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Abstract In order to protect the skin from UV radiation,
personal care products (PCPS) often contain chemical UV-
filters. These compounds can enter the environment caus-
ing serious consequences on the water ecosystems. The
aim of this study was to examine, the effect of different
factors, such as UV light, the presence of NaOCl and H2O2

on the formaldehyde formation during popular UV filter, 2-
ethylhexyl 4-(dimethylamino)benzoate (ODPABA) de-
methylation. The concentration of formaldehyde was de-
termined by VIS spectrophotometry after derivatization.
The reaction mixtures were qualitatively analyzed using
GC/MS chromatography. The highest concentration of
formaldehyde was observed in the case of ODPABA/
H2O2/UV reaction mixture. In order to describe two types
of demethylation mechanisms, namely, radical and ionic,
the experimental results were enriched with Fukui function
analysis and thermodynamic calculations. In the case of
non-irradiated system containing ODPABA and NaOCl,
demethylation reaction probably proceeds via ionic mech-
anism. As it was established, amino nitrogen atom in the

ODPABA molecule is the most susceptible site for the
HOCl electrophilic attack, which is the first step of ionic
demethylation mechanism. In the case of irradiated mix-
tures, the reaction is probably radical in nature. The results
of thermodynamic calculations showed that abstraction of
the hydrogen from N(CH3)2 group is more probable than
from 2-ethylhexyl moiety, which indicates higher suscep-
tibility of N(CH3)2 to the oxidation.
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Introduction

In the recent 20 years, the annual consumption of pharmaceu-
ticals and personal care products (PPCPs) has dramatically
increased (Tong et al. 2011). Among PPCPs, sunscreen agents
deserve particular attention. UV filters have been detected in
wastewater, surface water (Poiger et al. 2004; Balmer et al.
2005; Ma et al. 2016), sewage sludge (Eljarrat et al. 2012;
Zuloaga et al. 2012), river sediments (Amine et al. 2012;
Kaiser et al. 2012), bathing waters and swimming pool waters
(Vila et al. 2016; Ekowati et al. 2016), and even in drinking
water (da Silva et al. 2015). The last example indicates the
difficulty of UV filter elimination during waste water treat-
ment. Nowadays, the major concern of UV filter contamina-
tion is their effect on the endocrine system of aquatic organ-
isms (Krause et al. 2012; Kinnberg et al. 2015). Another im-
portant issue is the environmental fate of sunscreen agents.
Recently, there has been a growing interest in the UV filter
degradation research (Pattanaargson and Limphong 2001;
Díaz-Cruz and Barceló 2009; Nakajima et al. 2009; Santos
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et al. 2012; De Laurentiis et al. 2013; Santos et al. 2013;
Gackowska et al. 2014; Hanson et al. 2015; Vione et al.
2015; Gackowska et al. 2016b; Gackowska et al. 2016a; Li
et al. 2016; Tsoumachidou et al. 2016). Many of these studies
included the effect of oxidizing agents on the sunscreen active
ingredient degradation.

Advanced oxidation processes (AOPs) are efficient water
treatment methods utilizing reactive oxygen species genera-
tion. Some examples of frequently used and studied AOPs are
TiO2/UV (Hupka et al. 2006; Thiruvenkatachari et al. 2008),
H2O2, H2O2/UV, O3, O3/UV (Baus et al. 2007; Souza et al.
2016), Fe2+/H2O2, Fe

3+/H2O2 (Gaca et al. 2005; Tong et al.
2011; Khankhasaeva et al. 2012), Fe3+/H2O2/UV (Kumar
et al. 2008; Diagne et al. 2009; Li et al. 2012b; Topac and
Alkan 2016; Tsoumachidou et al. 2016) and Fe2+/UV/S2O8

2−

(Khan et al. 2013; Brienza et al. 2014; Xue et al. 2016).
Unfortunately, in some cases, AOPs fail in formaldehyde
elimination or even contributes to its generation (Can and
Gurol 2003; Wert et al. 2007; Trenholm et al. 2008; Tripathi
et al. 2011; Li et al. 2012a). However, when considering
Fenton-like systems, the effectiveness of formaldehyde re-
moval from its solutions is quite high, even 94% (Murphy
et al. 1989; Kajitvichyanukul et al. 2006; Kowalik 2011;
Guimarães et al. 2012; Méndez et al. 2015).

