
FINAL REPORT 

Evaluating the Use of Spatially Explicit Population Models to 
Predict Conservation Reliant Species in Nonanalogue Future 

Environments on DoD Lands 

SERDP Project RC-2512 

AUGUST 2020 

Brian Hudgens 
Jessica Abbott 
Institute for Wildlife Studies 

Nick Haddad 
Institute for Wildlife Studies 
Kellogg Biological Station, Michigan State University 

Elsita Kiekebusch 
Institute for Wildlife Studies 
Kellogg Biological Station, Michigan State University 
North Carolina State University 

Allison Louthan 
Institute for Wildlife Studies 
Duke University, Durham, NC 
Kansas State University 

William Morris 
Duke University 

Lynne Stenzel 
Point Blue Conservation Science 

Jeffrey Walters 
Virginia Tech 

Distribution Statement A 



  

This report was prepared under contract to the Department of Defense Strategic 
Environmental Research and Development Program (SERDP). The publication of this 
report does not indicate endorsement by the Department of Defense, nor should the 
contents be construed as reflecting the official policy or position of the Department of 
Defense. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or 
imply its endorsement, recommendation, or favoring by the Department of Defense. 
  



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, 
Suite 1204, Arlington, VA  22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of 
information if it does not display a currently valid OMB control number.  PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYY)
21-08-2020

2. REPORT TYPE
SERDP Final Report 

3. DATES COVERED (From - To)
June 2015 – August 2020  

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 
W912HQ-15-C-0051 

Evaluating the Use of Spatially Explicit Population Models to Predict 
Conservation Reliant Species in Nonanalogue Future Environments on DoD 

5b. GRANT NUMBER 
RC-2512 
5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

Hudgens, Brian; Abbott, Jessica; Haddad, Nick; Kiekebusch, Elsita; 
Louthan, Allison;  
Morris, William; Stenzel, Lynne; Walters, Jeffrey  

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Institute for Wildlife Studies 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

Strategic Environmental Research and Development Program SERDP 
4800 Mark Center Drive, Suite 16F16 11. SPONSOR/MONITOR’S REPORT

Alexandria, VA 22350-3605 NUMBER(S)

RC-2512 
12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A. Approved for public release: distribution unlimited. 

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Predicting which species will need ongoing management is valuable for planning and prioritizing natural resource management 
needs on Department of Defense managed lands. We developed and tested an empirical protocol and theoretical framework for 
determining if target species are likely to become conservation reliant because of changing climatic conditions. We used time series, 
space-for-time studies and experimental manipulations to determine climate drivers of demographic rates for seven focal species. We 
used these relationships and downscaled global climate change models to predict population level changes for each species under 
future climate scenarios, and developed a process for identifying the importance of different aspects of a species life history in 
shaping population responses. Three of the 49 populations evaluated across all seven species were projected to respond negatively to 
projected changes in local climate conditions. Populations most at risk for becoming conservation reliant were those in the warmest 
parts of the species ranges, while populations in the coolest parts of species ranges tended to benefit from projected changes in 
climate. The demographic rate most responsible for shaping population responses to projected climate change varied among species 
and among populations within a species15. SUBJECT TERMS 
Climate change, conservation, demographic rates, demographic models, non-analogue environmental conditions, mark-recapture, 
conservation-reliant species 
16. SECURITY CLASSIFICATION OF: U 17. LIMITATION

OF ABSTRACT
18. 
NUMBER 
OF

19a. NAME OF RESPONSIBLE PERSON 
Brian Hudgens 

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

UU  
179

19b. TELEPHONE NUMBER (include area code) 
707-496-4725

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std. Z39.18

RC-2512 

RC-2512 



 

Table of Contents 
1 Abstract 1 
2 Executive Summary 1 

2.1 Introduction 2 
2.2 Objectives 2 
2.3 Technical Approach 4 
2.4 Results and Discussion 6 
2.5 Implications for Future Research and Benefits 10 

