the 
ProUCL 4.0 software package. 
 
8.2.4 Nonparametric UCL95 Computation Method for Left-Censored Data Sets 

 
It is noted that most of the recommended UCL computation methods for a lognormal distribution, as 
described in Section 8.2.3, are not based upon the assumption of a lognormal distribution. Therefore, 
those UCL computation methods (as functions of σ̂ ) described in Section 8.2.3 can also be used on 
nonparametric data sets. Such nonparametric data sets do not follow any of the well-known parametric 
distributions.  
 

• For symmetric or approximately symmetric nonparametric data distributions: Depending upon 
the symmetry or approximate symmetry of nonparametric data distributions, one may use the 
same UCL computation methods as for the data sets coming from a normal or an approximate 
normal distribution/population. These methods are described in Section 8.2.1. 

 
• Skewed nonparametric data distributions: As mentioned before, it is noted that most of the 

recommended UCL computation methods for a lognormal distribution as described in Section 
8.2.3 do not assume the lognormality of the data set. Therefore, for skewed distribution-free data 
sets (nonparametric distributions), the UCL computation methods as described in Section 8.2.3 
can be used. 

  
Note: These methods and recommendations for nonparametric data distributions will also be available in 
the ProUCL 4.0 software package. 
 
8.2.5 Choosing a Confidence Coefficient of a UCL for Highly Skewed Data Sets 

 
As summarized earlier, for extremely highly skewed data sets, an appropriate and stable estimate of the 
population mean or mass (e.g., EPC term) is given by a UCL based upon Chebyshev inequality and KM 
estimates. The confidence coefficient to be used depends upon the skewness and sample size of the data 
set under study. For highly skewed data sets, a higher (e.g., > 95%) confidence coefficient may have to be 
used to estimate the EPC term or the population mass. Depending upon skewness (e.g., sd of log-
transformed data = 2, 3, or 4) and the sample size, one may have to use a 99% or a 97.5% KM 
(Chebyshev) UCL to estimate the EPC term and other relevant threshold values. As the skewness 
becomes higher, the value of the confidence coefficient becomes higher. 
 
8.3 Simulation Results for Helsel’s Robust ROS Method on Log-

Transformed Data Sets  
 

Following Helsel’s review comments and suggestions (November 2005), additional simulations were 
conducted to evaluate the performance of the robust ROS method on log-transformed data to compute an 
appropriate UCL95 as an estimate of the population mass. Several UCL computation methods, including 
KM method (based upon Student’s t-statistic, BCA and percentile bootstrap methods), robust ROS 
method followed by bootstrap methods (percentile and BCA) and Chebyshev UCL on KM estimates, 
have been included in the additional simulation experiments as described in this section. The graphical 
displays of the percent coverages provided by these UCL methods are given in Appendix D. The graphs 
of the corresponding average UCL95 values are given in Appendix E.  
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Since the robust ROS method assumes a lognormal distribution for the detected as well as nondetected 
observations, only skewed distributions (gamma and lognormal) have been considered. The UCL 
computation methods for normal distributions are given in Section 8.2.1. In order to evaluate the 
robustness of the robust ROS method on log-transformed data, several distributions covering a wide range 
of skewness (mild, moderate, high, extremely high), as described in Tables 3-1 and 3-2, have been 
considered. Special attention is given to the robust ROS method based upon percentile and BCA 
bootstrap methods. The two bootstrap UCL methods on the robust ROS method have been denoted by H-
ROS (%) and H-ROS (BCA). 
 
8.3.1  ROS UCL Method for Gamma Distribution 

 
The robust ROS method on log-transformed data has been used on the various gamma distributions. The 
gamma distributions considered include: G(0.5, 100), G(0.75, 100), and G(2, 100). The coverage 
probabilities for the various censoring levels from 5% to 70% are displayed in Figures 4a-4h for the 
G(0.5, 100) distribution, in Figures 5a-5h for the G(0.75, 100) distribution, and in Figures 6a-6h for the 
mildly skewed gamma distribution, G(2, 100), Appendix D. The corresponding graphs for various 
average UCL95 values are given in Appendix E. The following observations have been made. 
 

