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Abstract

Accurate protein identification in large-scale proteomics experiments relies upon a detailed, accurate protein catalogue,
which is derived from predictions of open reading frames based on genome sequence data. Integration of mass
spectrometry-based proteomics data with computational proteome predictions from environmental metagenomic
sequences has been challenging because of the variable overlap between proteomic datasets and corresponding short-
read nucleotide sequence data. In this study, we have benchmarked several strategies for increasing microbial peptide
spectral matching in metaproteomic datasets using protein predictions generated from matched metagenomic sequences
from the same human fecal samples. Additionally, we investigated the impact of mass spectrometry-based filters (high mass
accuracy, delta correlation), and de novo peptide sequencing on the number and robustness of peptide-spectrum
assignments in these complex datasets. In summary, we find that high mass accuracy peptide measurements searched
against non-assembled reads from DNA sequencing of the same samples significantly increased identifiable proteins
without sacrificing accuracy.
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Introduction

Key questions in environmental microbiology include: (i) what

microorganisms are present in a particular environment, (ii) how

are they functioning, and (iii) how does community structure and

function vary in response to environmental conditions/changes?

Recent technological advances have provided powerful experi-

mental approaches to address these questions, with 16S rRNA-

based taxonomic profiling providing extensive information about

microbial composition, and metagenomic whole-genome shotgun

(WGS) sequencing/shotgun community proteomics, or ‘‘metapro-

teomics,’’ providing insights into the composition and functional

activities of microbial communities. In particular, metagenome

sequencing with next-generation platforms has revolutionized the

ability to measure and fully characterize the genomic repertoire in

microbial communities.

In order to successfully identify peptide sequences using mass

spectrometry (MS)-based proteomics methods, a relevant database

of predicted genes derived from genome or metagenome sequen-

ces is necessary. Peptide identifications result from matching

tandem mass spectra (MS/MS) against predicted fragmentation

patterns of all possible in silico digested peptides using well-

established programs [1,2,3]. Therefore, successful MS/MS

sequence-database searching is critically dependent on the quality

and accuracy of the metagenomic predicted sequence database.

Although traditional MS-based proteomic analyses of single

bacterial isolates are well established, applying these methods to

complex microbial communities can be challenging for several

reasons, including the lack of deep sequence coverage and diffi-

culty in assembling metagenomes from 454-reads. Considerable

improvements in mass spectrometers and chromatography have

been made over the past decade; however, the development of

tools for optimizing metagenome-metaproteome sequence match-

ing has not kept pace, especially when using the shorter sequence

reads associated with next generation sequencing platforms such as

the 454 pyrosequencer [4] and Illumina GAII [5].

While an increasing number of studies have developed com-

putation methods for proteogenomics [6,7] and begun to inte-

grate metagenomic sequence data with proteome measurements

[8,9,10], these studies have primarily focused on either single

eukaryotic genomes or populations with low diversity, allowing for

sufficient depth of sequence coverage of abundant community
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members that facilitate proteome identifications as compared to

more complex microbial communities (e.g., human microbiome,

ocean, and soil). In the human distal gut, there are approximately

1,000 estimated species which represent .7,000 prokaryotic

strains; therefore, the complete metagenome is estimated to be

.100 times the size of the human genome [11]. Based on previous

studies of these exact same samples, we would expect ,30% of the

proteins identified by proteomics to be of human origin [12]. The

challenges inherent in a metagenomic-metaproteomic character-

ization of complex environmental samples include (i) considerable

sequence diversity among closely related strains/species, (ii) large

number of organisms for which no reference genome sequence is

available and (iii) low nucleotide sequence coverage for the

microorganisms, especially low abundance members.

Here we present a benchmarking of strategies for integration of

metagenomic and metaproteomic data derived from the same

human gut microbiome samples. Although the metagenomes were

not sequenced to saturation, they were sufficient to enable us to

evaluate how protein predictions based on metagenome data

impact peptide-spectrum assignments in matched metaproteomic

datasets (i.e., metagenome and metaproteome of the exact same

sample). Using 454 pyrosequencing, 1,079 Mbp of DNA sequence

was obtained from two fecal samples obtained from a pair of

healthy twins [13]. Using these data, four protein sequence

databases were created using several different assembly and gene

finding strategies (Fig. 1). The resulting databases were evaluated

for their utility in MS sequence-database searching.

Assembly of metagenomic reads can potentially generate errors

by joining sequence reads that share sequence identity but are

derived from different strains or species. This can be further

complicated by sequencing errors, such as issues with homopol-

ymer tracts in 454 pyrosequencing datasets [14,15]. The meta-

genome assembly strategies examined in this study were (i)

assembly by sample, exemplifying the traditional approach used

for single isolate genomes, (ii) whole-dataset assembly, in order to

increase sequence coverage, and (iii) no assembly, which will

theoretically capture all sequence diversity present in a sample.

Since sequencing errors can also introduce frameshifts and in-

frame stop codons, resulting in fragmented gene predictions, we

explored homology-based gene finding, as it allows the ability to

‘gap’ over sequencing errors, and de novo based gene finding which

uses models of known gene structure for prediction.

Proteomics approaches were also benchmarked to identify the

parameters necessary to create accurate peptide-spectrum matches

(PSMs; a match of a given MS/MS spectrum to a specific database

peptide sequence) and increase protein discovery by de novo peptide

sequencing. Several MS-related parameters (spectral quality, delta

correlation (deltCN), and high mass accuracy (610 ppm (parts-

per-million)) were examined and proved to be helpful in providing

more comprehensive, confident PSMs. Moreover, we investigated

how much de novo peptide sequencing would increase peptide

identification, since it provides novel sequences that were not

originally present in the sequence database (e.g., polymorphisms).

By utilizing the genomic and proteomic tools described in this

study, we identified a strategy that increased the number of PSMs

and protein identifications in a complex microbial community that

can provide a more comprehensive and accurate characterization

of the human gut microbiome.

Methods

Samples, DNA and Protein Extraction
Fecal samples from two healthy female human individuals (a

concordant twin pair), numbered 6a and 6b, were collected under

a separate study, as described and studied previously [12]. Both

samples were used for DNA and protein extraction. An additional

three twin pairs corresponding to six human fecal samples:

numbered 15a and 15b (concordant pair with Crohn’s disease),

16a and 16b (discordant pair, healthy 16a and 16b with Crohn’s

disease), and 18a and 18b (discordant pair, healthy 18a and 18b

with Crohn’s disease), were used for metagenomic sequencing only

and were included in several of the sequence databases as

described in ‘‘Protein Database Construction.’’ Therefore, a total

of two healthy samples (6a and 6b) were used for metaproteomics

and eight (four healthy: 6a, 6b, 16b, and 18b and four diseased:

15a, 15b, 16a, 16b) samples were used for metagenomics.

