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Executive Summary 

During November 1993, Pacific Northwest Laboratory (PN'L) and Savannah River Site (SRS) 
personnel completed a field demonstration of six-phase soil heating (SPSH) at the Savannah River 
Site, Aiken, South Carolina. This demonstration was directed by the U.S. Department of Energy 
(DOE) Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOCs in Non-Arid 
Soils ID). Pacific Northwest Laboratory designed the SPSH systems for this demonstration, and 
Westinghouse Savannah River Company (WSRC) conducted drilling, soil sampling, construction, off- 
gas treatment, and contaminant analyses. The purpose of the project was to demonstrate a soil 
heating system that uses electricity to cost effectively heat soil and enhance the performance of 
conventional soil-venting techniques. 

Soils at the integrated demonstration site are contaminated with perchloroethylene (PCE) and 
trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively 
treated by conventional soil vapor extraction (SVE) because of the very low permeability of the clay. 
Specific objectives for the demonstration were to: 

e 

demonstrate that SPSH accelerates the removal of TCE and PCE from the SRS clay soils 
compared with conventional SVE techniques 

quantify the areal and vertical distribution of heating as a result of SPSH under soil conditions 
experienced at the SRS 

provide a functional soil electrode and vent design for SPSH 

collect sufficient data to project the economic feasibility of commercial application of SPSH 
technology for soils and contaminants similar to those at the SRS. 

To quantify the accelerated VOC removal using SPSH, pre- and postdemonstration soil 
characterization and monitoring activities were conducted. Testing and monitoring support was 
provided by the VOCs in Non-Arid Soils ID. To record soil temperature changes, thermocouples at 
30 locations were installed to quantify the areal and vertical heating within the treated zone. Soil 
samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor 
extraction of PCE and TCE from the clay soil. Samples were taken [essentially every one-third meter 
(foot)] from six wells before heating and adjacent to these wells after heating for direct comparison of 
soil parameters and changes. 

The results of the SRS field demonstration indicate that SPSH is a technology capable of heating 
and remediating low-permeability soils containing volatile organic contaminants. Comparison of pre- 
and post-test soil samples show that contaminant removal from the clay zone was 99.7% (median) 
within the electrode array. Outside the array where the soil was heated, but to only 50°C, the 
removal efficiency was 93%, showing that heating accelerated removal of VOCs from the clay soil. 
The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. 
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Soil temperature profiles show that SPSH was successful in heating the targeted clay zone that 
contained the higher levels of soil contamination. The clay-zone temperatures increased to 100°C 
after 8 days of heating and were maintained near 100°C for 17 days. In addition, the electrical 
heating removed 72,000 L (19,000 gal) of water from the soil as steam, with peak removal rate of 
5,700 L per day [1,500 gallons per day (gpd)] of condensed steam. Process automation allowed 
unattended operation following an initial start-up period. 

The total energy applied to the soil during the demonstration was approximately 100,000 kwh. 
After the initial start-up, electrical power was applied to the heating pattern at an average rate of 
200 kW. The volume of soil heated to above 70°C is estimated to be 1100 m3, giving an energy 
input of 90 kwh/m3 (70 kwh/yd3). The average voltage (line to neutral) applied to the soil was 
1000 V. The voltages began at 250 V (L-N) during start-up and increased to 2400 V (L-N) at the 
end of the test. Based on this demonstration experience, the SPSH energy use is estimated to be 
approximately $7 per cubic meter of soil at $O.O7/kwh. 

The success of the SPSH technology at the Savannah River Site has resulted in the planned use 
of SPSH at the Rocky Flats Plant and consideration by several potential commercial partners for use 
at private industrial sites. 
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1.0 Introduction 

l*l Demonstration Site 

In November 1993, Pacific Northwest Laboratory (PNL)(a) and Savannah River Site (SRS) 
personnel conducted a demonstration of six-phase soil heating (SPSH) at the Savannah River Site 
(SRS) in Aiken, South Carolina. The SRS is a 300-square-mile facility owned by the U.S. 
Department of Energy (DOE) and currently operated by Westinghouse Savannah River Company 
(WSRC). The demonstration was part of the Volatile Organic Compounds in Non-Arid Soils 
Integrated Demonstration (VOCs in Non-Arid Soils ID) being conducted near the M-Area operations 
at the SRS, along a corridor that once contained a process sewer leading to the M-Area seepage basin. 
In the early 1980s, this sewer line was discovered to be leaking process wastes into the subsurface 
and contributing to groundwater contamination in the vicinity of M-Area seepage basin. Although use 
of the sewer line has been discontinued, the slow release of chlorinated solvents such as 
trichloroethylene ("CE) and perchloroethylene (PCE) from the heterogeneous vadose zone soil 
continues to be a source of potential groundwater contamination. 