As it was reported (Emri et al. 2004), even very low con-
centrations of this aldehyde (<10−4 M) causes DNA damage
in human skin cells. The environmental occurrence of form-
aldehyde is caused by the anthropogenic and non-
anthropogenic organic matter oxidation processes, by the re-
lease from resins and from other products, to which it is usu-
ally added as a preservative (Barker et al. 1996; Salthammer
et al. 2010; Madureira et al. 2016; Ochs et al. 2016). One of
the possible natural routes of formaldehyde entrance into the
environment is through biochemical O- and N-demethylation
being a part of metabolic conversions occurring in living or-
ganisms (Kalász 2003; Hagel and Facchini 2010; Farrow and
Facchini 2013). However, there is also non-biochemical in
nature processes of methyl group abstraction. For instance,
formaldehyde can be formed as a result of amine demethyla-
tion in the presence of a disinfecting agent, HOCl (Mitch and
Schreiber 2008; Kosaka et al. 2014). Furthermore, the forma-
tion of low-molecular-weight aldehydes including formalde-
hyde was postulated in the case of photo-induced radical
dealkylation (Bozzi et al. 2002; Görner and Döpp 2003;
Baciocchi et al. 2005). It is worth to mention that potential
formaldehyde precursors with N-alkylated groups such as
drugs (theophylline, caffeine, metamizole, phenazone,
aminophenazone), dyes (methylene blue, methyl orange, crys-
tal violet, malachite green), or quaternary ammonium surfac-
tants are widely used in industry and households and therefore
can enter the aquatic environment (Boethling 1984; Forgacs
et al. 2004; Favier et al. 2015; Zhang et al. 2015). The main
purpose of this paper is to evaluate whether degradation of a

popular representative of this class, UV filter 2-ethylhexyl
4-(dimethylamino)benzoate, also known as octyl-dimethyl-
p-aminobenzoic acid (ODPABA), can be a potential source
of formaldehyde contamination. In order to get a better inside
into the nature of ODPABA demethylation, the local reactivity
analysis and thermodynamic calculations based on the density
functional theory (DFT) were performed. Noteworthy, in the
recent decade, quantum-chemical methods including thermo-
dynamic calculations, reaction path modeling, reactivity anal-
ysis, and QSAR studies have been increasingly used in envi-
ronmental studies (Cysewski et al. 2006; Kurtén et al. 2007;
Blotevogel et al. 2010; Tröbs et al. 2011; Gaca et al. 2011; Elm
et al. 2013; Gackowska et al. 2014; Turkay et al. 2015;
Altarawneh and Dlugogorski 2015; Kurtén et al. 2015;
Mamy et al. 2015; Xie et al. 2015; Myllys et al. 2016;
Gackowska et al. 2016a; Shah and Hao 2016). Fukui function
analysis is a robust and effective approach for evaluating the
susceptibility of the individual atoms to the nucleophilic, elec-
trophilic, and radical attack (Langenaeker et al. 1992; Pilepić
and Uršić 2001; Özen et al. 2003; Martínez et al. 2009; De
Witte et al. 2009; Rokhina and Suri 2012; Barr et al. 2012;
Saha et al. 2012; Allison and Tong 2013; Altarawneh and
Dlugogorski 2015). Previous studies showed that Fukui func-
tion can be successfully used in describing degradation and
chlorination of a popular sunscreen agent 2-ethylhexyl 4-
methoxycinnamate (Gackowska et al. 2014; Gackowska
et al. 2016a). According to our best knowledge, there is no
information in the literature about the ODPABA local reactiv-
ity properties and their potential consequences on the environ-
mental fate. Therefore, the additional aim of this paper is to
utilize Fukui function analysis to describe ODPABA
degradation.

Materials and methods

Materials

All chemicals were purchased from commercial sup-
pliers and used without purification. 2-ethylhexyl
4-(dimethylamino)benzoate (ODPABA, CAS: 21245-02-
3) was obtained from Sigma-Aldrich (USA). Sodium
hypochlorite NaOCl with a nominal free chlorine con-
tent of 100 g/L and H2O2 (30%) were obtained from
POCh (Poland).

Reaction conditions

The reaction mixtures were prepared by dissolving the reac-
tants in 1000ml of water according to the proportions given in
Table 1. The effect of UV irradiation was examined with the
use of photoreactor equipped with a Heraeus, TQ 150W
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medium pressure mercury lamp (200–600 nm), magnetic stir-
rer (200 rpm), and pH meter.