Throughout the manuscript, the diseased samples and individuals

other than 6a and 6b are referred to as ‘‘unrelated’’ because we are

only focusing on 6a and 6b samples’ metaproteomes, thus, we have

a ‘‘matched’’ or ‘‘related’’ metagenome-metaproteome. Since

these fecal samples were collected under a separate research

program and were supplied as de-identified information for this

study, this work was approved in March 2010 by the Oak Ridge

Site-wide Institutional Review Board (ORSIRB; Dr. Leigh

Greeley, chair-person) as ‘‘human studies exemption 4’’, IRB

REFERENCE #: ORNL EX(10)-3.

Total genomic DNA was extracted using the MoBio PowerSoil

DNA Isolation kit (MoBio Laboratories, Carlsbad, CA) following

the manufacturer’s recommendations. Sample 6a was also

extracted using the Zymo extraction protocol recently published

by Ravel and colleagues [16]. Each sample was then sequenced

using Roche 454 FLX-Titanium pyrosequencing according to

Figure 1. Creation of protein sequence databases. Protein sequence databases were created from metagenomic sequence reads using a
variety of methods for assembly and gene finding.
doi:10.1371/journal.pone.0027173.g001
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manufacturer specifications. Raw sequence data were processed

using the Roche/454 run processing software to filter short,

mixed, and low quality reads. The sequencing generated 418K

2627 M passed-filter reads and 170–381 Mbp per sample for the

eight human fecal samples (15a, 15b, 16a, 16b, 18a, 18b, 6b, and

6a). Microbial cells (,100 mg cell pellet) and proteins were ex-

tracted and processed for two-dimensional liquid chromatography

coupled to tandem mass spectrometry (2D-LC-MS/MS). The pro-

tocol for cell lysis and protein extraction has been rigorously tested

and developed by our laboratory [17,18] with specific details

corresponding to these samples detailed in Verberkmoes et al. [12].

Protein Database Construction
Starting with 454 pyrosequencing reads, four metagenomic

processing methods (NM, RM, RFM, and CAFM, see below for

definitions) were evaluated for the construction of predicted

protein databases (Fig. 1 and Table 1). Sequences were first filtered

for human contamination by alignment of reads to the human

genome (v 36) using NUCMER [19] using default parameters.

The Newbler-Metagene (NM) protein sequence database was

created using the single-genome strategy by generation of a de novo

assembly followed by de novo gene finding. While there are a variety

of gene prediction algorithms available, we chose to focus on

MetaGene Annotator [20], a platform that we have extensive

experience with for 454 sequencing datasets. Certainly, newer

approaches, such as Orphelia [21], MetaGeneMark [22], and

FragGeneScan [23] have appeared and shown promise for

Illumina datasets; however, the accuracy of these algorithms do

not appear to differ greatly for 300–400 bp reads and thus we

preferred to utilize our more rigorously tested MetaGene version.

Shotgun sequences from each sample were assembled using the

Newbler Assembler (v2.0.01.14), and genes were predicted on

contigs greater than 500 bp using Metagene [24], resulting in a

total of 153,586 predicted open reading frames (ORFs) larger than

50 nt across a total of the seven metagenome samples included in

this study. The second database, Reads-Metagene (RM), was

created by directly predicting ORFs from raw sequencing reads to

prevent loss of sequence diversity when collapsing unrelated

sequencing reads during genome assembly. ORFs were predicted

using Metagene, yielding 1,866,893 predicted ORFs larger than

50 nt. Sequencing errors often seen in pyrosequencing datasets

[14,15] can lead to artificially fragmented predicted ORFs.

Because these errors cause frameshifts and in-frame stop codons

in gene predictions, we used protein-to-DNA alignments, gene-

rated by sequence similarity searches against NCBI’s NR using

FASTX [25] with an expectation value threshold of 1e26, to

predict genes by homology. Homology-based gene finding was

performed on raw 454 sequencing reads yielding 1,483,958

predicted ORFs larger than 50 nt, called Reads-FASTX-Meta-

gene (RFM) protein database.

Additionally, three databases were created from assembled

reads, with the intent of creating longer genes and fewer protein

fragments. The combination of short sequencing reads, averaging

369 bp, and the high bacterial diversity found in the human gut,

produced a dataset with many fragmented genes. Since assembled

sequences were not much longer than raw sequencing reads, these

genes were also fragmented, therefore, we were unable to validate

proteins identified by multiple peptide matches. Thus, an assembly

was created by combining the shotgun sequence data from these

samples using the Celera Assembler (v5.4), called Celera

Assembler-FASTX-Metagene (CAFM), yielding 1,807,963 pre-

dicted proteins on all contigs and singletons larger than 50 nt.

Homology-based gene finding was also used for this CAFM data-

base, using the same parameters as RFM. In addition to sequences

Table 1. Performance and comparison of the metagenomic predicted protein sequence databases.

Metagenomic Predicted Protein
Sequence Database

Celera
Assembler,
Fastx,
Metagene

Newbler,
Metagene

Newbler,
Metagene +
Kurokawa/Gill

Raw Reads
Metagene

Raw Reads,
FastX,
Metagene

Raw Reads,
FastX,
Metagene +
Kurokawa/Gill

Raw Reads,
Metagene
Paired
Search

Database Acronym CAFM NM NM_KG RM RFM RFM_KG RMPS

Number of Sequences (thousand) 1,844 190 540 1,903 1,520 1,907 2,146

Number of Amino Acids (million bp) 200 45 115 189 173 262 191

Compute Time Per Run (minutes) 670 80 320 750 1,060 1,030 435

Number of Non-redundant
Spectra

6a Run 2 5,179 6,235 10,441 9,100 9,074 10,975 13,806

6a Run 3 4,326 5,376 9,272 8,152 8,538 10,330 18,401

6b Run 1 4,092 5,615 10,830 8,639 8,480 11,254 12,363

6b Run 2 3,873 5,800 10,724 8,775 8,573 11,167 12,212

Total Spectra 17,470 23,026 41,267 34,666 34,665 43,726 56,782

Total number of PSMs within 610 ppm 14,317 16,906 31,289 26,181 25,997 33,347 39,681