• Coverages for population mean by UCL95s increase with sample size and censoring intensity: As 
noted earlier in Appendix A, it is observed that the coverages for the population mean provided 
by the various UCL95 methods, including H-ROS (BCA) and H-ROS (%) methods, increase as 
the censoring intensity and the sample sizes increase. This can be seen in Figures 4a, ..., 4h, 5a, 
..., 5h, and 6a-6h, Appendix D. 

 
• Bootstrap UCL methods on data sets obtained using robust ROS method: It is noted that the 

performance (in terms of coverage percentage for the population mean) of Helsel’s ROS method 
followed by percentile and BCA bootstrap methods falls in between the various other UCL 
methods already discussed in Section 8.2.2. None of the robust ROS methods (% and BCA) 
perform better than the KM (Chebyshev) and KM (BCA) methods as recommended in Section 
8.2.2. This implies that the recommendations to compute appropriate UCLs for gamma 
distributed left-censored data sets as described in Section 8.2.2 do not change. 

 
– For highly skewed gamma distributions (e.g., G(0.5, 100), G(0.75,100)), just like all of 

the other UCL methods (except Chebyshev UCL), both the H-ROS (%) UCL and H-ROS 
(BCA) methods fail to provide adequate coverage for the population mean. This is 
especially true for censoring intensity lower than 30%. For lower censoring levels, it is 
recommended to use KM (Chebyshev) UCL. 

 
– It is noted that the H-ROS (BCA) UCL method performs better (in terms of coverage 

probabilities) than the H-ROS (%) method.  
 

– It is also noted that the H-ROS (%) method provides a much lower coverage for the 
population mean than the various other UCL methods, as can be seen in Figures 4a-4h 
and 5a-5h, Appendix D. This is especially true for smaller sample sizes and lower 
censoring intensities. The coverage for the H-ROS (%) UCL method improves as the 
sample size increases and the skewness decreases (Figures 6a-6h).  
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• The H-ROS (%) and H-ROS (BCA) robust UCL methods: These two robust ROS methods 
followed by bootstrap methods do not perform better than the KM (BCA) UCL method as 
recommended earlier in Section 8.2.2. 

 
8.3.1.1 Recommended UCL Based Upon Robust ROS on Gamma Distribution 

 
Based upon the results as summarized in Section 8.3.1, the recommendations to compute appropriate 
UCLs for gamma distributed left-censored data sets as described in Section 8.2.2 do not change. The 
UCLs based upon the robust ROS method (on log-transformed data) do not perform better than the UCL 
computation methods as recommended in Section 8.2.2. 
 
8.3.2 Helsel ROS UCL Method for Lognormal Distribution 

 
The lognormal distributions considered include: LN(5, 0.75), LN(5, 1.5) and LN(5, 2). The coverage 
probabilities for the various censoring levels from 5% to 70% are displayed in Figures 1a-1h for the 
LN(5, 0.75) distribution, in Figures 2a-2h for the LN(5, 1.5) distribution, and in Figures 3a-3h for the 
highly skewed lognormal distribution, LN(5, 2), Appendix D. The corresponding UCL95 graphs for the 
various lognormal distributions are given in Appendix E. The following observations have been made. 

 
• From the figures in Appendix D, it is easy to observe that, for the various lognormal distributions 

considered, the coverages for the population mean provided by the various UCL95 methods, 
including H-ROS (BCA) and H-ROS (%) methods, increase as the censoring intensity and the 
sample sizes increase. This can be seen in Figures 1a, ..., 1i, 2a, ..., 2i, and 3a-3i, Appendix D. 

 
• None of the robust ROS methods (based upon % and BCA bootstrap methods) perform better 

than the KM (Chebyshev) UCL method, as recommended in Section 8.2.3. The KM (Chebyshev) 
UCL method provides the highest coverage for all censoring levels and sample sizes. 