Formaldehyde determination

Formaldehyde was determined in the reaction mixtures using
Method 8110 Powder Pillows test kit and DR3900 Benchtop
VIS Spectrophotometer provided by Hach, USA. This proce-
dure of formaldehyde determination was designed for water
samples by Hach company, based on the older colorimetric
method used for air analysis (Matthews and Howell 1981).
According to the procedure, the samples are derivatized with
3-methyl-2-benzothiazoline hydrazone (MBTH) using the
equipment and chemicals provided in the test kit and then
the resulting blue dye is determined through visible spectro-
photometry (λmax = 630 nm).

GC/MS measurements

After 180 min, the reaction mixture samples (50 mL) were
extracted for 10 min by 1:1 n-hexane:ethyl acetate (10 mL).
Then, so-prepared extracts were dried with anhydrous sodium
sulfate. The ODPABA transformation products were detected
with the use of 5890 HEWLETT PACKARD gas chromatog-
rapher equipped with a MS detector and the ZB-5MS column
(0.25 mm× 30m × 0.25μm). The following chromatographic
conditions were applied: sample volume 1 μL, helium carrier
gas, injector temperature 250 °C, oven temperature program
from 80 to 260 °C at 10 °C/min, from 260 to 300 °C at 5 °C/
min.

Quantum-chemical calculations

The geometry optimizations, frequencies, and thermo-
chemical calculations were carried out at B3LYP/6-31+
G(d,p) level (Krishnan et al. 1980; McLean and Chandler
1980; Clark et al. 1983; Frisch et al. 1984; Lee et al. 1988;
Becke 1988; Miehlich et al. 1989; Becke 1993) with
Gaussian03 software (Frisch et al. 2003). In the case of
open shell reaction intermediates (radicals), unrestricted
procedure (Čársky and Hubač 1991) was applied. In order
to include the effect of the solvent on the molecular struc-
ture, polarized continuum model (PCM) was used (Miertuš
et al. 1981; Miertuš and Tomasi 1982). All structures

considered in this paper were checked for the absence of
imaginary frequencies. Exemplary structural data and fre-
quencies calculated for ODPABA are provided in Online
Resource (Tables S1, S2, S3, and S4). Thermodynamic
analysis was performed utilizing enthalpy values calculat-
ed automatically along with frequencies values according
to the approach presented by Ochterski (2000).

Fukui function values (electrophilic f-, nucleophilic, f + and
radical f 0) were calculated according to previously reported
method (Thanikaivelan et al. 2002; Gackowska et al. 2016a)
using BLYP functional (Lee et al. 1988; Becke 1988;
Miehlich et al. 1989) with DND basis set (version 3.5)
(Delley 2006) and Hirshfeld charge population analysis
(Hirshfeld 1977; Ritchie 1985; Ritchie and Bachrach 1987).
All these computations were performed within DMOL3

(Delley 1990; Delley 1996; Delley 2000) module of
Accelrys Material Studio 7.0 (Accelrys Materials Studio 7
2014). In this study, Fukui function values were calculated
according to the Yang and Mortier procedure (Yang and
Mortier 1986) using the following Eqs. (1–3):

f þ ¼ Q nþ 1ð Þ−Q nð Þ ð1Þ
f − ¼ Q nð Þ−Q n−1ð Þ ð2Þ

f 0 ¼ Q nþ 1ð Þ−Q n−1ð Þ
2

ð3Þ

where Q denotes the Hirshfeld charge and n the number of
electrons in the molecule.

Results and discussion

At the first stage of the study, the effect of popular water treat-
ment and disinfection agents H2O2, NaOCl, and UV irradiation
on the formaldehyde formation was examined. The relation-
ships between formaldehyde concentration increase and reac-
tion time is presented on Fig. 1. As we found, the highest
concentration of formaldehyde was reached in the case of irra-
diated samples. It is worth to mention that according to some
studies (Mopper and Stahovec 1986; Kieber et al. 1990; Zhou
and Mopper 1997; Reader and Miller 2011), there is a relation-
ship between the presence of dissolved organic matter capable
of absorbing UV light and formaldehyde contamination.