Number of Non-redundant
Peptides

6a Run 2 4,383 3,093 5,678 4,710 4,669 5,911 7,592

6a Run 3 3,655 2,403 4,617 3,804 3,963 5,068 6,303

6b Run 1 3,404 2,426 5,409 3,919 3,879 5,549 5,923

6b Run 2 3,216 2,297 5,088 3,747 3,690 5,238 5,605

Total Peptides 14,658 10,219 20,792 16,180 16,201 21,766 25,423

Total NR Peptides 8,632 5,994 12,406 9,618 9,608 13,111 16,055

The database composition and SEQUEST/DTASelect search results (compute time, identified non-redundant spectra and peptides) with a 2-peptide and deltCN of 0.08
filters are shown for samples 6a (Run 2 and 3) and 6b (Run 1 and 2).
doi:10.1371/journal.pone.0027173.t001
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generated in this study, we included the following published

human gut metagenomic datasets: two metagenomes from Gill et

al. [26] and thirteen metagenomes from Kurokawa et al. [27], that

were concatenated with the NM (termed NM_KG) and RFM

(termed RFM_KG) sequence databases to provide additional

sequence variation and increase proteome coverage. The meta-

genomes published from Gill et al. [26] (17,688 contigs; ORFs $20

amino acids; ,50,000 predicted proteins; available at the Joint

Genome Institute (JGI) IMG database under NCBI project ID

16729) and Kurokawa et al. [27] (81,968 contigs; ORFs$50 amino

acids; ,300,000 predicted proteins; available at CAMERA (2007))

studies were sequenced via Sanger-based methods. The amino

acid sequence of the proteins belonging to the two samples’

metagenomes used in this study (6a and 6b in addition to 15a, 15b,

16a, 16b, 18a, 18b) can be accessed through the NCBI Protein

Database under NCBI project ID 46321.

For each of the protein sequence databases described above

(NM, CAFM, RFM, NM_KG, and RFM_KG), we concatenated

the metagenomic protein predictions from multiple individuals

into a single database. For example, NM, RM, RFM, and CAFM

each contain metagenomic sequences from seven individual

human samples from this study (15a, 15b, 16a, 16b, 18a, 18b,

and 6b), which include an unrelated healthy sample 16b (Figure 2

comparisons). The NM_KG and RFM_KG protein databases

contain the same 7 metagenomic predicted protein sequences

(15a, 15b, 16a, 16b, 18a, 18b, and 6b), but unlike NM and RFM,

contain the published 13 Japanese metagenome sequences [27]

and 2 American metagenome sequences [26] for a total of 22

concatenated metagenomes per protein sequence database.

Deeper whole genome shotgun sequencing was obtained from

an extra run on 6b and an additional sample (6a), extracted using

the Zymo and MioBio method, which resulted in a four-fold

increase in sequence data for these two healthy samples (Table S1).

Due to the limitations of analyzing this larger metagenomic

sequence dataset, these sequences were processed similar to the

RM strategy and compiled into 2-independent protein databases,

termed RMPS, for 6a and 6b in this assessment. Each of these 8

protein databases (NM, NM_KG, CAFM, RFM, RFM_KG, RM,

RMPS-6a and RMPS-6b) included human reference sequences

(July 2007 release, NCBI; ,36,000 protein sequences) and

common contaminants (i.e., trypsin and keratin; 36 protein

sequences). Lastly, a 6-frame translation library was generated

for sample 6a and searched against one MS experiment.

Spectral Analysis
Microbial proteins were extracted and processed for 2D-LC-

MS/MS as described [12] using an Ultimate HPLC system

(Dionex, Sunnyvale, CA) coupled to a high resolution LTQ-

Orbitrap (Thermo Fisher Scientific, San Jose, CA). Peptide

mixtures from the two samples, 6a and 6b, were separated by a

12 step, multidimensional high-pressure liquid chromatographic

elution profile consisting of eleven salt pulses followed by a 2 hr

reverse-phase gradient from 100% solvent A (A: 95% H2O, 5%

acetonitrile, 0.1% formic acid) to 50% solvent B (B: 30% H2O,

Figure 2. Comparison of identified peptides using sequence similarity techniques. Percentage of matches found when comparing
identified peptides from sample 6a (left panel) or 6b (right panel) to predicted proteins using FASTS (gray bars) and raw sequencing reads using
TFASTS (white striped bars).
doi:10.1371/journal.pone.0027173.g002
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70% acetonitrile, 0.1% formic acid). Precursor full MS spectra

(from 400–1700 m/z) were acquired in the Orbitrap with

resolution = 30,000 followed by five data-dependent MS/MS

scans at 35% normalized collision energy in the LTQ with

dynamic exclusion enabled. All RAW files were converted to

mzXMLs using ReAdW (v4.3.1; 2009) and mzXMLs subsequently

converted to dta files using MzXML2Search (v4.3.1; 2009). All

MS/MS were searched with SEQUEST (v.27) [2] for fully tryptic

peptides (#4 missed cleavages, 3 Da parent mass tolerance

window, 0.5 Da fragment ion window) against each of the 8

custom-made FASTA formatted protein sequence databases

described above. Since it is well established that trypsin cleaves

primarily C-terminal to Arg and Lys [28], we have found in a

variety of microbial communities [9,29,30] that using fully tryptic

searches provides increased confidence in the peptide assignments

while minimizing the potential for increased false positives due to

incorrect candidate peptide sequences. All SEQUEST output files

were assembled and filtered using DTASelect (v1.9) [31] at either

a 2-peptide level for all seven: NM, NM_KG, RM, RFM_KG,

RFM, CAFM, and RMPS databases and also 1-peptide level for

the RMPS database searches with the following widely accepted

parameters: cross correlation scores (XCorr) of at least 1.8, 2.5, 3.5

for +1, +2, and +3 charge states [9,31,32], respectively and a

minimum deltCN of either 0.08 (default) for all seven databases

(NM, NM_KG, RM, RFM_KG, RFM, CAFM, and RMPS

databases) and/or 0.0 for NM, NM_KG, RFM, RFM_KG,

RMPS-6a and -6b, and target-decoy databases (described under

‘‘false discovery rates’’). Post-translational modifications and other

fixed modifications were not included in the search criteria.

We used the high mass accuracy capabilities of the Orbitrap

with a wide mass tolerance to measure precursor ion (peptides)

masses at low parts-per-million (ppm) and the ion trap to efficiently

measure fragment ions at lower resolution. A ‘‘post-database

search’’ filter with high precursor mass accuracy was used by

comparing the theoretically derived peptide from the SEQUEST

mass with what was observed in the Orbitrap in the full scan

preceding the MS/MS scan. Recently, Hsieh et al. [33] indicated

that a wide precursor mass window in a database search and a

post-database high precursor mass accuracy filter is a more

superior method to control false positives. Therefore, for post-

filtering the database results by high mass accuracy, the mass

deviation (in ppm) of a PSM was calculated using the measured

monoisotopic mass and theoretical monoisotopic mass of the

peptide. For all of the database searches (NM, NM_KG, RM,

CAFM, RFM, RFM_KG, RMPS-6b and -6a, and target-decoy

databases) and comparisons, DTASelect was run with a t0 option

to report all MS/MS spectra, in which case two spectra per

protein, rather than two peptides, are required for identification.

We compared each of the database results in a relative fashion

such that all comparisons (degenerate peptides) are consistent to

one another. Every MS/MS spectrum that is assigned to a peptide

(unique and non-unique peptides) was noted and handled by

DTASelect as described [31]; therefore, we recognize peptides that

are shared (non-unique) among multiple proteins. While we

recognize that non-unique peptides are somewhat problematic for

label-free quantification using spectral counts, this was not the

focus of the current study.