3 Objective 11 
4 Technical Approach 12 

4.1 Background 12 
4.2 Methods 14 

4.2.1 Data collection 16 
4.2.1.1 Hydaspe Fritillary Butterfly (Speyeria hydaspe) 16 
4.2.1.2 Appalachian brown butterfly (Satyrodes appalachia) 22 
4.2.1.3 Western snowy plover (Charadrius nivosus nivosus) 27 
4.2.1.4 Red-legged frog (Rana aurora and R. draytonii) 30 
4.2.1.5 Alaskan douglasia (Douglasia alaskana) 40 
4.2.1.6 Venus Flytrap (Dionaea muscipula) 42 
4.2.1.7 Red-cockaded woodpecker (Dryobates borealis) 47 

4.2.2 SEED models 49 
4.2.2.1 Hydaspe Fritillary Butterfly (Speyeria hydaspe) SEED model 50 
4.2.2.2 Appalachian brown Butterfly (Satyrodes appalachia) SEED model 52 
4.2.2.3 Western snowy plover (Charadrius nivosus nivosus) SEED model 54 
4.2.2.4 Red-legged frog (Rana aurora and R. draytonii) SEED model 55 
4.2.2.5 Alaskan douglasia (Douglasia alaskana) SEED model 58 
4.2.2.6 Venus Flytrap (Dionaea muscipula) SEED model 59 
4.2.2.7 Red-cockaded woodpecker (Dryobates borealis) SEED model 60 

4.2.3 Climate Contribution Index (CCI) 62 
5 Results and Discussion 63 

5.1 Relationships between demographic rates and climate variables 63 
5.1.1 Hydaspe Fritillary Butterfly (Speyeria hydaspe) 63 

 
 

ii 



5.1.2 Appalachian brown Butterfly (Satyrodes appalachia) 69 
5.1.3 Western snowy Plover (Charadrius nivosus nivosus) 73 
5.1.4 Red-legged frog (Rana aurora and R. draytonii) 76 
5.1.5 Alaskan douglasia (Douglasia alaskana) 85 
5.1.6 Venus flytrap (Dionaea muscipula) 87 
5.1.7 Red-cockaded woodpecker (Dryobates borealis) 90 

5.2 Projecting future population growth rates 92 
5.2.1 Hydaspe Fritillary Butterfly (Speyeria hydaspe) 92 
5.2.2 Appalachian brown Butterfly (Satyrodes appalachia) 95 
5.2.3 Western Snowy Plover (Charadrius nivosus nivosus) 99 
5.2.4 Red-legged frog (Rana aurora and R. draytonii) 103 
5.2.5 Alaskan douglasia (Douglasia alaskana) 107 
5.2.6 Venus flytrap (Dionaea muscipula) 108 
5.2.7 Red-cockaded woodpecker (Dryobates borealis) 109 

5.3 Climate Contribution Index (CCI) 111 
5.4 Species Integration and Discussion 115 

6 Conclusions 119 
7 Literature Cited 123 
8 Appendices 135 
 
List of Tables 
Table 4.2-1. Study site locations, elevations, and demographic rates measured at each site each 

year. Demographic rates: F = Fecundity, E = Egg hatch rates, L = Larval survival, A = Adult 
survival. ..................................................................................................................................... 17 

Table 4.2-2. Red-legged frog study sites with the species, location, and breeding pool type list, as 
well as which demographic rates were measured at each study site each breeding season. 
Demographic rates: F = Fecundity, E = Egg hatch rates, T = Tadpole survival, M = 
Metamorph survival, A = Adult survival. Sites are named by whether they were inland or 
coastal and which species of RLF was there (NRLF = northern re-legged frog, CRLF = 
California red-legged frog). ....................................................... Error! Bookmark not defined. 