Table 1 The reaction conditions
and substrate proportions used in
this study

Reagents ODPABA [mM] H2O2 [mM] NaOCl [mM] UV [W] pH range

ODPABA/UV 0.36 0 0 150 8.44–8.01

ODPABA/NaOCl 0.36 0 10 – 10.45–10.29

ODPABA/NaOCl/UV 0.36 0 10 150 10.30–8.11

ODPABA/H2O2 0.36 10 0 – 8.31–8.05

ODPABA/H2O2/UV 0.36 10 0 150 8.42–6.82
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Interestingly, the concentration of formaldehyde in the case of
ODPABA/UV system is higher than in the case of ODPABA/
NaOCl and ODPABA/H2O2. This shows that photo-induced
demethylation occurs readily even without oxidizing agent ad-
dition. In general, two types of photodegradation reactions can
be distinguished, namely, direct and indirect. According to the
indirect photolysis mechanism, demethylation can be caused by
the reactive species formation in the presence of UV filter act-
ing as a photosensitizer. It has been demonstrated that the oc-
currence of chromophoric dissolved organic matter (CDOM)
contributes to the formation of various transients such as car-
bonate radical (CO3

− •), hydroxyl radical (•OH), singlet oxygen
(1O2), and excited triplet state 3CDOM* (Schwarzenbach et al.
2005; Vione et al. 2010; Kelly and Arnold 2012; Vione et al.
2014; De Laurentiis et al. 2014; Vione et al. 2015; McNeill and
Canonica 2016; Vione 2016). Noteworthy, the presence of
ODPABA and p-aminobenzoic acid (PABA) significantly en-
hance singlet oxygen (1O2) generation in UV-irradiated water
(Allen and Gossett 1996). In the case of ODPABA/NaOCl/UV,
system demethylation is probably induced by the radical attack
of reactive chlorine and oxygen species such as ·OH, Cl·, ·OCl,
·O−, Cl2

·−, and ClOH·− formed in the presence of chlorinating
agent (Feng et al. 2007; Chan et al. 2012; Fang et al. 2014;
Vione et al. 2014). Since ODPABA absorption bands are over-
lapped with emission spectrum bands of the lamp used in this
study (supplementary Fig. S1), direct photodegradation is an-
other potential pathway, which can occur under irradiation con-
ditions. Noteworthy, both direct and indirect mechanisms were
found to be a possible explanation of popular sunscreen agent,
2-ethylhexyl 4-methoxycinnamate degradation in surface wa-
ters (Vione et al. 2015); however, direct photodegradation was
found to be the main route.

As it was reported in previous studies (Sakkas et al. 2003;
Nakajima et al. 2009; Calza et al. 2016; Gackowska et al.

2016b), ODPABA demethylation products were formed in
the case of ODPABA/UV, ODPABA/NaOCl, and ODPABA/
NaOCl/UV systems. The GC/MS analysis presented in this
paper confirmed this observation, since identified mass spec-
tra of demethylated degradation ODPABA products are in
accordance with literature data (Sakkas et al. 2003).
Compounds containing NH2 and NH(CH3) groups were also
detected in the case of ODPABA/H2O2 and ODPABA/H2O2/
UV systems, which have not been studied before. Retention
times of detected compounds in the reaction mixtures are giv-
en in Table 2. Exemplary mass spectra are provided in Online
Resource.

As it was reported (MacManus-Spencer et al. 2011;
Gackowska et al. 2014; Gackowska et al. 2016b;
Gackowska et al. 2016a), 2-ethylhexyl esters easily undergoes
decomposition resulting 2-ethylhexanol. The same observa-
tion can be done for the reaction mixtures considered in this
study. Since mass spectra of 2-ethylhexyl can be found in the
National Institute of Standards and Technology (NIST) data-
base (https://www.nist.gov/), it can be easily identified.

According to fragmentation pathways of ODPABA deriv-
atives presented by Nakajima et al. (2009), a characteristic
McLafferty rearrangement can be observed on the mass spec-
tra. As a result of this reaction, ODPABA molecular ion de-
composes into neutral 3-methyleneheptane (C8H16) and
4-(N ,N-dimethyl)aminobenzoic acid cation radical
(m/z = 166) which corresponds to the most intense peak
(Fig. S4 in the Online Resource). Analogical fragmentation
behavior is observed in case of demethylated ODPABA de-
rivatives (supplementary Figs. S2, S5, S6, and S7), since mass
spectra recorded for those compounds are characterized by the
lowmolecular peaks and the loss of 112 atomicmass units due
to the 3-methyleneheptane molecule elimination.