A significant portion of the VOCs at the demonstration site are retained in low-permeability clay 
zones. A 3-m (104) thick clay zone beginning 9 m (30 ft) from the surface is the shallowest exam- 
ple (Eddy et al. 1991). Figure 1.1 shows typical PCE and TCE contamination as a function of depth 
for a well within the zone to be treated by SPSH (MHV-38; see Section 2.0). Figures showing the 
pre-test soil contamination for all of the sampled wells are included in Appendix A. The data points 
in Figure 1.1 are averages of measurements taken on duplicate samples; all soil concentrations (parts 
per million) are based on the mass of wet soil. This figure shows that the majority of the PCE and 
TCE contamination resides in the clay zone [a few hundred parts per million (mass basis)]. We will 
refer to the clay zone as the depths between 9 and 12 m (30 and 40 ft). The more sandy zones above 
and below the clay typically have less than 1 ppm of PCE and TCE. Previous studies have shown 
that the rate of conventional SVE remediation of the SRS clays is quite slow; this is attributed to mass 
transfer limitations of the low permeability soils (Looney et al. 1991a, 1991b; Eddy-Dilek et al. 
1993). The permeability of the clay is of order 
interval to remediate. Thus, the challenge for SPSH is to effectively remediate this clay zone by 
accelerating the removal of TCE and PCE. 

cm2, which makes this a particularly difficult 

L2 Background 

Several candidate technologies currently exist, or are under development, to facilitate the 
removal of volatile contaminants from M-Area soil. Soil vapor extraction (SVE) is a proven in situ 
technology for removing volatile organic compounds like TCE or PCE from permeable soils. This 
technology succeeds when soil contaminants transfer readily into air that flows easily through the soil 

(a) Pacific Northwest Laboratory is operated for the U.S. Department of Energy by Battelle 
Memorial Institute under Contract DE-AC06-76RLO 1830. 
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Figure 1.1. Contaminant Concentration as a Function of Depth in Well MHV-38 

pore spaces. The contaminant is carried by the air through the soil to a vmum vent and removed. 
Successful venting requires that the contaminant be at least semi-volatile and the soil be permeable to 
the flow of air. In homogeneous and permeable soils, SVE produces rapid results with a relatively 
low overall cost. Conventional SVE, however, becomes infeasible when remediating low permeabil- 
ity non-homogeneous soils, or when low volatility contaminants are present (USEPA 1991; Pedersen 
and Curtis 1991). 

Soil heating can extend the effectiveness of SVE to less volatile compounds, to less permeable 
soils (like clays), and, potentially, to contaminant depths near or in the water table. The principal 
processes for soil heating are resistive heating, radio frequency heating, and steam injection (Smith 
and Hinchee 1993). All soil heating processes increase the temperature of the soil and contaminant, 
causing an increase in the contaminant’s vapor pressure and its removal rate. However, compared to 
heating by steam or hot air injection, applied electrical fields have the advantage of heating soils 
internally. Thus, low permeability zones or complex heterogeneous soils can be treated. Electrical 
heating also provides an in situ source of steam to accelerate further removal of volatile organics from 
soils. This enables higher molecular weight compounds that are not very volatile to be removed by 
simple venting. Removal of soil moisture (as steam) also tends to increase the gas permeability of 
soils and can reduce the mass transfer limitations associated with low permeability soils (Gierke et al. 
1990; Rodriguez-Maroto and Wilson 1991). Both of these processes add further to the rate of con- 
taminant removal during venting. Soil heating can provide a cost-effective alternative to conventional 
SVE or soil excavation followed by ex situ treatment. 
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Six-phase soil heating is a technique that uses common low-frequency electricity to heat soils as 
an enhancement to SVE (Bergsman et al. 1993a, and 1993b). The mechanism of heating is resistive 
dissipation of the electrical energy. SPSH uses conventional single-phase transformers to convert 
standard three-phase electricity into six-phase electricity. Electrodes are inserted into the ground in 
one or more circular arrays of six per array. Each electrode is connected to a separate transformer 
wired to provide it with a separate current phase. A seventh, electrically neutral electrode located at 
the center of the array doubles as an SVE vent. The sixelectrode array was chosen because it pro- 
vides a more uniform distribution of electrical currents in the soil than other geometries. The SPSH 
electrode system is typically.installed using common drilling equipment and constructed of modified 
well casing materials. SPSH uses conventional nonspecialized utility transformers, resulting in low 
capital cost. 

Figure 1.2 shows the typical heating pattern expected for application of SPSH (plan view). The 
heating (Q is given in power per unit volume W/m3. Although more heating occurs near the 
electrodes, the six-phase pattern produces a relatively uniform heating pattern. Excessive drying can 
occur near the electrodes, but these regions can be managed low-permeability through judicious water 
addition. The SPSH is also an ideal method for heating soil such as clays. The cross-sectional view 
in Figure 1.2 shows, as an example, a clay layer between sand zones. Because of the clay layer's 
relatively high electrical conductivity, it receives the majority of the current and is where most of the 
energy is dissipated. 