Spectral quality assessment was accomplished utilizing an in-

house developed script that parses the SEQUEST output and

mzXML formatted spectral data. All spectra collected during an

analysis were categorized according to type: full MS scan (MS1) or

tandem mass spectra (MS/MS). MS/MS spectra assigned to a

peptide by SEQUEST were noted while the remaining unassigned

MS/MS spectra were classified as high-quality or poor based on

the following conditions: a. the charge state of the parent ion must

be greater than 1, b. the minimum absolute intensity must be

greater than 2500 counts, and c. greater than three fragment peaks

within 20% of the based peak must be present (all other details in

preparation to be submitted for publication). To quantify the

peptide-spectrum success, MS/MS were categorized as (i) assigned

or unassigned to a peptide and (ii) if unassigned, a score of high-

quality or poor as reflected by four methods (NM, CAFM, RFM,

and RMPS) and six databases (NM, CAFM, RFM, RFM_KG,

and RMPS-6a and -6b).

All MS .raw files or other extracted formats and supporting

information are available upon request. The acquired raw MS

data associated with this manuscript may be downloaded from

ProteomeCommons.org Tranche network through www.proteo-

mecommons.org using the following hash: sI4rGyY9T4Uz-

d3eGfz+Jhj7W9MoB/YbrWEPLXNYd/tKi2wbaf+fP5fuDWRD-

bJuDrjf5FrunTjw0xWH2uPn0oXyAHrtUAAAAAAAAl3Q = = .

False Discovery Rates
A target-decoy database [34,35] was generated for each of the

five metagenomic processing methods (NM, CAFM, RM, RFM,

RMPS), for a total of six forward-reverse databases (RM, RFM,

CAFM, KG, NM_KG, and RMPS-6b) and searched against one

of the two samples (6b) used in this study to estimate the peptide-

level false discovery rate (FDR) with the new metagenomic

processing methods. One sample and technical run (6b, Run1) was

used to represent the entire sample set (2 samples; 4 runs) for each

target-decoy database search in order to reduce the total number

of target-decoy databases, search time, and complexity of com-

parisons. All target-decoy SEQUEST output files were assembled

and filtered using DTASelect (v1.9) [31] with the same XCorr

filters as described previously, and either a $1 peptide per protein

with a deltCN filter of 0.0, or a $2 peptide per protein with a

deltCN of 0.0 (RMPS-6b) or 0.08 (NM_KG, CAFM, RM, RFM,

and KG), with an empirical FDR threshold of #2.0%. The initial,

1-peptide filter and deltCN 0.0, forward-reverse database searches

provide FDRs for NM_KG, CAFM, RM, RFM, KG, and RMPS-

6b (read-based) database analyses while the latter, 2-peptide and

deltCN 0.08 filter, forward-reverse database searches contain the

same filtering criteria as the original forward databases (NM,

NM_KG, RM, RFM_KG, RFM, CAFM, and RMPS databases;

Table 1 results) described earlier. Finally, a forward-reverse

database was also created for the final paired metagenome

sequence strategy (RMPS) for 6b and searched against the spectra

collected from 6b, Run 1 and Run 2 using a deltCN 0.0, 1-peptide

minimum, and high mass accuracy filtering. The identified

peptides (both forward and reverse) were then mapped back to

the protein sequences derived from the assembled metagenomic

sequences using a post-database 2-peptide filter by exact string

comparisons. Although the peptides with corresponding high mass

accuracy measurements (610 ppm) were considered for all

downstream analyses, the peptide-level FDRs were estimated for

both, with (210#ppm#10) and without (ppm , -10 and ppm .

10) high mass accuracy, for 6b, Run1 against six genomic

processing methods (NM_KG, CAFM, RM, RFM, KG, and

RMPS-6b). Each protein entry (sequence) was reversed, i.e., the

original N-terminus became the C-terminus. The new reverse

(false) sequences were then appended onto the backend of the

original forward sequences where each set, forward and reverse,

represents 50% of the entire database. A peptide-level FDR was

calculated based on the calculation: 2[nrev/(nrev + nreal)]*100

where nrev is the number of peptides identified from the reverse

database and nreal is the number of peptides identified from the

real (forward) database [35].

Strategies for Metagenomic-Guided Community Proteomics
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Sequences Similarity Searches
Peptides obtained from our SEQUEST/DTASelect searches

were searched against the 6b and 16b protein databases using

FASTS and against raw sequencing reads using TFASTS [36],

using an e-value cutoff of 10-5.

De novo Sequencing of Peptides by MS
PepNovo+ [37] and PEAKS [38] algorithms were used to de

novo sequence MS/MS spectra collected from both samples,

independent of all sequence databases. The PEAKS (v4.5 SP2)

algorithm computes the best possible sequence among all probable

amino acid combinations at a full peptide length confidence

followed by individual amino acid confidence per residue in the

predicted sequence for a MS/MS. PEAKS was run with default

parameters with a parent mass error tolerance of 0.5 Da, fragment

mass error tolerance of 0.5 Da, and trypsin digestion. First, a 90%

confidence level was required for the overall, full length prediction

to be correct and second, an 80% confidence level was required

for each residue within that sequence, which is consistent with Ma

et al. [38] PepNovo+ (v3.1) was executed using the following

recommended parameters: -model CID_IT_TRYP -digest TRYP-

SIN -pm_tolerance 0.05 -num_solutions 5 -output_cum_probs.

The top-scoring tags of all spectra were filtered using a cumulative

probability cutoff of 0.5. In the sequence tags produced from both

algorithms, the isobaric amino acid pair of Isoleucine (I) and

Leucine (L) and the nearly isobaric pair of Lysine (K) and

Glutamine (Q) are considered equivalent. L and I were both

substituted with the letter, J, for convenience. Additionally, Q and

K were substituted with the letter, U, since they are not easily

resolvable (small mass difference of 0.036 Da) with ion trap MS/

MS data. For all three algorithms, SEQUEST, PEAKS, and

PepNovo+, a minimum of 3 residues has to be assigned to a

spectrum for it to be considered for any additional analysis and

comparison to other algorithms. For PEAKS, only the high

confidence sequence tag was used for all analyses, not the

predicted full-length peptide sequence. For the comparison of

PSMs between all three algorithms, a ‘‘partial’’ consensus sequen-

ce was considered as a peptide sequence that has $3 amino acids

that are exactly the same for the same mass spectrum between

either SEQUEST peptide sequences, Peaks’ high confidence

sequence string, and/or Pepnovo+s’ sequence tag. If a PSM has an

‘‘exact’’ consensus sequence with 100% sequence identity between

any two or more algorithms, it would be considered a shared,

exact consensus sequence. If a PSM does not have at least 3

residues within a peptide sequence string that match two or more

algorithms, that spectrum would be considered unique to that

algorithm. The identified SEQUEST/DTASelect PSMs for

RMPS-6a and -6b sequence databases with a 1-peptide minimum

and deltCN of 0.00 for 6a (Run 2 and 3) and 6b (Run 1 and 2)

were compared to the PSMs from PEAKS and PepNovo+. The

breakdown of partial and exact consensus sequences versus PSMs

that are unique to a specific algorithm can be found in the Venn

diagram. We did not take into account any single amino acid

polymorphisms in the algorithms’ consensus sequence compari-

sons. In this study, we controlled the false discovery rate by only

using the high confidence consensus sequences tags found between

the two de novo algorithms using their respective optimum

parameters.