 
• It is noted that the H-ROS (%) UCL method provides the lowest coverage (much lower than 

95%) for the population mean for all of the censoring levels and most sample sizes, and the H-
ROS (BCA) UCL method provides higher coverage to the population mean than the H-ROS (%) 
method for all of the censoring levels and sample sizes. 

 
• From the figures presented in Appendix D, it is clear that the H-ROS (%) method cannot be 

recommended to compute a UCL for the population mean or mass based upon left-censored data 
sets.  

 
• For highly skewed lognormal distributions such as LN(5, 1.5) and LN(5, 2), just like all other 

UCL methods, the H-ROS (BCA) UCL and H-ROS (%) methods also fail to provide adequate 
coverage (~ 95%) for the population mean.  
 

– For censoring levels exceeding 50-60%, the robust ROS method followed by the 
bootstrap % and bootstrap BCA methods provide the lowest coverages to the population 
mean, as can be seen in Figures 2f-2h and 3g-3h. 

 
– As the censoring intensity exceeds 50-60% (e.g., Figures 2f-2h, and 3g-3h), the coverage 

provided by the H-ROS (BCA) UCL method starts deteriorating rapidly. The coverage 
provided by the KM (BCA) UCL method becomes better (larger) than the H-ROS (BCA) 
UCL method.  
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– For highly skewed distributions (e.g., Figures 2a-2e, and 3a-3f), it is noted that for 

censoring levels lower than 40-50%, the coverage provided by the H-ROS (BCA) UCL 
method is a little larger than the KM (BCA) UCL method. However, for both methods, 
the coverages provided by the respective UCLs are much lower than 95%. 

 
– Just like in Section 8.2.3, for lower censoring levels, it is recommended to use the KM 

(Chebyshev) UCL. The use of the confidence coefficient associated with the Chebyshev 
UCL will depend upon the skewness, sample size, and censoring level, as discussed in 
Section 8.2.5. Higher than 0.95 confidence coefficients may be used to compute a KM 
(Chebyshev) UCL for highly skewed distributions with sd, σ, of log-transformed data 
exceeding 1, 1.5, and so on.  

 
– As discussed and recommended in Section 8.2.5, for lower sample sizes (<50-60) the use 

of the Chebyshev UCL is recommended; for higher sample sizes, one can use the KM 
(BCA) UCL as an estimate of the population mass.  

 
8.3.2.1 Recommended UCL Method for Helsel’s ROS on the Lognormal Distribution 

 
• It is noted that for all of the skewed gamma and lognormal distributions considered, the 

performance (in terms of coverage percentage for the population mean) of Helsel’s ROS method 
followed by percentile and BCA bootstrap methods is not better than the KM (Chebyshev) and 
KM (BCA) UCL methods as recommended in Sections 8.2.2 and 8.2.3. 

 
• In order to keep the recommendations simple, it is not desirable to recommend the use of the 

robust ROS method on log-transformed data followed by the jackknife and bootstrap methods to 
compute a UCL as an estimate of the population mass. 

 
• However, for comparison sake, the robust ROS method on log-transformed data followed by 

bootstrap methods will be available in ProUCL 4.0. Actually, it is already available in ProUCL 
3.0. Specifically, one can simply use the bootstrap methods (and also the jackknife method), as 
available in ProUCL 3.0, on the full data set obtained using robust ROS on log-transformed data.  
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Section 9 
 

Summary and Recommendations 
 

This section summarizes the recommendations based on the results of the examples discussed in Section 
6, and the graphical and numerical simulation results as summarized in Appendices A, B, C, D, and E. 
For convenience, the various recommended UCL95 computation methods have been tabulated in Table 9-
1 as functions of the sample size, skewness, and censoring intensity. 
 
9.1 General Recommendations  
 

• In practice, it is not easy to verify (perform goodness-of-fit) the distribution of a left-censored 
data set. Therefore, in this study, emphasis is given on the use of nonparametric UCL95 
computation methods.  