Table 4.2-3. Basic matrix showing parameterization for transition rates. The six parameters 
contributing to the early life stage transition rate are: Fb = proportion of adult females 
breeding, Em = eggs per mass, H = egg hatch success rate, Sh = recruitment into tadpole 
population, Sd = tadpole daily survival, n = tadpole stage length (days), and Ms = metamorph 
survival. The later life stage transition rates are: J1s = J2s = juvenile survivorship, and As = 
adult survivorship...................................................................................................................... 40 

Table 4.2-4. Climate variables present in the annual and monthly global models for regional and 
local water balance, climatic water deficit, and temperature/ precipitation. The terms shown 
here were present in the global model for each demographic rate x climate variable x 
annual/monthly time frame, and we then used AICc to determine which subset of the terms 

 
 

iii 



best predicted demographic rates, also allowing other terms such as years since fire (both 
linear and quadratic). The first letter of the subscript indicates the time period of the effect; “a” 
(annual) represents effects over the entire year, whereas “w” (wettest), “d” (driest), “h” 
(hottest), “c” (coldest) or indicate characteristics of extreme months. The second subscript for 
temperature variables indicates whether the variable is regional (“r”) or local (“l”). The 
monthly temperature and precipitation models have terms for temperature (but not 
precipitation) of the coldest month, but the water balance and climatic water deficient models 
do not because temperature alone, rather than water stress, likely affects coldest-month 
performance. Note that for probability of survival or fruiting, we did not include any quadratic 
precipitation terms (Pw

2 , Pd
2), nor terms including temperature in the wettest month (e.g., Tw, r 

, Tw, r × Pw) and for probability of reproduction, we did not include a quadratic temperature in 
the coldest month term (e.g., Tc, r

2) in the monthly temperature and precipitation models, as 
there were not enough data to reliably fit these terms. ............................................................. 46 

Table 4.2-5. Hydaspe fritillary butterfly demographic rates used in the SEED model with 
functional forms and parameter values. .................................................................................... 51 

Table 4.2-6. Site specific locations, egg predation rates (egg.pred), average number of eggs laid 
per female per day (eggs), and logit transformed egg viability rates (baseline.hatch). ............ 51 

Table 4.2-7. Western snowy plover demographic rates used in the SEED model with functional 
forms and parameter values. ..................................................................................................... 55 

Table 4.2-8. Red-legged frog demographic rates used in the SEED model with functional forms 
and parameter values. ................................................................................................................ 57 

Table 4.2-9. Red-legged frog primary month when breeding occurs (breed.month), average SVL 
of females captured (mean.SVL), and the logit transformed egg viability rates (hatch.base) for 
each sites. .................................................................................................................................. 58 

Table 5.1-1. Model selection tables for analyses of the effects of temperature on egg viability and 
post-diapause (spring) larval survival. Parameter estimates from the top models that were used 
in the SEED models can be found in Table 4.2-5. .................................................................... 64 

Table 5.1-2. Results from generalized linear models testing the effects of climate on population 
growth rate and phenology measures. Only the best performing model for each phenology 
measure is presented. For each model the degrees of freedom, Akaike Information Criteria 
corrected for small (AICc), and difference in AICc between the top and the next best 
performing is presented. For each parameter in the top model the parameter estimate, standard 
error, t-value, and p-value are presented. Precipt = total precipitation in year t,  ln Nt = natural 
log of the male population size in year t, GDD = growing degree days, melt date = ordinal day 
of the year when the last snow of the season had completely melted. ...................................... 68 

Table 5.1-3. Highest ranked generalized linear mixed effect models for egg and larval survival 
(binomial) and daily fecundity (quasipoisson). Bolded values indicate p <0.05. ..................... 70 

Table 5.1-4. Top five CJS models for survival of Snowy Plovers breeding in the Monterey Bay 
area, CA and wintering in Recovery Unit 4, which encompasses Monterey Bay.  Terms in the 
models include a trend (T), mean maximum daily temperature for November-February 
(maxT), duration-amplified cold score (DACS), and precipitation (prec), see Methods for 
explanation if variables.  Parameters are estimated separately for the sexes.  Detection is time 
dependent.  K is number of parameters, QDev is Quasi-Deviance.  QAICc for the top model is 
5172.94...................................................................................................................................... 74 

Table 5.1-5. Results of single factor temperature models for the start of the breeding season, with 
adjusted R2, parameter estimates (Par Est) and standard errors (SE), parameter significance 