The presence of dichlorinated compounds in ODPABA/
NaOCl and ODPABA/NaOCl/UV reaction mixtures can be
evidenced by the characteristic chlorine isotope signature.
Since chlorine occurs in the form of two major isotopes,
namely, 35Cl (c.a. 76%) and 37Cl (c.a. 24%), MS spectra of
chlorinated compounds are characterized by the specific pat-
terns. Depending on the number of chlorine atoms in the mol-
ecule, a different isotope signature is observed. The presence
of two atoms causes the appearance of three m/z peaks M
(high intensity), M+2 (lower intensity), and M+4 (the lowest
intensity), due to the three isotope combinations (35Cl/35Cl,
35Cl/37Cl, and 37Cl/37Cl). Hence, in the case of dichlorinated
2-ethylhexyl 4-(methylamino)benzoate, the most intense peak
(m/z = 219) is near to the MS signals at m/z = 221 and
m/z = 223 (supplementary Fig. S6). A similar pattern can be
observed for dichlorinated 2-ethylhexyl 4-aminobenzoate
(Fig. S7).

Although the use of hydrogen peroxide is preferable from
the viewpoint of avoiding unwanted chlorinated compounds,
it contributes to the formation of significant quantities of
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Fig. 1 The effects of different agents on the formation of formaldehyde
during ODPABA demethylation
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formaldehyde (Fig. 1). This is caused by the rapid photode-
composition of H2O2 yielding hydroxyl radicals (OH●).
According to the studies on photo-induced dealkylation in-
cluding demethylation of p-substituted N,N-dimethylaniline
derivatives (Bozzi et al. 2002; Görner and Döpp 2003;
Baciocchi et al. 2005; Podsiadły et al. 2007), the reaction
proceeds through one-electron oxidation followed by the de-
protonation of cation radical resulting in R-Ph-N(CH3)2CH2

●

radical formation (Fig. 2a). This mechanism seems to be a
highly probable explanation of N,N-dialkylated aromatic
amine photodegradation, since the reaction intermediates
namely cation radicals and radicals were observed using spec-
troscopic methods (Görner and Döpp 2002; Zielonka et al.
2004; Podsiadły et al. 2007). On the other hand, when
ODPABA degradation is carried out in the presence of
NaOCl, the reaction probably proceeds via ionic mechanism.
As it was reported in the literature (Ellis and Soper 1954;
Mitch and Schreiber 2008; Kosaka et al. 2014), amine de-
methylation proceeds via the following steps: electrophilic
substitution of HOCl, elimination of HCl, water addition to
the N=CH2 bond, and finally formaldehyde elimination
(Fig. 2b).

The local reactivity of particular atoms in the molecule can
be quantitatively evaluated using conceptual density function-
al theory. The higher the value of Fukui function of considered
atom, the greater its reactivity. At the next stage of this study,
in order to explain the nature of possible ODPABA demeth-
ylation mechanisms, quantum-chemical calculations includ-
ing Fukui function analysis were performed. Since
ODPABA can undergo hydrolysis in the environment, the
local reactivity analysis was extended for ODPABA degrada-
tion product, p-(dimethylamino)benzoic acid (DMABA) and
its zwitterionic tautomer (DMABA-ZW). The Fukui function

values calculated for ODPABA, DMABA, and DMABA-ZW
are summarized in Table 3. Optimized structures along with
atom numbering scheme are given in Fig. 3.

The f- index values calculated for ODPABA and DMABA
are the greatest in the case of amino nitrogen atom. Therefore,
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Fig. 2 Radical (a) and ionic (b) demethylation mechanism of amines
shown on the example of p-substituted N,N-dimethylaniline

Table 2 Retention times and selected MS data of detected compounds

Reaction system Detected compound Linear formula Retention
time (min.)

ODPABA/UV 2-ethylhexyl 4-aminobenzoate H2NC6H4COOCH2CH(C2H5)(CH2)3CH3 18.02

2-ethyl-1-hexanol CH3(CH2)3(C2H5)CHCH2OH 4.17

ODPABA/H2O2 ODPABA (CH3)2NC6H4COOCH2CH(C2H5)(CH2)3CH3 19.44

2-ethylhexyl 4-(methylamino)benzoate (CH3)HNC6H4COOCH2CH(C2H5)(CH2)3CH3 19.11

2-ethyl-1-hexanol CH3(CH2)3(C2H5)CHCH2OH 4.15

ODPABA/H2O2/UV 2-ethylhexyl 4-(methylamino)benzoate (CH3)HNC6H4COOCH2CH(C2H5)(CH2)3CH3 19.24