 
• Most of the parametric MLE methods assume that there is only one detection limit. But in 

practice, a left-censored data set often has multiple detection limits. For such methods, the KM 
method can be used. The ProUCL 4.0 will have these estimation methods for left-censored data 
sets with multiple detection limits, including the KM method, and also the robust ROS method as 
described in Helsel (2005).  

 
• For reliable and accurate results, it is suggested that the user should make sure that the data set 

under study represents a single statistical population (e.g., background reference area, or an AOC) 
and not a mixture population (e.g., clean and polluted site areas). 

 
• It is recommended to identify all the potential outliers and study them separately. Decisions about 

the disposition of outliers should be made by all interested members of the project team. Several 
references are available in the literature to properly identify outliers (Rousseeuw and Leroy 
(1987) and Singh and Nocerino (1995)) and to partition a mixture sample into component sub-
samples (Singh, Singh, and Flatman (1994)). A full chapter will be devoted to population 
partitioning methods to be included in the Background Guidance Document for CERCLA Sites 
(EPA (2002)) currently under revision by the NERL-Technical Support Center, EPA Las Vegas. 

 
• Avoid the use of transformations (to achieve symmetry) while computing the upper limits for 

various environmental applications, as all remediation, cleanup, background evaluation decisions, 
and risk assessment decisions have to be made using statistics in the original scale. Also, it is 
more accurate and easier to interpret the results computed in the original scale. The results and 
statistics computed in the original scale do not suffer from transformations bias.  

 
• Specifically, avoid the use of a lognormal model even when the data appear to be lognormally 

distributed. Its use often results in incorrect and unrealistic statistics of no practical merit 
(Examples 6 and 7). Several variations of estimation methods (e.g., robust ROS and FP-ROS on 
log-transformed data, delta lognormal method) on log-transformed data have been developed and 
used by the practitioners. Several other variations are discussed in Section 5.8.2. This has caused 
some confusion among the users of the statistical methods dealing with environmental data sets. 
The proper use of a lognormal distribution (e.g., how to properly back-transform UCL of mean in 
the log scale to obtain a UCL of mean in original scale) is not clear to many users, which in turn 
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may result in the incorrect use and computation of an estimate (= UCL95) of the population 
mean. 

 
• The parameter in the transformed space may not be of interest to make cleanup decisions. The 

cleanup and remediation decisions are often made in original raw scale; therefore, the statistics 
(e.g., UCL95) computed in transformed space need to be back-transformed in the original scale. It 
is not clear to a typical user how to back-transform results in log scale or any other scale obtained 
using a BC-Type transformation to original raw scale. Moreover, the transformed results often 
suffer from a significant amount of transformation bias. This was illustrated in Examples 6 and 7 
of Section 6. 

 
• It is recommended to avoid the use of equation (3-22) to back-transform estimates from log scale 

to original scale as illustrated by Section 6. The question now arises – how one should back-
transform results from a log-space (or any other transformed space) to the original space? 
Unfortunately, no defensible guidance is available in the environmental literature to address this 
question. Moreover, the back-transformation formula will change from transformation to 
transformation (BC-Type transformations), and the bias introduced by such transformations will 
remain unknown.  

 
Therefore, in cases when a data set in the “raw” scale cannot be modeled by a parametric 
distribution, it is desirable to use nonparametric methods rather than testing or estimating some 
parameter in the transformed space.  

 
• As noted in Section 8.3.2.1, for the various parametric (gamma and lognormal) and 

nonparametric skewed distributions, the performance (in terms of coverage percentage for the 
population mean) of the robust ROS method followed by percentile or BCA bootstrap methods is 
not better than the KM (Chebyshev) and KM (BCA) UCL methods, as recommended in Sections 
8.2.2 and 8.2.3. It is observed that, for left-censor data sets of all sizes and various censoring 
levels, the robust ROS UCL (both % as well as BCA bootstrap methods) fail to provide adequate 
coverage for the population mean of highly skewed distributions. 