 
 

iv 



(Par Sig), for November-January (NJ), February (Fb), March (Mr), 1-10 March (M1), 11-21 
March (M2), and 22-31 March (M3) mean temperatures (Temp), and November-February 
duration-amplified cold score (DACS) ..................................................................................... 75 

Table 5.1-6.  Results of global model variants using temperature and precipitation data from four 
March time periods with similar data from November-January (NJ) and February, and the 
November-February duration-amplified cold score (DACS).  Significant (p≤0.05) parameters 
listed under each of the model variants. .................................................................................... 75 

Table 5.1-7. Model selection for the effects of male age (first-time breeder versus older breeder) 
and date of first clutch initiation on the total number of young fledged in a breeding season.  
Estimates shown with standard errors (SE). CID1 is the initiation date of the first nest of the 
season ........................................................................................................................................ 76 

Table 5.1-8. Model selection table for fecundity (eggs/mass) analyses. Explanatory variables 
included: total precipitation from the prior breeding season (precip.), a quadratic relationship 
with average female snout vent length (SVL) by site, site, and species (R. aurora vs. R. 
draytonii)................................................................................................................................... 77 

Table 5.1-9. Model selection table for analyses of the effects of temperature on egg viability. 
Parameter estimates for the top model that were used in the SEED models can be found in 
Table 4.2-8. ............................................................................................................................... 78 

Table 5.1-10. Model selection table for the effects of hydroperiod length, food availability, and 
bullfrog treatment on froglet survival. ...................................................................................... 80 

Table 5.1-11. Model selection table for analyses of the effects of hydroperiod (Hydro), average 
mean daily temperature (temp), and food availability (food) on froglet survival in the warming 
and control tanks. Model rankings were the same regardless of which temperature measure 
was included.............................................................................................................................. 82 

Table 5.1-12. Model selection table for analyses of the effects   development time (Days + 
days^2) hydroperiod (Hydro), growing degree days (GDD), and food availability (food) on 
froglet snout vent length  (SVL) in the warming and control tanks ......................................... 83 

Table 5.1-13. Coefficient estimates (first row) and standard error (second row) of coefficient 
estimates for each demographic rate and used in this study. Coefficients significant at the 0.05 
level are shown in bold; coefficients in italics are marginally significant (P< 0.06). We also 
show estimates of seedlings per fruit (recruitment) for each population. ................................. 86 

Table 5.1-14. Climate variables present in the best-fit models for each demographic rate. We 
show a “1” if a linear term is present, a “2” if a quadratic term is present, “3” if a categorical 
term is present, and an “x” if an interaction with this term is present (note that we did not find 
any interactions between annual precipitation2 and temperature2). A “+” or a “-“ suffix 
indicates the sign of the effect. “NA” indicates that we did not test for the effect. For climate 
variables, plain text indicates a local climate variable and italics indicate a regional variable. 
Note that we were not able to look for an effect of climate on recruitment. ............................ 88 

 
List of Figures 
Figure 2.3-1. Locations of study populations for each species. Circles mark population locations 

and are color-coded by species. .................................................................................................. 5 
Figure 2.4-1. Summary of temperature and precipitation effects on demographic rates of the 

seven study species. Color coding shows positive (blue), negative (red) and mixed (purple) 
effects of increasing either temperature or precipitation on egg production and survival (left-
most column for each species), larval survival or plant growth (middle column for each 

 
 

v 



species) and adult survival (right-most column for each species). Mixed effects include 
quadratic nonlinear terms, different effects during different times of year and different effects 
on different demographic rates aggregated to these summary life stages (e.g., small tadpole 
survival, large tadpole survival, and froglet survival all contribute to red-legged frog juvenile 
survival in this figure). ................................................................................................................ 6 