The soil heating patterns shown in Figure 1.2 were calculated by a rigorous electric field solu- 
tion in a computer code called TEMPEST (Trent and Eyler 1993). TEMPEST predictions have been 
used to fine-tune a semi-analytical model of electrical heating as a function of water content, tem- 
perature, soil type, and location within the SPSH array. This model was incorporated into a modified 
version of the TOUGH2 code (Transport of Unsaturated Groundwater and Heat), a thermal, porous 
media code capable of predicting the movement of air and water in soils (Pruess 1987 and 1990). 
Applications of the resulting process simulator are described in more detail in Bergsman et al. (1993a, 
1993b) and Heath et al. 1992. 

. For the SRS demonstration, the process simulator was used to help make a number of design 
decisions. These decisions included choosing the best power level and array diameter and selecting 
the best location for the thermocouples. Also, the simulator helped predict the effect of water 
addition at the electrodes and determine the effectiveness of the venting. 

1.3 Objectives 

The primary objective of the demonstration is to show that SPSH technology can enhance SVE 
in clay soils. Specific test objectives for the demonstration are as follows: 

1. Demonstrate that SPSH accelerates the removal of TCE and PCE from the SRS clay soils com- 
pared to conventional SVE. 

2. Quantify the areal and vertical distribution of heating as a result of SPSH under soil conditions 
experienced at the SRS. 
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Figure 1.2. Typical Heating Pattern for SPSH with Adjacent Sand and Clay Layers. 
The heating (Q is given in power per unit volume W/m3. 

3. Demonstrate functional electrode and vent designs. 

4. Collect sufficient data to project economic feasibility of commercial application of SPSH tech- 
nology for soils and contaminants similar to those at SRS. 

In addition to the SPSH objectives, Lawrence Livermore National Laboratory (LLNL) collected 
data during the SPSH test to produce electrical resistance tomography (ERT) images of the soil during 
the demonstration. Because temperature and water saturation each affects the soil electrical resis- 
tance, ERT records the combined effects of heating and drying. 
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This report presents the results of testing, data interpretation, and assessment of the SPSH field 
demonstration conducted at the SRS. The report's primary considerations are the removal of volatile 
organic contaminants by resistive soil heating and the soil heating as a result of SPSH. Section 2.0 
describes the materials and methods used in the demonstration. Section 3.0 discusses project results, 
and conclusions are provided in Section 4.0. Appendix A provides figures showing the pre-test soil 
contamination for all the sampled wells. 
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2.0 Materials and Methods 

2.1 Field Equipment and Operation 

Figure 2.1 shows the electrode array, the location of the monitoring wells, and principal surface 
equipment used for the SPSH demonstration. The electrodes were positioned on a 9.1 m (30 ft) 
diameter circle and had electrical contact with the soil between 7 and 13 m (23 and 44 ft). The 
vacuum extraction vent piaced at the center of the array was also connected to the six-phase trans- 
former (neutral). A number of monitoring wells were drilled for soil sampling and for temperature 
and pressure monitoring in the soil. The soil sampling program was designed to quantify removal of 
PCE and TCE from the soil and the extent of soil drying. Soil samples were taken, essentially every 
foot, from six wells before heating and adjacent to these wells after heating (MHV-30, MHV-31, 
MHV-34, MHV-37, MHV-38, MHV-39). The difference between the pre- and post-test samples was 
used to quantify the efficacy of the SPSH process. 

The surface equipment shown in Figure 2.1 includes a trailer-mounted 750 kVA power plant that 
supplied 480 V of three-phase power to a six-phase power transformer. The six-phase transformer 
was rated at 950 kVA and used a remote computer to control the output voltages for each electrode. 
The power transformer used multiple link-tap changes to attain discrete voltages between 300 and 
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Figure 2.1. Location of Monitoring Wells, Electrodes, and Surface Equipment (well 
locations are drawn to scale; surface equipment is not) 
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2400 V [line-to-neutral 0-n)]; silicon control rectifiers allowed further adjustment of voltages. The 
electrodes were connected to the transformer via insulated power cables lying on the soil surface. 
The soil surrounding each electrode was supplied with water through a drip system to the electrified 
regions that spanned the clay zone. A vacuum system pulled air and contaminant vapors from the soil 
and through a condenser to remove the steam generated by heating. Water that collected in the vent 
well was removed by an air-actuated piston pump with remote speed control (Hydrostar 8001, Instru- 
mentation Northwest). 

Figure 2.2 shows a simple schematic of the depth from surface of two typical electrodes, the 
central vent, and the monitoring wells (Figure 2.2 does not show the areal position of these wells). 
The depths of the targeted clay zone and thermocouples are also shown. For each monitoring well, 
the placement of the thermocouples was chosen to give measurements in the sand above and below 
the clay, two measurements within the clay, and one measurement in the sand adjacent to the clay. 
Sandpacks around slotted pipes were used for pressure communication with the soil, and Figure 2.2 
shows the location of these sandpacks. Pressure transducers located at the surface measured the 
pressure at these locations. 