2-ethylhexyl 4-aminobenzoate H2NC6H4COOCH2CH(C2H5)(CH2)3CH3 18.16

2-ethyl-1-hexanol CH3(CH2)3(C2H5)CHCH2OH 4.16

ODPABA/NaOCl dichlorinated 2-ethylhexyl 4-(methylamino)benzoate (CH3)HNC6H4Cl2COOCH2CH(C2H5)(CH2)3CH3 20.38

dichlorinated 2-ethylhexyl 4-aminobenzoate H2NC6H4Cl2COOCH2CH(C2H5)(CH2)3CH3 19.79

ODPABA (CH3)2NC6H4COOCH2CH(C2H5)(CH2)3CH3 19.50

2-ethyl-1-hexanol CH3(CH2)3(C2H5)CHCH2OH 4.16

ODPABA/NaOCl/UV dichlorinated 2-ethylhexyl 4-(methylamino)benzoate (CH3)HNC6H4Cl2COOCH2CH(C2H5)(CH2)3CH3 20.27

2-ethyl-1-hexanol CH3(CH2)3(C2H5)CHCH2OH 4.15
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one may consider that ODPABA and DMABA readily under-
go reactions involving this reactive site. This is not trivial
observation since, in the case of aromatic amines, the amino
group is conjugated with phenyl ring, which causes reduction
of the negative charge density on the nitrogen atom. This
effect is even more pronounced in the case of push-pull sys-
tems, i.e., when there is an electron accepting substituent at-
tached in para position (as it is in the case of ODPABA and
DMBA). Obviously, low negative charge density implies a

low susceptibility of the atom to the electrophilic attack.
However, in the case of ODPABA and DMBA, the nitrogen
atom is even more suitable for electrophilic substitution than
orto- (C30, C34) and para- (C32) positions in phenyl ring.
Therefore,N-chlorination seems to be more favored than elec-
trophilic substitution on the benzene ring. However, these re-
sults do not exclude the possibility of phenyl ring chlorination.
Although in general aromatic amines are more prone for C-
chlorination than for N-chlorination, there are some

Table 3 Radical f0, nucleophilic f+, and electrophilic f- Fukui function values calculated for hydrogen atoms in ODPABA, DMABA, and its
zwitterionic tautomer DMABA-ZW (atom numbering according to Fig. 3)

Atom ODPABA Atom DMABA Atom DMABA (ZW)