Results

Protein Sequence Database Comparison
Four protein prediction strategies (Fig. 1) were implemented for

metagenomic DNA sequences obtained from two healthy human

fecal samples (referred to as 6a and 6b), using a combination of

assembly and gene prediction methods. Each protein sequence

database has a defined acronym (2–4 letters), designating the

strategy used (Fig. 1 and Table 1). Our goal was to increase

peptide-spectrum matches using MS database searching for which

the MS data was collected from the same samples as the DNA

sequence data. The ability to accurately match peptides to tandem

mass spectra (MS/MS) was assessed by comparing the number of

PSMs and unique peptides identified for each database search with

SEQUEST/DTASelect at a 2-peptide level, deltCN 0.08, and

XCorr filtering against the same 2 samples, 6a (with spectra from

runs 2 and 3) and 6b (with spectra from runs 1 and 2) (Table 1).

These results illustrate how common metagenomic processing

methods (assembly and ORF finding) affect peptide and spectra

identification (Table 1). From these results, three major trends

emerge: (A) Collapsing of the sequence data by assembly decreases

the number of assigned spectra. There was a decrease of assigned

spectra when all reads were assembled from all samples compared

to assembly by individual sample (NM, 23,026 spectra vs. CAFM,

17,470 spectra). Additionally, if reads are annotated without

assembly, PSMs increase (NM, 23,026 spectra vs. RM, 34,666

spectra). This can be largely attributed to the increased diversity of

possible peptides, determined by in silico trypsin digestion, in the

unassembled data, which is over 3 times what is found in

assembled data (5,638,100 vs. 1,639,802). (B) An increase in

spectrum assignment usually translates to an increase in unique

peptide identifications. For example, the 11,640 gains in spectral

assignment translate to a 3,624 gain in identification of unique

peptide sequences for RM compared to NM (Table 1). However,

this was not observed when comparing CAFM to NM, where the

5,556 gains in spectra assignment translated to a decrease of 2,638

unique peptides (Table 1). (C) De novo gene finding methods are

sufficient for optimal spectrum assignment. The combined de novo

and homology-based gene finding method did not increase PSMs

as hypothesized (RFM, 34,665 spectra vs. RM, 34,666 spectra) nor

the number of identified unique peptides (RFM, 9,608 peptides vs.

RM, 9,618 peptides; Table 1).

Because of the low relative sequence coverage of our meta-

genomic samples, we wanted to evaluate whether adding meta-

genomic sequences from 15 unrelated samples in two published

studies would enhance our spectrum assignment. Therefore, to

protein databases NM and RFM, we added the proteins sequences

from predicted ORFs from two published human gut metage-

nomic studies, referred to as ‘‘KG’’ for Kurokawa et al. and Gill et

al. [26,27], which are referred to as NM_KG and RFM_KG

respectively. The KG database contains 13 metagenomes from a

Japanese cohort [27] and 2 metagenomes from an American

cohort [26], both geographically distinct from samples in this

study. When compared to the metagenomic sequences in this

study, only 9% of sequences align in KG at 99% identity or

greater; thus, they provide over 2 million additional unique

peptides for MS/MS assignment, that are not identified in any of

the matched metagenomes. Because the assemblies from these

studies are on average longer (average contig length of 2,300 nt for

Kurokawa et al. compared to an average contig length of 1,128 nt

in this study), the predicted proteins are more likely to be full-

length compared to ORFs in this study (average protein length of

194.5 amino acids (aa) for Kurokawa et al. metagenomes; average

protein length of 225 aa for Gill et al. metagenomes compared to

an average protein length of 168.5 aa in this study). By including

metagenomic sequence from additional sources [26,27], the

number of identified spectra increased (NM versus NM_KG

(23,026 versus 41,267 spectra) and RFM versus RFM_KG (34,665

versus 43,726 spectra)) for 6a (Run 2 and 3) and 6b (Run 1 and 2)

Strategies for Metagenomic-Guided Community Proteomics

PLoS ONE | www.plosone.org 6 November 2011 | Volume 6 | Issue 11 | e27173



in total (Table 1). However, the additional KG sequence data

came at the cost of increased peptide degeneracy and subsequent protein

redundancy (i.e., peptides mapping to multiple proteins or to the

same protein in multiple metagenomes within the sequence

database). Although the level of redundancy ranges with the

sequence diversity of a sample and has no effect on the actual

database search algorithms, this complicates protein inference and

assigning its’ corresponding phylogenetic origin in a complex

environmental community.

While the four metagenomic processing methods were compared

based on their ability to comprehensively assign all collected MS/

MS spectra to peptides, the percentage of assigned and high-quality

unassigned MS/MS is equally important to establish the utility of

each sequence database. For the following spectral analyses, the

collected and assigned spectra from sample 6a (Run 2 and 3) and 6b

(Run 1 and 2) were assessed and categorized after applying the same

filters described above (2-peptide level and deltCN 0.08 filter) with

the following databases. Of the total MS/MS collected during one

MS experiment (70,000–81,000), on average 6,600 spectra were

assigned to a peptide sequence in the NM database (,8% of total

collected MS/MS spectra for a single run; Table S2). In contrast,

the processing strategy used to create RFM resulted in the

assignment of an additional 1,800 MS/MS from the same sample,

for a total of 8,430 peptide-spectrum matches on average (11% of

total collected MS/MS). Furthermore, the addition of unrelated

KG sequences to RFM (a 25% increase in sequence data) resulted in

an increase of the number of assigned spectra by only 2–3%. Finally,

the strategy used to create RMPS resulted in an additional

4,000 MS/MS spectra assigned, for a total of 12,461 peptide-

spectrum matches on average per sample (16% of total collected

MS/MS spectra). Although the total number of assigned MS/MS

increased from NM , RFM , RFM_KG , RMPS, the number of

unassigned, high-quality spectra decreased with database quality

(NM . RFM . RFM_KG . RMPS).