MHV3l MHV34 M H W  HHV37 MHV38 MHV39 MHVM MHV41 
&Electrode Vent OW1 OW2 OW3 PT1 PT2 

fllter Pack Sandr 

Figure 2.2. Subsurface Depth for Two Typical Electrodes, Central Vent, and Monitoring Wells. 
The clay zone is indicated by the shaded region for the wells that were cored 
and logged; the clay zone was continuous through the test area. The symbols 
show the depth of temperature and pressure measurements. 
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An extensive program of subsurface monitoring was designed to quanti@ removal of PCE and 
TCE from the soil and the extent of soil drying. Soil samples were taken, essentially every foot, 
from six wells prior to heating and adjacent to these wells after heating. The difference between the 
pre- and post-test samples, which gives critical information for assessing the efficacy of SPSH, is 
discussed in Section 3.2. For soil sampling from wells, continuous cores were taken with a split 
spoon sampler using hollow steam auger drilling methods. Duplicate samples were taken every one- 
third meter (foot) from 7.6 to 16.8 m (25 to 55 ft); above 7.6 m (W ft), samples were taken every 
1.5 m (5 ft). Additional details on sampling and analysis are described elsewhere (Eddy-Dilek et al. 
1994; Eddy et al. 1991; and Eddy-Dilek et al. 1993). 

2.2 Demonstration 

The demonstration consisted of five phases: 1) pre-test drilling and soil sampling; 2) baseline 
SVE test without heating; 3) SPSH with venting; 4) venting after heating; and 5) post-test soil 
sampling. The baseline venting spanned 12 days, and the heating covered 25 days. Figure 2.3 shows 
the power applied to the six electrodes during the heating phase. Electrical heating began on 
November 3, 1993, with a few days of system testing at lower power levels. Between November 7, 
1993, and December 2, 1993, an average power of 200 kW was applied to the electrode array, and 
the mean voltage was about 1000 V. Figure 2.4 shows the mean voltage (I-n) applied to the elec- 
trodes. The transformer and surface equipment were automated, and the SPSH system operated 
unattended beginning November 19, 1993. Toward the end of heating, the soil resistivity increased, 
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Figure 2.3. Power Applied to SPSH Array 
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Figure 2.4. Mean Voltage Applied to SPSH Electrodes 

so the voltage was increased to 2400 V (I-n) to maintain power input levels. Periods when the mean 
voltage (and power) are zero represent periods of power shutdown for maintenance and data gathering 
(Le., LLNL conducted measurements for ERT, collection of soil gas samples, etc.). Figure 2.5 
shows the energy applied to the soil. At the end of the test, 100,000 kwh of energy had been 
applied. 
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Figure 2.5. Energy Applied to Soil 
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3.0 Results and Discussion 

3.1 Soil Heating Measurement and Results 

Quantifying the areal and vertical soil heating was one of the main objectives of this demonstra- 
tion. As shown in Figure 2.2, thermocouples were placed at different depths to determine the vertical 
heating distribution. The areal variation was obtained by placing thermocouples in different wells. 
Figure 3.1 shows the temperature in MHV-38, which is the observation well located between two 
electrodes. Figures 3.2 - 3.6 show temperatures measured at other wells. An important attribute of 
electrical resistive heating is its ability to heat low-permeability soils. The clay-zone temperatures are 
represented by the thermocouples at depths of 10.4 and 11 m (34 and 36 ft) and the sand above and 
below the clay by the thermocouples at 8.2 and 13.1 m (27 and 43 ft), respectively. Figure 3.1 
shows that the clay-zone temperature increased rapidly to 100°C, confirming the effective heating of 
the clay. The more rapid rise in the clay-zone temperature compared to the adjacent sands results 
from the clay being more electrically conductive than the sand and agrees with the modeling results 
given in Figure 1.2. 

The temperature in the clay zone rose to 100°C (MHV-40 and MHV-41 peaked at 105" to 
110°C) after 8 days of heating. Most of the data show the temperature of the sand above and below 
the clay also rising to essentially 100°C after 10 to 15 days of electrical heating. Electrical heating 
continued after reaching 100°C to boil the moisture within the soil. 

Figure 3.7 shows the areal uniformity of the temperature within the array during SPSH. The 
temperatures are for thermocouples within the clay zone (34 and 36 ft) in the central vent (MHV-30) 
and monitoring wells MHV-37, MHV-38, and MHV-39. The temperature at the central vent is 
slightly less because the vacuum applied to this vent lowered the vapor pressure (boiling point) of 
water at this location. The temperature rise in MHV-39 is much less because it is located outside the 
electrode array. This initial temperature rise agrees with modeling results shown in Figure 1.2. 

3.2 Effect of Heating on Soil Remediation 

For pre- and post-test soil drilling and coring, samples were taken at the same depth for each 
well pair. The difference between the pre- and post-test samples shows how well the soil was 
remediated. Figure 3.8 shows the pre- and post-test soil measurement for PCE in well MHV-38. 
This well was located within the heated zone and directly between two electrodes. These data show 
the substantial reduction in the clay-zone concentration of PCE. (Figures comparing pre- and post- 
test soil measurements for all the sampled wells are included in Appendix A.) Because samples were 
taken from the same depth in adjacent wells, we did not interpolate between data or average data 
before calculating differences between pre- and post-test samples. In a number of cases, soil samples 
at the same depth from adjacent wells had much different soil types because of soil heterogeneity. 