 
• On page (78) of Helsel (2005), the use of the robust ROS MLE method (Kroll, C.N. and J.R. 

Stedinger (1996)) has been suggested to compute summary statistics. In this hybrid method, 
MLEs are computed using log-transformed data. Using the regression model as given by equation 
(3-21) of Section 3, the MLEs of the mean (used as intercept) and sd (used as slope) in the log 
scale are used to extrapolate the NDs in the log scale. Just like in robust ROS method, all of the 
NDs are transformed back in the original scale by exponentiation. This results in a full data set in 
the original scale. One may then compute the mean and sd using the full data set. The estimates 
thus obtained are called robust ROS ML estimates (Helsel (2005) and Kroll and Stedinger 
(1996)). However, the performance of such a hybrid estimation method is not well known. 
Moreover, for higher censoring levels, the MLE methods sometimes behave in an unstable 
manner, especially when dealing with moderately skewed to highly skewed data sets (e.g., with σ 
>1.0). 

 
– It should be noted that the performance of this hybrid method is unknown.  
 
– It is not known why this method is called a robust method.  
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– The stability of the MLEs obtained using the log-transformed data is doubtful, especially 
for higher censoring levels.  

 
– The BCA and (% bootstrap) UCLs based upon this method will fail to provide the 

adequate coverage for the population mean for moderately skewed to highly skewed data 
sets. 

 
• If one really wants to use a robust ROS method (Helsel’s method), or a robust ROS on MLE 

method, one can use ProUCL 3.0 (has jackknife, bootstrap, and various other methods) to 
compute the summary statistics, and a UCL95 to estimate the population mass based upon the full 
data set obtained using robust ROS or MLE ROS methods. However, the use of these methods is 
not recommended for highly skewed data sets, as described in Section 8. 

 
• The maximum censoring level considered in the present simulation study is 70%. For data sets 

having a larger % of nondetects (e.g., 80%, 90%, or 99% nondetects), statistical estimates may 
not be reliable. Decisions about the use of an appropriate method (e.g., using proportion of NDs) 
should be made by the risk assessors and regulatory personnel on a site-specific basis. The use of 
nonparametric methods based upon the proportion of NDs is recommended in such cases 
(USEPA (2000); Helsel (2005)) with % censoring exceeding 70-80%. 

 
• The DL/2 (t) UCL method does not provide adequate coverage (for any distribution and sample 

size) for the population mean, even for censoring levels as low as 10%, 15%. This is contrary to 
the conjecture and assertion (e.g., EPA (2000)) often made that the DL/2 method can be used for 
lower (≤ 20%) censoring levels. 

 
• The coverage provided by the DL/2 (t) method deteriorates fast as the censoring intensity 

increases. 
 
• The KM method is a preferred method as it can handle multiple detection limits. Moreover, the 

various nonparametric UCL95 methods (KM (BCA), KM (z), KM (%), KM (t)) based upon the 
KM estimates provide good coverages for the population mean. 

 
• For a symmetric distribution (approximate normality), several UCL95 methods provide good 

coverage (~95%) for the population mean, including the Winsorization mean, Cohen’s MLE (t), 
Cohen’s MLE (Tiku), KM (z), KM (t), KM (%) and KM (BCA).  

 
Specific recommendations for the various distributions considered in this report are described as follows. 
 
9.2 Recommended UCL95 Methods for Normal (Approximate Normal) 

Distribution 
 

• For normal and approximately normal (e.g., symmetric or with sd, σ̂  < 0.5) distribution: The 
most appropriate UCL95 computation methods for normal or approximately normal distributions 
are the KM (t) or KM (%) methods. For symmetric distributions, both of these methods perform 
equally well on left-censored data sets for all censoring levels and sample sizes. 
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9.3 Recommended UCL95 Methods for Gamma Distribution 
 

• For highly skewed gamma distributions, G(k, θ), with shape parameter, k ≤ 1: 
 

– Use the nonparametric KM (Chebyshev) UCL95 method for censoring levels < 30%,  
 

– Use the nonparametric KM (BCA) UCL95 method for censoring levels in the interval 
[30%, 50%), and 

 
– Use the nonparametric KM (t) UCL95 method for censoring levels ≥ 50%.  