The effects of two common filtering parameters (deltCN and high

mass accuracy) on MS/MS peptide assignment were examined by

determining the quantity of MS/MS spectra not assigned to the

same peptide in multiple database searches (Text S1). These results

(Figure S1) suggest that filtering on high mass accuracy rather than

deltCN can decrease ambiguous peptide-spectrum matches and

provide more consistent and reproducible MS/MS identifications.

In order to maintain high specificity and accuracy with increasing

metagenomic sequence data, a FDR was estimated at the peptide

level using an established method of reverse database searching

[34,35] for each metagenomic processing method for a total of 6

target-decoy databases (RM, RFM, CAFM, KG, NM_KG, RMPS-

6b). Because we are using methods that directly measure peptides,

not proteins, the FDR was estimated at the peptide level. In

addition, we are primarily comparing the performance of all

databases by peptide-spectrum matches, not proteins, given the

nature of the metagenomic processing methods and their

corresponding databases (i.e., not all databases contain assembled

contigs, but only reads). It has previously been noted [39] that false

discovery rates can be difficult to accurately determine with

metaproteome datasets due to problems associated with massive

peptide degeneracy. We concur with this difficulty in accurately

quantifying FDRs for metaproteomes and thus have carefully

evaluated how we might handle this issue, as defined in the

following discussion. In this study, for example, of all the identified

peptides for 6a (Run 2), only 7–30% were unique peptides from

each database. Consequently, if only unique peptides are used, the

false discovery rate would be overestimated; on the contrary, if all

peptides are used the false discovery rate could be underestimated

[39]. Therefore, to set a static FDR threshold and filter multiple

databases (6 sequence databases in this study) of different sizes and

internal levels of peptide redundancy to that threshold (i.e., 1%)

becomes a challenge, in this case, for comparing and identifying

the best metagenomic processing method for MS/MS database

searching and peptide-spectrum matching. As the level of redun-

dancy affects the FDR, we have chosen a set of fixed scoring filters in

order to accurately compare database assignments. Thus, the same

filter criteria (i.e., Xcorr and ppm filtering) was applied to all

database searches and with a requirement that the FDR be less than

or equal to, i.e., 2.0%. The FDRs for the 1-peptide level, deltCN

0.0, with and without HM filtering were 1.17%–2.03% and 16.09–

31.47%, respectively for 6b, Run 1 (Table S3). The 2-peptide level

and deltCN 0.08 filtered reverse database searches serve to

represent the FDR of peptide identifications found in Table 1.

The FDRs for these PSMs, with and without HM filtering were

within 0.09%–0.38% and 2.17–4.15%, respectively for 6b, Run 1

(Table S4). Following the application of a post-database high

precursor mass accuracy filter (6 10 ppm) to both, the 1- and 2-

peptide filtered forward-reverse datasets, the number of identified

reverse peptides decreased by, on average, 93% for each database

which resulted in a reduction of the FDR to 0.09%–0.38%.

Tracking Missing Peptides
By adding the unrelated KG metagenomic sequences to the

RFM protein database, the number of additional predicted unique

peptide sequences increased by 40%. Therefore, we wanted to

determine how many additional peptide-spectrum matches were

gained by adding these KG proteins sequences to the database.

The RFM_KG assigned MS/MS were distributed into three

different categories: RFM only, KG only, and RFM plus KG

(shared) for each sample (Table S5 and Text S1). The majority of

RFM_KG assigned spectra were ‘‘shared’’ between both RFM

and KG protein sequences. About 26% of the total spectrum

assignments were unique to the RFM protein sequences (zero

overlap with KG sequences) and only ,8% of the spectra were

unique to the KG protein sequences (no overlap with the RFM

sequences) (Table S5).

There are two possible hypotheses for why the metagenomes

from these samples (i.e., RFM) cannot be used to assign peptides to

spectra which are assignable by the unrelated protein database

KG: (1) because of low sequencing depth, peptides are not

assigned because our protein database is incomplete or (2) because

of a sequencing error or limitation for predicting ORFs, we are

unable to predict the proteins that are present. Therefore, we have

aligned the RFM_KG (2-peptide, deltCN 0.08, HM filtered)

identified peptides (Fig. 2, y-axis) from 6a (left panel) or 6b (right

panel) to predicted raw reads from the related/same sample (6b) and

an unrelated sample (16b) (Fig. 2, x-axis) using TFASTS [36] (Fig. 2,

white, fine striped bars). Those results were compared to

alignments of the same identified peptides to the predicted protein

database from the related/same sample (6b) and the unrelated

sample (16b) using FASTS [36] (Fig. 2, gray, solid bars). As

expected, more peptides mapped to the related/same (matched

metagenome-metaproteome) sample (15% for 6a: left panel, Fig. 2

and 6b: right panel, Fig. 2) than to the unrelated, 16b, predicted

protein sequences (8% for 6a and 10% for 6b). When these same

peptides were compared using TFASTS [36] (algorithm that

compares peptides to DNA sequence) to the raw sequencing reads

(Fig. 2, white, fine striped bars), the number of peptides matching

to reads increased by two-fold for both 6a and 6b.

Targeting Peptide Discovery
Throughout the course of our study, we were able to accu-

mulate more metagenomic sequence data for the two healthy
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samples, 6a and 6b, by ,5 fold (Table S1, italicized text).

Although this increase in predicted ORFs resulted in an increase

in the number of assigned MS/MS spectra, it can reduce the

throughput of MS/MS sequence-database searching. Therefore,

we investigated the impact of searching a metagenomic-based

protein database derived from the exact same single sample to that

of a concatenated sequence library of all available metagenomic

data from this study. The additional metagenomic sequences were

used to construct a sequence database similar to that of RM (non-

assembled reads with 5.6 million predicted unique peptides), called

RMPS (Fig. 1) which has , 1.3 million predicted unique peptides,

on average, per healthy sample 6a and 6b. Searching the RMPS

sequence databases with SEQUEST using standard 2-peptide,

deltCN 0.08, and high mass accuracy filtering decreased the

compute time to ,300–500 minutes per MS raw file. By in-

creasing the amount of metagenomic sequence data for a single

sample, the total number of assigned spectra increased by 63%

(from 34,666 to 56,782) and the number of total identified non-

redundant (NR) peptides increased by 67% (from 9,618 to 16,055)

(Table 1, RM versus RMPS), resulting in a 54% increase in

protein identifications (3,394 to 5,233) when mapping these

peptides to a protein dataset generated from assembled reads for

the exact same metagenomic sample.