Figure 3.9 shows the percent of PCE removed in all the clay-zone samples (9 to 12 m), exclud- 
ing the samples from MHV-39, which is outside the electrode array. The median removal efficiency 
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Figure 3.3. Temperature at Well MHV-41 

100 27' A 

80-  11111 

- 

34' 

36' 

39  

- 
.---- 
" .... ..... .... .... 60 - 

40 - 

20 

1011 8/93 10128193 1 1/7/93 1 111 7/93 1 1/27/93 12/7/93 

S9409009.6 

Figure 3.4. Temperature at Well MHV-30 
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Figure 3.8. Comparison of Pre- and Post-Test PCE Contamination in the Soil for 
Well MHV-38. The post-test well (MHB-38) was drilled 1 m (3 ft) 
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Figure 3.9. PCE Removal Efficiency After Treatment with SPSH 

is 99.7% for these samples. Although the data have a wide range in removal efficiency, the 
distribution is reasonable. The main reasons for the variation are soil heterogeneity and that samples 
taken at the same depth in adjacent wells varied in the clay content. The data in Appendix A show 
that the contamination in the clay zone was consistently reduced in all the wells within the electrode 
array. For the sand above the clay, which is outside the heated zone, the contamination was reduced 
but to a lesser extent. For the sand below the clay, the data are quite noisy, and no trend is readily 
apparent. The noise in the measured soil contamination is mostly due to the heterogeneity of the soil. 

Analysis of remediation and heating in well MHV-39 shows that heating accelerated PCE 
removal from the clay. MHV-39 was located outside the electrode array at a radius of 7 m (23 ft). 
This location, which was heated much less than inside the array, was chosen to quantify the effect of 
heating on the remediation. The temperature at MHV-39 rose to 50°C at the end of heating 
(25 days), while the temperature within the array reached 100°C after 8 days of heating. The median 
removal of PCE at MHV-39 was 93% at the end of the test, which is appreciably less than the 99.7% 
removal within the array discussed above. At a 2 3 4  radius, as shown by Figure 1.2, the predicted 
heating rate as a result of SPSH is about 10 to 20% of the heating rate within the electrode array 
(MHV-30, MHV-37, and MHV-38). The temperature data shown in Figure 3.7 confirm this predic- 
tion and give an initial increase in temperature at MHV-39 of about 15% of the temperature rise for 
wells MHV-30, MHV-37, and MHV-38. These data show that MHV-39 was heated less and reme- 
diated less than the soil within the array. Consequently, heating accelerated PCE removal from the 
clay. Results for TCE removal are equivalent. 
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Removal of volatile contaminants from low-permeability soil should be greatly accelerated by 
steam creation within the soil, which convects the contaminant out of the low permeability region. 
Accordingly, removal of soil moisture should correlate with the effectiveness of contaminant removal 
from the clay. For soil vapor extraction, the rate of contaminant removal is typically proportional to 
the concentration of contaminant. Thus, it becomes progressively more difficult to remove the con- 
taminant as its concentration approaches zero. For comparison with moisture removal, the fraction of 
contaminant remaining after treatment is a good measure of effectiveness. 
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Figure 3.10 shows the effect of moisture removed on the fraction of contaminant remaining after 
treatment with SPSH. These data are shown only for the clay interval at depths between 30 and 
40 ft. Although the data have substantial scatter, the expected trend of less PCE remaining with a 
greater removal of moisture is clear. The solid symbols are for MHV-39, which was heated less. As 
seen in Figure 3.10, the wells within the array, as compared to MHV-39, had greater moisture 
removal and better contaminant removal. This shows that drying as a result of heating correlates with 
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Figure 3.10. Effect of Moisture Removal on the Efficiency of PCE Removal from the Clay Zone. 
The solid symbols are for MHV-39, which was located outside the electrode array 
(cooler). The wells inside the array, which were hotter than MHV-39, show greater 
PCE removal. 
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3.3 Effect of Heating on Permeability 

One objective of electrical soil heating is increasing the air permeability of the soil by drying the 
soil. Figure 3.11 shows the water removed from the central vent as condensed steam. Substantial 
water removal did not occur until the soil reached essentially 100°C. At the end of electrical heating, 
61,000 L (16,000 gal) of water had been removed through the vent. Because the soil was hot at the 
end of electrical heating, venting continued without heating into January 1994, excluding the 2-week 
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Figure 3.11. Condensed Steam Removed from the Vacuum Extraction Vent During Heating 

break for post-test drilling and soil sampling in December 1993. At the end of venting, 72,000 L 
(19,000 gal) of condensate had been removed (11,000 L attributed to venting after electrical heating 
had been completed). For comparison, the electrode drip system, which operated essentially 
continuously during the heating phase of the demonstration, added about 21,000 L (5,500 gal) of 
water (approximately 1 to 2 gph per electrode). A small amount of table salt was added to this water 
to increase its conductivity. The salt concentration was within potable water standards (500 mg/L); a 
total of 11 kg (24 Ib) of table salt was injected. 