 
• For moderately skewed gamma distributions, G(k, θ), with shape parameter, 1< k ≤ 2: 

 
– For censoring level < 10%, use the KM (Chebyshev) UCL95 method, 

 
– For higher censoring levels [10%, 25%), use the KM (BCA) UCL95 method, 

 
– For censoring levels in [25%, 40%), use the KM (%) UCL95 method, and 

 
– For censoring levels ≥ 40%, use the KM (t) UCL95 method. 

 
• For mildly skewed gamma distributions, G(k, θ), with k > 2: 
 

– Use the KM (BCA) UCL95 method for lower censoring levels (< 20%), 
 

– For censoring levels in the interval [20%, 40%), use the KM (%) UCL95, and 
 

– For censoring ≥ 40%, use the KM (t) UCL95 computation method. 
 
9.4 Recommended UCL95 Methods for Lognormal Distribution 

 
• For mildly skewed data sets with σ̂  ≤ 1: 

 
– For censoring levels (< 20%) and sample of sizes less than 50-70, use the KM 

(Chebyshev) UCL95, 
 

– For censoring levels (< 20%) and samples of sizes greater than 50-70, use the KM (BCA) 
UCL95, 

 
– For censoring levels in the interval [20%, 40%) and all sample sizes, use the KM (BCA) 

UCL95, and 
 

– For censoring level ≥ 40%, use the KM (%) or KM (t) UCL95 method. 
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• For data sets with σ̂  in the interval (1, 1.5]: 
 

– For censoring levels < 50% and samples of sizes < 40, use the 97.5% KM (Chebyshev) 
UCL, 

 
– For censoring levels < 50% and samples of sizes ≥ 40, use the 95% KM (Chebyshev) 

UCL, and 
 

– For censoring levels ≥ 50%, use the KM (BCA) UCL95 for samples of all sizes. 
 

• For highly skewed data sets with σ̂  in the interval (1.5, 2]: 
 

– For sample sizes < 40, and censoring levels < 50%, use the 99% KM (Chebyshev) UCL, 
 

– For sample sizes ≥ 40 and censoring levels < 50%, use the 97.5% KM (Chebyshev) UCL, 
 

– For samples of sizes < 40-50 and censoring levels ≥ 50%, use the 97.5% KM 
(Chebyshev) UCL, and 

 
– For samples of sizes ≥ 40-50, and censoring levels ≥ 50%, use the 95% KM (Chebyshev) 

UCL.  
 
• Use a similar pattern for more highly skewed data sets with σ̂ > 2.0, 3.0: 

 
– For extremely highly skewed data sets, an appropriate estimate of the EPC term (in terms 

of adequate coverage) is given by a UCL based upon the Chebyshev inequality and KM 
estimates. The confidence coefficient to be used will depend upon the skewness. For 
highly skewed data sets, a higher (e.g., > 95%) confidence coefficient may have to be 
used to estimate the EPC.  

 
– As the skewness increases, the confidence coefficient also increases.  

 
– For such highly skewed (see Tables 3-1 and 3-2) distributions (with σ̂ > 2.0, 3.0), for 

lower sample sizes (e.g., < 50-60), one may simply use a 99% KM (Chebyshev) UCL to 
estimate the population mean, EPC term, and other relevant threshold (e.g., UPL, 
percentiles) values.  

 
– For sample sizes greater than 60, one may use a 97.5% KM (Chebyshev) UCL as an 

estimate of the population mean or mass.  
 