Other than limitations associated with computational resources,

there was also a concern that real peptides predicted from 454-

reads would be filtered out given a 2-peptide per protein minimum

filter (Table 2, top panel). Therefore, the filtering parameters were

readjusted with a deltCN 0.0, 1-peptide minimum, and a high

mass accuracy filter (610 ppm) for the SEQUEST RMPS

database searches for both 6a (Run 2 and 3) and 6b (Run 1 and

2). The identified peptides were then mapped back to the

predicted protein sequences derived from the assembled metage-

nomic sequences with a 2-peptide filter, resulting in an increase of

protein identifications, from 5,233 to 6,186 (Table 2, RMPS top

panel versus bottom panel). The filtering parameters were also

readjusted with a deltCN 0.0 and a high mass accuracy filter

(610 ppm) for the SEQUEST-RFM database searches for both

6a (Run 2 and 3) and 6b (Run 1 and 2). The protein identifications

also increased, from 3,431 to 3,706 (Table 2, RFM top versus

bottom panel). While this increase might seem minimal, there is

significantly less redundancy, less false positives, and no compu-

tational cost added to these filtering parameters. The false

discovery rate, using the same filtering parameters (deltCN 0.0,

1-peptide minimum and HM) for the RMPS database was 1.17%

for 6b (Table S3), however, these identified peptides ($1 peptide/

read) were mapped back to the predicted protein sequences derived

from the assembled metagenomic sequences using a post-database

$2-peptide/protein filter. Following application of this 2-peptide/

protein filter, the FDRs dropped to 0.1%–0.2% for 6b, Run 1 and 2

(Table S6).

De novo Peptide Sequencing
Two popular algorithms, PepNovo+ [37] and PEAKS [38],

were used to identify peptide sequences de novo from MS/MS

spectra collected from both samples, independent of all protein

sequence databases. Initially, the two algorithms were run

independently on the same raw MS data and samples as described.

The identified, high confidence consensus sequence tags ($3

residues) were acquired from each de novo algorithm. The de novo

consensus sequence tags (Text S1) for PEAKS and Pepnovo+ were

compared for every MS/MS to identify the partial ($3 residues)

and exact consensus sequence tags that would represent the most

confident PSMs identified by the two different de novo algorithms.

In this study, it was not our goal to compare the performance of

the two programs; instead, we want to combine the best results

from the two programs using their respective optimum parame-

ters. The final, representative de novo consensus tags were

compared to the previously mentioned SEQUEST results from

the RMPS sequence database searches that were filtered at a $1

peptide/read, deltCN 0.0, and high mass accuracy with a post-

database $2 peptide/protein filters. On average, ,593–724 MS/

MS spectra were assigned with a high confidence consensus

peptide sequence between the two de novo algorithms, but were not

assigned with the SEQUEST–RMPS database search (Fig. 3).

These de novo peptide sequences were mapped to protein sequences

predicted from assembled contigs with a 2-peptide minimum per

protein and compared to the peptides that were identified from the

SEQUEST-RMPS database searches. A total of 421 new, non-

redundant proteins were identified with the de novo sequenced

peptides for metagenome 6b, and 333 non-redundant proteins for

metagenome 6a; these proteins were not identified using

SEQUEST. Approximately 450 de novo sequenced peptides (non-

redundant) per sample could not be mapped to the matched

metagenomic sequence data.

Discussion

One of the major goals of MS-based proteomics is to com-

prehensively identify the protein complement of a given sample

(isolate, mixture, or community). The proteome(s) of microbial

communities are highly complex and pose numerous challenges for

MS experimentation and analysis. These challenges include the

dynamic range of peptide abundances and a number of informatics

hurdles, such as differentiation between closely related species,

identification of sequence polymorphisms, and global identification

of post-translational modifications. Many of the algorithms used in

MS/MS database searching are based on the assumption that a

protein is derived from a single organism with little sequence

diversity. However, these assumptions are no longer valid in the case

Table 2. Comparison of RFM and RMPS database results with
different filtering metrics and a post-database mapping strategy.

Protein Database RFM RMPS

2-peptide, deltCN 0.08, HM Filter

Spectra Protein Spectra Protein

6a Run 2 3,246 1,154 6,542 1,761

6a Run 3 3,091 1,010 6,237 1,544

6b Run 1 2,639 637 5,212 973

6b Run 2 2,552 630 4,870 955

Total 11,528 3,431 22,861 5,233

1- or 2-peptide, deltCN 0.0, HM Filter

Spectra Protein Spectra Protein

Peptide Criteria $2 peptide $1 peptide

6a Run 2 3,541 1,252 7,497 2,069

6a Run 3 3,346 1,088 7,048 1,808

6b Run 1 2,879 686 5,881 1,182

6b Run 2 2,786 680 5,502 1,127

Total 12,552 3,706 25,928 6,186

Comparison of SEQUEST/DTASelect database search results, non-redundant
spectra and protein counts with different filtering parameters and HM, post-
database mapping of identified peptides to a protein dataset generated from
assembled reads for the same metagenomic sample.
doi:10.1371/journal.pone.0027173.t002
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of complex microbial communities. This study presents several

strategies for improving metagenomic guided MS-based metapro-

teomic peptide-spectrum matching in complex samples.

It has become very clear that the quality of metagenomic se-

quence data and resulting protein sequence database has a

significant impact on community MS-based proteomics and the

ability to achieve deep proteome coverage. This study initially

explored how assembly and gene finding methods for metage-

nomic sequences affects peptide-spectrum matching. Our findings

suggest that predicting ORFs from an ab-initio gene finder on

metagenomic reads provides the best database for maximal MS/

MS assignment. While assembly of metagenomic data can greatly

reduce the necessary compute time for gene finding and database

searching, it essentially collapses sequence diversity; thus, it is sub-

optimal for maximal spectral assignment. Yet, introducing a

homology-based gene finding method (RFM) does not increase the

number of assigned spectra. Lastly, with an increase in sequence

coverage for a biological sample, our results suggest that predicted

protein sequence databases derived from matched metagenomic

sequenced reads (RMPS), increases the number of MS/MS

spectra, peptides, and protein identifications. In conclusion, ex-

panding the metagenomic sequence library for matched or related

samples improved peptide-spectrum matching. However, im-

provements in gene finding are equally important to maximize

protein identification and coverage.

As the matched metagenomic predicted protein sequence

database (RMPS) more accurately reflected the ‘‘true proteome’’,

previously unassigned high-quality spectra are now being

identified and provided greater proteomic depth. When these

results were compared to a standard bacterial isolate (e.g., E. coli)

with a well-curated genome, ,41,000 MS/MS spectra were

assigned to peptides (37% of total collected MS/MS) (data not

shown) using the same database searching filters ($2 peptide and

deltCN 0.08). This would suggest that underlying challenges are

still inhibiting the identification of a majority of spectra collected

from the community samples compared to that of a standard

bacterial isolate. The classification of acquired and assigned MS/

MS spectra and quantification of total identified peptides

suggested that the RMPS processing method provided the most

comprehensive assignment of MS/MS spectra.