The permeability of the vented sandy soil can be determined from the flow of air and steam into 
the vent and the pressure at the vent. Figure 3.12 shows the flow entering the well in actual cubic 
ftlminute (acfm). The steam flow was calculated from the rate of condensate collection assuming an 
ideal gas, and the air flow was measured by two oritice meters. During the heating phase, the 
majority of gas flow from the vent was steam, as shown in Figure 3.12. Determining the permeabil- 
ity of the soil is complicated because the steam is generated within the soil. However, the change in 
permeability can be determined qualitatively by calculating the ratio of total tlow over an appropriate 
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Figure 3.12. Flow Rate of the Combined Air and Steam at the Vent in Actual Cubic FeetIMinute 

pressure drop. Figure 3.13 shows this ratio with the pressure drop appropriate for compressible gas 
flow (Dullien 1992). Clearly, the permeability increased during the demonstration. Soil sampling has 
shown that SPSH dried the sand intervals, so reducing the moisture content of the soil is the most 
likely cause of the increased permeability. The soil samples were visually inspected during drilling 
and soil sampling. Although drying made the clay-zone samples dry and brittle, they showed no 
evidence of fracturing and still appeared much less permeable than samples from the adjacent sand 
zones. This supports the conclusion that the permeability increase resulted from drying of the sand 
zones. The peak in Figure 3.13 coincides with the peak steam flow given in Figure 3.12. The 
decrease following the peak in Figure 3.13 results partly from the decreasing steam flow shown in 
Figure 3.12. 

3.4 Effect of Heating on Soil Electrical Resistance 

Soil heating also affects the electrical resistance of the soil. Initially, the resistance decreases 
with increasing soil temperature. However, as the soil dries, the resist ance increases. Figure 3.14 
shows the results for the .mean resistance of the six electrical phases. Between November 7, 1993, 
and November 14, 1993, the resistance decreased smoothly; during this period, the soil temperature 
rose to 100°C. Between November 15, 1993, and November 24, 1993, the resistance went through a 
series of slow increases and drops. The increases are likely due to soil drying near the electrodes. 
The drops resulted from process changes that included adjustments of the water addition rate and 
voltage at individual electrodes. After November 24, 1993, the resistance increased steadily. The 
electrode drip system was stopped on November 29, 1993, but the power level was maintained, caus- 
ing a rapid increase in resistance due to soil drying near the electrodes. 
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Figure 3.13. Effect of Heating and Drying the Permeability of the Vented Soil 

8o t 
6 l  

0 

0 

0 

0 

0 

0 
0 
0 
0 

0 

0 
0 

Figure 3.14. Average Phase Resistance 

3.10 



3.5 Effect of Heating on Off-Gas Concentration 

The ability of temperature increases to accelerate remediation varies depending on the 
mechanism limiting the rate of contaminant mass transfer within the soil. At the Savannah River Site, 
the thick clay zone can impart tremendous mass transfer resistances for removing contaminants from 
the clay. Without heating, remediation of the clay is expected to be limited by diffusion of 
contaminant through water within the clay to the more permeable sand layers where the contaminant 
can be swept away. After heating and partial drying, steam will occupy a portion of the clay pore 
space. At this point, contaminants may transfer from the water into this steam and move within the 
gas phase to the permeable sand layer. Contaminant movement within the gas space may still be 
diffusion limited, or if sufficient water volatilization occurs, convection of contaminant by in situ 
steaming will occur. In addition to altering the dominant mass transfer resistance, heating the soil 
also raises the concentration of the contaminant in air passing through the soil. 

A variety of data can be used to quantify accelerated removal of contaminants from the soil as a 
result of heating. Comparison of soil samples taken from wells inside (hot) and outside (warm) the 
electrode pattern have shown that heating accelerated the removal of PCE and TCE from the clay (see 
Figure 3.10). It was also expected that contaminant concentration in the air drawn from the central 
vent would respond to changes in soil temperature. Figure 3.15 shows the PCE and TCE concentra- 
tion in the off gas. Also shown is an extrapolation of the PCE baseline data without heating. The 
difference between the baseline extrapolation and the off-gas concentration during heating indicates 
the degree of acceleration. Although the data in Figure 3.15 show little acceleration, a number of 
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Figure 3.15. Concentration of PCE and TCE in the Vent Gas Downstream of the Condenser 

3.11 



observations make these data difficult to interpret. In particular, it appears that a more highly con- 
taminated region within the influence of the vent, but outside the heated zone, greatly affected the off- 
gas concentrations. This interpretation is consistent with the uneven soil contamination at the VOCs 
in Non-Arid Soils ID Site. 

Because the permeability of the soil increased as a result of soil drying, the mass rate of con- 
taminant removal increased even though the off-gas concentration varied little. Figure 3.16 shows the 
removal rate of PCE increased from an initial rate of about 5 g/min to 15 g/min. The cumulative 
removal as of December 6, 1993, which was just before the majority of the post-test soil sampling, 
was 475 kg for PCE and 107 kg for TCE. 