9.5 Recommended UCL95 Methods for Nonparametric Distributions 

 
• For symmetric or approximately symmetric distribution-free, nonparametric data sets with σ̂      

< 0.5: Use the same UCL computation methods as for the data sets coming from a normal or an 
approximate normal (symmetric) population. These methods are summarized in Section 9.2. 
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• For skewed distribution-free, nonparametric data sets with σ̂ ≥ 0.5: Most of the recommended 
UCL computation methods for a lognormal distribution, as described in Section 9.4, do not 
assume the lognormality of the data set. Therefore, the UCL computation methods, as described 
in Section 9.4, can be used on skewed nonparametric data sets that do not follow any of the well-
known parametric distributions.  

 
Note: All of the methods as recommended in Sections 9.2, 9.3, 9.4, and 9.5 will be available in ProUCL 
4.0. Additionally, some UCL95 computation methods based upon MLE and ROS methods have also been 
incorporated in ProUCL 4.0 for interested users and scientists. The updated version of ProUCL 4.0 is 
scheduled for release by spring of 2007. 
 
Note: In Table 9-1, phrase “All n” represents only valid (e.g., n > 3) and recommended (n > 8-10) values 
of the sample size, n. As mentioned throughout the report, it is not desirable to use statistical methods on 
data sets of small sizes (e.g., with n < 8-10). However, it should be noted that the sample size 
requirements and recommendations (n > 8-10) as described in this report are not the limitations of the 
methods considered in this report. One of the main reasons for the recommendation that the sample size 
should be at least 8-10 is that the estimates and UCLs based upon small data sets, especially with many 
below detection limit observations (e.g., 30%, 40%, 50%, and more), may not be reliable and accurate 
enough to draw conclusions for the various environmental applications. Moreover, it should be noted that 
in order to be able to use bootstrap resampling methods, it is desirable to have a minimum of 10-15 
observations (e.g., n > 10-15). Therefore, phrase “All n” in Table 9-1 should be interpreted as that the 
sample size, n is least 8-10. The software, ProUCL 4.0, will provide appropriate warning messages when 
a user will try to use a method on data sets of small sizes.  
 

Table 9-1. Recommended UCL95 Computation Methods for Left-Censored Data Sets 
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Normal or Approximate Normal (with σ̂  < 0.5) Distributions  
σ̂ < 0.5 All n > 0% • • 

Gamma Distribution 
All n < 30%   •    
All n [30%, 50%)      • k̂  ≤ 1 
All n ≥ 50% •      
All n < 10%   •    
All n [10%, 25%)      • 
All n [25%, 40%)  •     1 < k̂  ≤ 2 

All n ≥ 40% •      
All n < 20%      • 
All n [20%, 40%)  •     k̂  > 2 
All n ≥ 40% •      
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Table 9-1. Continued 
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Lognormal Distribution 

n ≤ 50-70   •    
n > 50-70 

< 20% 
     •

All n [20%, 40%)      • 
 σ̂  ≤ 1.0 

All n ≥ 40% • •     
n < 40    •   
n ≥ 40 

< 50% 
  •    1 < σ̂  ≤ 1.5 

All n ≥ 50%      •
n < 40     •  
n ≥ 40 

< 50% 
   •   

n < 40-50    •   
1.5 < σ̂  ≤ 2.0 

n ≥ 40-50 
≥ 50% 

  •    
n < 50-60     •  σ̂  > 2.0, 3.0 

n ≥ 60 
> 0% 

   •   
Nonparametric – Symmetric or Approximate Symmetric 

σ̂  < 0.5 All n > 0% • • 
Nonparametric – Moderately Skewed to Highly Skewed 

n ≤ 50-70  • 
n > 50-70 

< 20% 
 •

All n [20%, 40%)  • 
0.5 ≤ σ̂  ≤ 1.0 

All n ≥ 40% • •
n < 40  • 
n ≥ 40 

< 50% 
 •1 < σ̂  ≤ 1.5 

All n ≥ 50%  •
n < 40  • 
n ≥ 40 

< 50% 
 • 

n < 40-50  • 
1.5 < σ̂  ≤ 2.0 

n ≥ 40-50 
≥ 50% 

 •
n < 50-60  • σ̂  > 2.0, 3.0 

n ≥ 60 
> 0% 

 • 
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