Figure 3. Performance and comparison of de novo peptide sequencing results. Distribution of assigned spectra per de novo algorithm with
a predicted consensus sequence (partial and/or exact sequence match) among all three algorithms, PEAKS, PepNovo+, and SEQUEST. Identified
peptides from SEQUEST and RMPS sequence database were compared to the de novo predicted peptides for (A) 6a Run 2, (B) 6a Run 3, (C) 6b Run 1,
and (D) 6b Run 2.
doi:10.1371/journal.pone.0027173.g003
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When we examine why some peptides are assigned from the

read-based ORFs (e.g., RMPS processing method) and not

assigned from the contig-based ORFs (e.g., NM processing

method), we find that these ‘‘lost peptides’’ fall into three cate-

gories: (i) some reads are not assembled and therefore their protein

predictions are not in the contig-based ORF predictions, (ii)

because of SNPs and frameshifts, the peptides are 100% similar to

a predicted contig-based ORF, but are not 100% identical, and

(iii) some peptides were very different (,50% identical) or missing

from the contig-predicted ORF. A 6-frame translation protein

database was generated for sample 6a to capture all possible

candidate peptide sequences and searched against one MS

experiment (Run 2). However, routine use of this sequence

database is impractical due to the increased quantity of sequences

which directly correlates with an increased quantity of candidate

peptides, therefore, more scoring and prohibitively large search

times (,134 hrs per MS experiment) (data not shown). As

sequencing data generation increases, even a read-based strategy

could become unsustainable, which will only worsen as new larger

‘omic’ datasets become available.

Identifying the most reliable set of peptides from a MS-based

metaproteomic experiment can be complicated, as we have shown

that MS/MS assignments can vary and be assigned to different

peptide sequences with different protein databases. While filtering

on deltCN is a common practice for reducing false positives, this

type of filtering may (i) continue to include many ambiguous

peptides based on the different database predictions and (ii)

remove many legitimate peptides as a result of a highly redundant

database. Although filtering on deltCN and peptide-protein

matches has proven effective for single genome searching, these

filters decrease both precision and sensitivity in metagenomic

predicted sequence databases. As common filtering strategies have

proven to be less effective and practical for large-scale proteomics

studies (e.g., post-translational studies) [33], these and other

challenges will surface as the MS field moves towards sampling

more environmental communities. Alternatively, we propose that

when high mass accuracy is used in conjunction with other

filtering metrics, such as, cross correlation (XCorr) and enzyme

cleavage specificity, one can confidently identify the most com-

prehensive and reproducible set of PSMs and control false

positives adequately in a complex environmental community sam-

ple. As shown, this strategy greatly reduces the rate of ambiguous

peptide predictions thereby giving higher confidence to our final

peptide-protein identifications. Once peptides are identified and

mapped to metagenomic sequences, which have been assembled,

the subsequent use of a 2-peptide filter greatly reduces the num-

ber of false positives in protein discovery for complex microbial

environments.

Finally, de novo peptide sequencing can complement MS/MS

database searching to identify peptides absent in the protein

sequence database due to the limitations of the gene finding

algorithms or low metagenomic sequence coverage. We believe that

novel peptides were identified with high confidence in this study,

because these peptides were independently identified by two de novo

sequencing algorithms. However, there is no widely accepted

method for us to use for rigorously evaluating the FDRs of novel

peptides identified from our microbial community samples. Thus, de

novo sequencing results should be used with the caveat of uncertain

FDRs as supplement to database searching results [40].

By using a variety of MS filtering metrics, we were able to assess

the quality and accuracy of MS/MS peptide sequencing for each

MS experiment against four predicted protein sequence databases

derived from whole genome shotgun sequences. Our findings

suggest that: (i) proteomic data is twice as likely to match

metagenomic data derived from the same sample, (ii) although

unrelated metagenomic data may capture more sequence

diversity, large protein databases can create unreasonable

sequence redundancy, thereby hampering the ability to differen-

tiate real peptide-protein identifications, (iii) the percentage of

unassigned, high-quality MS/MS spectra decreases with increased

quality of metagenomic sequences, (iv) metagenomic data

processing, such as assembly and gene finding, affects the ability

to assign peptides to spectra, (v) MS filtering metrics can affect the

accuracy of peptide-spectrum matching, (vi) deeper metagenomic

sequencing coverage results in deeper coverage of matched

metaproteomes and (vii) de novo peptide sequencing can overcome

potential sequencing errors and provide evidence for novel

sequences not yet sequenced or not identified by database

searching methods. The high-quality unassigned MS/MS from

sequence-database searching would be ideal target spectra to

submit for de novo peptide sequencing whereby these sequences

could be mapped back to help refine the metagenome and identify

potential sequencing errors. Finally, this study illustrates how

common metagenomic processing methods (assembly and ORF

finding) and database construction can affect metaproteomics

search results.

Supporting Information

Figure S1 Accuracy Assessment by DTASelect Filtering. (a) For

each DTASelect peptide prediction search, the number of

identified spectra was calculated and compared using three

different parameter combinations, deltCN filtered results at a

deltCN of 0.08 only, both deltCN of 0.08 and HM (610 ppm),

and HM (610 ppm) only, where identified peptide sequences were

designated either ‘Consistent’ (solid gray) or ‘Inconsistent’

(diagonal stripes). (b) A VENN diagram with assignable spectra

for RFM, RFM_KG, NM, and NM_KG databases, filtered by

high mass accuracy, for both samples combined.

(EPS)

Table S1 Metagenomic sequencing metrics.

(XLS)

Table S2 Database dependent distribution of acquired full MS

and MS/MS and assigned MS/MS for samples 6a and 6b.

Unassigned MS/MS were parsed into either quality or poor

spectra.

(XLS)

Table S3 False discovery rates for sample 6b (Run 1) against six

different metagenomic-predicted sequence databases. The data-

base results were filtered at a 1-peptide level with and without high

mass accuracy.

(XLS)

Table S4 False discovery rates for sample 6b (Run 1) against six

different metagenomic-predicted sequence databases. The data-

base results were filtered at a 2-peptide level with and without high

mass accuracy.

(XLS)

Table S5 Distribution of RFM_KG assigned PSMs for 6a (Run 2

and 3) and 6b (Run1 and 2). The assigned PSMs were distributed

into three different categories: RFM only, KG only, and RFM plus

KG based on their sequence uniqueness to each set of sequences. If

a PSM was unique to protein sequences in RFM, but was not

present in KG, the PSM was classified and categorized as RFM only

and vice versa. If a PSM was found to match a protein in both, RFM

and KG, the PSM was categorized as a shared spectrum.

(XLS)
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Table S6 False discovery rates for sample 6b (Run 1 and 2)

against the RMPS database. An initial $1-peptide, deltCN 0.0,

and high mass accuracy (610 ppm) filter were applied to the read-

based identifications followed by a $2-peptide/protein post-

database mapping filter.

(XLS)

Text S1 Additional supporting information and results for the

protein sequence database comparisons, tracking missing peptides,

and de novo peptide sequencing.

(DOC)
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