The difference between the pre- and post-test soil samples can also be used to calculate the 
amount of contaminant removed from the soil and can be compared to the amount removed in the off- 
gas stream. As mentioned previously, the contaminant was being drawn from beyond the heated 
region, so the amount removed from the vent should be greater than the amount removed based on 
soil measurements. The difference between the pre- and post-test soil samples was integrated over the 
sampled region to give the mass removed based on the soil samples. A number of assumptions were 
necessary to integrate the soil data. To perform the integration, we assumed a uniform soil bulk 
density of 1.9 g/cm3 (120 lb/@), applied the contaminant removal results from each sampled well to 
an appropriate area, and then integrated with a trapezoid rule over the depth. Results for MHV-30 
were applied to the soil up to a radius of 1.2 m (4 ft); MHV-37 between radii of 1.2 and 3.0 m (4 
and 10 ft); MHV-38 between radii of 3.0 and 5.2 m (10 and 17 ft), excluding 1.14 m (3.75 ft) radius 
zones about the electrodes; MHV-39 between radii of 5.2 and 7.9 m (17 and 26 ft); MHV-31 for a 
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Figure 3.16. Mass Removal Rate of PCE and TCE from the Vent 
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1.14 m (3 .754 radius about three electrodes; and MHV-34 for a 1.14-m (3.75-ft) radius about the 
final three electrodes. The assumed uniform density results in calculated removal about 10% lower 
than actual, because SPSH dried the soil and reduced the soil bulk density. 

The soil sample data show 180 kg of PCE and 23 kg of TCE were removed from the soil, which 
is less than the amount removed from the vent. This supports the view that additional contaminant 
was being drawn from outside the heated (and sampled) area, and the additional contaminant removed 
by heating was too little to be detected as a change in the off-gas concentration. Because the removal 
data for the wells within the electrode array are similar, the calculated mass of contaminant removed 
depends weakly on assumptions for appropriate areas. The exception to this is that MHV-34 had very 
high initial PCE contamination near the surface (4500 ppm) where the sampling interval was 5 ft; the 
change in PCE concentration at this location accounts for about half the calculated 180 kg of PCE 
removed. 

3.6 SPSH Energy Usage 

Energy consumption is an important factor in considering the economic feasibility of SPSH 
technology. To address this project objective, data obtained from the field demonstration were used 
to estimate the electrical energy usage per cubic meter of soil treated. 

By using the thermocouple data on vertical and areal heating, it is estimated that approximately 
1100 m3 of soil was heated to above 70°C. At the end of the test, 100,000 kwh of energy had been 
applied to the soil (see Figure 2.5). Combining this energy usage with the rough estimate of the 
heated volume gives an energy usage of 90 kWh/m3, or $7/m3 at $0.07/kwh. As with most heating 
methods, the energy cost to heat the soil is small when compared to the costs for the capital 
equipment for the electrical system, the off-gas destruction system, and the operator time. 
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4.0 Conclusions 

Six-phase soil heating was demonstrated as an effective technology for heating and remediating 
low-permeability soils containing volatile organic compounds. Testing was performed as part of the 
Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration at the Savannah River Site. 
The soil remediated at the integrated demonstration site was initially contaminated with perchloro- 
ethylene and trichloroethylene; the highest soil contamination occurred in clay-rich zones that are 
ineffectively treated by conventional soil vapor extraction because of the very low permeability of the 
clay. The success of the SPSH technology at the Savannah River Site has resulted in the planned use 
of SPSH at the Rocky Flats Plant and consideration by several potential commercial partners for use 
at private industrial sites. 

The following conclusions can be drawn from the SPSH demonstration at the Savannah River 
Site. 

1. 

2. 

3. 

4. 

5. 

6.  

7. 

8. 

9. 

The PCE removal from the clay zone was 99.7% (median) within the electrode array, based on 
a comparison of pre- and post-test soil samples. This removal is due to venting and soil heating 
by tbe SPSH process. 

SPSH accelerated the removal of VOCs from the clay soil, based on the comparison of soil 
remediation inside (99.7%) and outside (93%) the electrode array. 

SPSH effectively heated the clay soil at the Savannah River Site to about 100°C within 8 days, 
and maintained this elevated temperature as the soil was dried. 

The efficiency of contaminant removal increased with increased soil drying due to heating. 

72,000 L (19,000 gal) of condensed steam was removed from the central vent, indicating 
substantial drying of the soil. 

The waterdrip system needed to maintain conduction at the electrodes did not overwhelm the 
removal of moisture from the soil. 21,000 L (5,500 gal) of water, with 500 mg/L table salt, 
were added at the electrodes compared to 72,000 L (19,000 gal) of condensed steam removed 
from the soil. 

Automation and computer control of the SPSH system allowed unattended operation after an 
initial start-up period. 