f + f- f 0 f + f- f 0 f + f- f 0

H1 0.022 0.028 0.025 H1 0.023 0.028 0.026 H1 0.036 0.018 0.027
H2 0.023 0.040 0.032 H2 0.022 0.036 0.029 H2 0.023 0.006 0.014
H3 0.019 0.034 0.026 H3 0.022 0.036 0.029 H3 0.024 0.007 0.016
H4 0.022 0.028 0.025 H4 0.023 0.028 0.026 H4 0.052 0.018 0.035
H5 0.023 0.040 0.032 H5 0.022 0.036 0.029 H5 0.022 0.006 0.014
H6 0.018 0.033 0.026 H6 0.022 0.036 0.029 H6 0.019 0.007 0.013
H7 0.028 0.031 0.029 H7 0.029 0.032 0.031 H7 0.040 0.030 0.035
H8 0.032 0.029 0.031 H8 0.034 0.030 0.032 H8 0.030 0.026 0.028
H9 0.028 0.031 0.029 H9 0.029 0.033 0.031 H9 0.034 0.028 0.031
H10 0.033 0.030 0.032 H10 0.034 0.031 0.032 H10 0.029 0.026 0.027
H11 0.014 0.010 0.012 H11 0.040 0.029 0.034 H11 0.109 0.015 0.062
H12 0.014 0.010 0.012 C12 0.061 0.041 0.051 C12 0.048 0.023 0.035
H13 0.003 0.001 0.002 C13 0.042 0.064 0.053 C13 0.050 0.037 0.044
H14 -0.007 -0.008 -0.008 C14 0.074 0.036 0.055 C14 0.056 0.037 0.046
H15 0.005 0.004 0.004 C15 0.042 0.066 0.054 C15 0.061 0.037 0.049
H16 0.004 0.002 0.003 C16 0.063 0.042 0.053 C16 0.042 0.022 0.032
H17 0.008 0.005 0.007 C17 0.045 0.087 0.066 C17 0.076 -0.008 0.034
H18 0.009 0.007 0.008 N18 0.044 0.109 0.077 N18 0.033 0.006 0.020
H19 0.001 0.000 0.000 C19 0.017 0.028 0.023 C19 0.028 0.010 0.019
H20 0.003 0.002 0.003 C20 0.017 0.028 0.023 C20 0.038 0.010 0.024
H21 0.007 0.006 0.006 C21 0.104 0.031 0.068 C21 0.022 0.093 0.058
H22 0.003 0.002 0.003 O22 0.125 0.077 0.101 O22 0.066 0.274 0.170
H23 0.002 0.001 0.002 O23 0.067 0.034 0.050 O23 0.064 0.274 0.169
H24 0.002 0.002 0.002
H25 0.004 0.003 0.003
H26 0.007 0.006 0.006
H27 0.003 0.002 0.003
C28 0.097 0.024 0.060
C29 0.072 0.034 0.053
C30 0.040 0.063 0.052
C31 0.062 0.042 0.052
C32 0.048 0.086 0.067
C33 0.058 0.040 0.049
C34 0.040 0.061 0.051
N35 0.041 0.112 0.077
C36 0.016 0.028 0.022
O37 0.044 0.019 0.031
O38 0.114 0.062 0.088
C39 0.001 0.000 0.000
C40 0.003 0.002 0.003
C41 −0.001 −0.001 −0.001
C42 0.002 0.001 0.001
C43 0.009 0.007 0.008
C44 0.002 0.002 0.002
C45 0.005 0.004 0.004
C46 0.003 0.003 0.003
C47 0.016 0.028 0.022
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exceptions including drugs with N-alkylated moieties, e.g.,
fluoroquinolones (Weinberg et al. 2007). The resulting N-
chlorinated aromatic amines can rearrange to the C-chlorinat-
ed compounds or decompose. C-chlorination is of course a
competitive reaction to the HCl elimination step of demethyl-
ation mechanism (Fig. 2b). Noteworthy, as it was reported in
the previous works (Sakkas et al. 2003; Gackowska et al.
2016b), both chlorinated and demethylated compounds were
formed in ODPABA/NaOCl reaction mixture, which is also
consistent with the results presented in this study (Table 2). In
the case of zwitterionic form of ODPABA hydrolysis product,
DMABA-ZW, the nitrogen atom is not susceptible for the
electrophilic attack due to the attached H11 proton (Fig. 3c).
Noteworthy, the pKa1 and pKa2 values of DMABA are 6.03
and 11.49, respectively (Haynes et al. 2014), and so, the iso-
electric point pI is 8.76. Therefore, in the case of ODPABA/
NaOCl system where the pH ranges from 10.45 to 10.29
(Table 1), the most dominant formwould be neutral DMABA.

As it was mentioned, the R-Ph-N(CH3)2CH2
● radical is

one of the photo-induced demethylation intermediates
(Fig. 2a). According to a different mechanism proposed

for Michler ketone demethylation (Lu et al. 2009), the
initial step of the reaction is radical attack to the hydrogen
atom from the N(CH3)2 group. It is worth to note that the
thermodynamic stability of reactive organic species like
radicals and carbocations is an important factor determin-
ing which reaction pathway is more kinetically favored.
This is so because, according to the Hammond rule
(Hammond 1955), transition states are energetically simi-
lar to the reaction intermediates. Hence, these reaction
paths are more preferred which involve low energy inter-
mediates. The radical formed via hydrogen atom abstrac-
tion from the N(CH3)2 group is probably highly stabilized
by the π-electron delocalization. Selected resonance struc-
tures illustrating unpaired electron delocalization in R-Ph-
N(CH3)2CH2

● radical are shown on supplementary
Fig. S7 (Online Resource). In order to evaluate the stabil-
ity of radicals formed via hydrogen atom abstraction from
ODBABA molecule, quantum-chemical thermodynamic
calculations of the hypothetical reactions with hydroxyl
radical were performed (Fig. 4). This analysis showed that
OH● attack to the methyl group attached to nitrogen atom

Fig. 3 Visual representation of
optimized molecular structures of
ODPABA (a), DMABA (b), and
its zwitterionic tautomer
DMABA-ZW (c) along with
atom numbering scheme
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is the most thermodynamically favored (abstraction of
H1-H6 atoms). Obviously, formation of phenyl radical is
the least probable (H7-H10 abstraction), since it is well
known that the radical stability decreases in the order
tertiary > secondary > primary > phenyl. As one can see
from Fig. 4, the enthalpy change of OH● attack on the
H13 atom is highly negative in comparison to other hy-
drogen atoms in 2-ethylhexyl moiety. The significant sta-
bility of formed in this reaction tertiary radical can be
explained by the hyperconjugation effect. Nevertheless,
according to the Fukui function, analysis OH· attack on
2-ethylhexyl moiety is highly unfavorable. As it can be
inferred from Table 3, f 0 values of the 2-ethylhehyl group
hydrogen atoms are significantly smaller than in other
cases. Therefore, oxidation of methyl groups attached to
amino nitrogen is the more preferable pathway of formal-
dehyde formation than oxidation of methyl groups in 2-
ethylhexyl moiety.