Off-gas concentrations showed little change during heating, most likely because of a more highly 
contaminated region within the influence of the vent but outside the heated zone. 

Model results for heating as a result of SPSH agree with the temperature data, further validating 
the process simulator as a useful design tool. 
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Appendix A 

Soil VOC Data (Figures) 



The figures in this appendix present the results of the pre- and post-test soil sampling for PCE 
and TCE. The first five pages give a well-by-well comparison of the PCE and TCE soil 
contamination before and after heating with SPSH. These concentration data are averages of the 
duplicate samples taken at each depth. The next two figures in this appendix give the percent 
contaminant remaining after treatment with SPSH for both PCE and TCE. This represents the 
difference between the pre- and post-test samples in adjacent wells. The curves are 3-point running 
averages of the calculated percent contaminant remaining. These data are discussed in Section 3.2 of 
this report. The remaining figures present the individual results of the duplicate samples taken at 
each depth (data points); also shown (lines) are the averages of the duplicate samples. 
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Figure A.2. PCE and TCE Concentrations for Pre-Test (MHV-37) and Post-Test (MHB-37) as a 
Function of Depth from Surface 
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Figure A 3 .  PCE and TCE Concentrations for Pre-Test (MHV-38) and Post-Test (MHB-38) as a 
Function of Depth from Surface 
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Figure A.4. PCE and TCE Concentrations for Pre-Test (MHV-39) and Post-Test (MHB-39) as a 
Function of Depth from Surface 
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Figure AS. PCE and TCE Concentrations for Pre-Test (MHV-34) and Post-Test (MHB-34) as a 
Function of Depth from Surface 
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Figure A.6. Percent PCE Remaining as a Function of Depth from Surface for the Central Vent and 
Observation Wells Owl ,  OW2, and OW3 
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Figure A.7. Percent TCE Remaining as a Function of Depth from Surface for the Central Vent and 
Observation Wells Owl ,  OW2, and OW3 
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Figure A.8. PCE Concentration as a Function of Depth from Surface for Well MHV-30. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.9. PCE Concentration as a Function of Depth from Surface for Well MHB-30. The curve 
plots the average of the duplicate soil measurements at each depth. 
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Figure A.lO. TCE Concentration as a Function of Depth from Surface for Well MHV-30. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A. l l .  TCE Concentration as a Function of Depth from Surface for Well MHB-30. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.12. PCE Concentration as a Function of Depth from Surface for Well MHV-37. The 
curve plots the average of the duplicate’soil measurements at each depth. 

A. 13 



0 

Q) 

0 

MHB-37 PCE Concentration, ppm 
d 

-. 0 
d 0 0 

0 0 0 
d 0 0 0 0 0 

P ? P 
4 0 0 
0 -L ? P 

0 

2 0 0 0 0 0 0 

Figure A.13. PCE Concentration as a Function of Depth from Surface for Well MHB-37. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.14. TCE Concentration as a Function of Depth from Surface for Well MHV-37. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.15. TCE Concentration as a Function of Depth from Surface for Well MHB-37. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.16. PCE Concentration as a Function of Depth from Surface for Well MHV-38. The 
curve plots the average of the duplicate soil measurements at each depth. 

A. 17 

-7 . - 



0 
0 
2 

0 

-.. 
0 

N 
0 

P 
0 

VI 
0 

m 
0 

MHB-38 PCE Concentration, ppm 
d 

0 
0 -. 

P 
-. 

-L 

0 

d 

0 
0 

0 
0 
0 

Figure A.17. PCE Concentration as a Function of Depth from Surface for Well MHB-38. The 
' curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.18. TCE Concentration as a Function of Depth from Surface for Well MHB-38. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.19. TCE Concentration as a Function of Depth from Surface for Well MHV-38. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.20. PCE Concentration as a Function of Depth from Surface for Well MHV-39. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.21. PCE Concentration as a Function of Depth from Surface for Well MHB-39. The 
curve plots the average of the duplicate soil measurements at each depth. 

A.22 



MHB39 TCE Concentration, ppm 
0.001 0.01 . 0.1 1 1 0  100 1000 

I 1 1 
I I 

I 
I 

I 
I 

Figure A.22. TCE Concentration as a Function of Depth from Surface for Well MHB-39. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.24. PCE Concentration as a Function of Depth from Surface for Well MHB-3 1 .  The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.25. PCE Concentration as a Function of Depth from Surface for Well h4HV-31. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.26. TCE Concentration as a Function of Depth from Surface for Well MHV-31. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.27. TCE Concentration as a Function of Depth from Surface for Well MHB-3 1. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.28. PCE Concentration as a Function of Depth from Surface for Well MHV-34. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.29. PCE Concentration as a Function of Depth from Surface for Well MHB-34VD. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.30. TCE Concentration as a Function of Depth from Surface for Well MHV-34. The 
curve plots the average of the duplicate soil measurements at each depth. 
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Figure A.31. TCE Concentration as a Function of Depth from Surface for Well MHB-34VD. The 
curve plots the average of the duplicate soil measurements at each depth. 
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