Although the above local reactivity and thermodynamic
analysis was found to be consistent with experimental
results, it should be taken into account that calculated
values are strongly dependent on the computation level.
In this study, a low-computational-cost method, namely,
B3LYP/6-31+(d,p), was used. Due to its efficiency,
B3LYP is probably the most extensively used functional
including UV filter modeling (Alves et al. 2011; Corrêa
et al. 2012; Ferreira et al. 2014; Miranda et al. 2014;
Gackowska et al. 2014; Garcia et al. 2015; Gackowska
et al. 2016a). It is worth mentioning that structures opti-
mized using B3LYP functional and double zeta basis sets
were successfully used for UV absorption property predic-
tion of 2-ethylhexyl 4-methoxycinnamate (Alves et al.
2011; Miranda et al. 2014) and benzophenone sunscreen
agents (Corrêa et al. 2012). Many studies demonstrated
that thermodynamic parameters calculated using B3LYP
functional and double zeta basis sets were in good accor-
dance with experimental results (Muñoz-Muñiz and
Juaristi 2002; Guner et al. 2003; Li et al. 2003; Ling

Qiu et al. 2006; Chirico et al. 2016). Nevertheless, the
B3LYP approach does not include dispersion effects that
might be important in the case of the molecules stabilized
by the intramolecular interactions (Seebach et al. 2010;
Steinmann et al. 2010; DiLabio et al. 2013).

Conclusions

Since formaldehyde has been recognized as a toxic and carci-
nogenic compound, it has been numerous attempts to deter-
mine the anthropogenic and non-anthropogenic sources of its
release to the environment. In this study, a popular UV filter
ODPABA degradation in the presence of water treatment and
disinfection agents (UV irradiation, NaOCl, H2O2) was exam-
ined. As it was established, the highest concentration of form-
aldehyde was achieved in the case of irradiated reaction mix-
tures. This is understandable, since N-alkylated aniline deriv-
atives can undergo dealkylation under radical reaction condi-
tions. On the other hand, ODPABA demethylation in the pres-
ence of water disinfecting-agent, NaOCl, probably proceeds
via ionic mechanism.

Since the environmental fate of chemical compounds is
closely related to their reactivity, quantum-chemical calcu-
lations can be used as a powerful tool in predicting and
describing degradation pathways. It is worth to mention
that this approach was utilized in the previous studies deal-
ing with degradation of 2-ethylhexyl methoxy cinnamate
(Gackowska et al. 2014; Gackowska et al. 2016a).
According to presented herein, Fukui function values anal-
ysis, amino nitrogen atom is the most suitable for electro-
philic substitution reaction, which is the initial step of ionic
mechanism (Ellis and Soper 1954; Mitch and Schreiber
2008; Kosaka et al. 2014). Thermodynamic calculations
showed that abstraction of the hydrogen atom from the
N(CH3)2 group during radical demethylation reaction is
more preferable than from 2-ethylhexyl moiety.
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Experimental and theoretical studies on the emerging con-
tamination degradation in the presence of various environ-
mentally relevant agents are helpful in determining which
chemical compounds may be formed during real processes
taking place in nature and during wastewater treatment.
Therefore, carrying out of such research may contribute to
better monitoring of toxic compounds in the environment.
The presented results in this paper indicate that the presence
of ODPABA in water can cause a significant formaldehyde
contamination. Therefore, also, other methyl group-
containing compounds should be tested for the ability of form-
aldehyde formation when assessing the environmental risk.
Since photo-induced ODPABA demethylation occurs readily
even without oxidizing and chlorinating agent addition, there
is a need to examine the concentration of formaldehyde in
bathing and swimming pool waters. Moreover, formaldehyde
even in very small amounts can cause DNA damage in the
human skin cells (Emri et al. 2004). This is important in the
context of possible mutagenic action affected by the release of
this compound on the skin from ODPABA containing-
cosmetics under the influence of UV radiation.
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