Figure 2.4-2. SEED model projections for annual population growth rates for all study species. 
Dark solid lines show the median projected annual growth rate from SEED model runs linked 
to projected climate data from 5-20 downscaled global climate models. Dashed light lines 
show the 5th (bottom) and 95th (top) percentile of projected annual growth rates. For the 
Appalachian brown butterfly and Venus flytrap we ran a single model based on data from all 
population on Fort Bragg. For the other species we created at least two models from different 
populations across sites that varied in climate. For species with more than one model we 
present the results from the most southern and northern (or lowest and highest elevation for 
the hydaspe fritillary butterfly) populations that we studied. Southern (or low elevation) 
population growth rate projections are in red and northern (high elevation) are in blue. ........... 8 

Figure 2.4-3. Demographic rates predicted to change the most due to differences in climate 
conditions (outline and horizontla lines), have the highest demographic sensitivity (vertical 
lines) and have the largest CCI score (filled) for two butterfly and two frog species. For 
Appalachian brown butterflies the highest climate sensitivity and demographic rate sensitivity 
are associated with first generation demographic rates while the largest CCI score is associated 
with fecundity in the second generation. Northern red-legged frog demographic rate 
elasticities differed from sensitivities with adult survival having the highest elasticity. ............ 9 

Figure 4.2-1. Locations of study populations for each species. Circles marking population 
locations are color-coded by species. ........................................................................................ 15 

Figure 4.2-2 Hydaspe fritillary butterfly study locations in California and Oregon. ................... 16 
Figure 4.2-3 Red-legged frog study locations in California and Oregon. .................................... 31 
Figure 4.2-4. Hydroperiod treatments for captive experiment. Drying rate is the same across all 

hydroperiod treatments and shortened by changing the start day of water draw down. ........... 37 
Figure 4.2-5. Map of South Central Alaska in grey, with the approximate range of Alaskan 

douglasia indicated by the black polygon (Hulten). Populations used in this work are indicated 
by dots, and the labels of populations correspond to those of other figures. E2 and E1 are 
offset from one another to allow readability. ............................................................................ 40 

Figure 4.2-6. Counties in North and South Carolina where Venus flytraps were found historically 
are shown in green (United States Department of Agriculture 2019b). We also show 
approximate locations of our populations using points; populations indicated by red points 
included both observational and experimental work, whereas populations in black only 
included observational work. .................................................................................................... 43 

Figure 5.1-1. Predicted relationships between climate variables and demographic rates from the 
best performing models. Graphs a and b show the relationships we found between temperature 
and egg viability (a) or spring larval survival (b). Graph c depicts the relationship between 
average daily minimum temperature and the expected life span of adults based on daily 
survival estimates from mark recapture analyses (intercept represents the mean of all sites). 
The points represent the relationship when the annual precipitation total is equal to the mean 
across sites and years. The lines represent the relationship with different precipitation levels 
from the lowest to highest experienced at any site/year. Lines are spaced in 100 mm 
precipitation increments. ........................................................................................................... 66 

 
 

vi 



Figure 5.1-2. Effects of male population size and precipitation on population growth rates. a) 
Relationship between the natural log of the male population size in year t (ln Nt) and growth 
rate (r). b) Relationship between total precipitation in year t and population growth after 
accounting for the effects of male population size (residuals of the relationship between ln Nt 
and r). ........................................................................................................................................ 66 

Figure 5.1-3. Relationships between climate variables included in the best performing model and 
phenology measures (a-g) and between climate and nectar plant senescence date (h). Climate 
variables include growing degree days (GDD) and snow melt date as an ordinal date. 
Phenology measures included the length of the flight period (a,e), the ordinal date that flight 
period starts (b,f), the ordinal date of the peak (highest adult abundance) of the flight period 
(c,g), and the ordinal date that the flight period ends (d). Graphs for snow melt date show the 
relationship between melt date and phenology measure after accounting for the effects of 
GDD (residuals of the relationship between melt date and each phenology measure). Nectar 
plant senescence date is the ordinal date that the hydaspe’s primary nectar plant was fully 
senesced. Points are color coded by site and the legend for all graphs is in graph d. ............... 69 

Figure 5.1-4. Daily egg survival and total larval survival by average of daily maximum 
temperatures during each generation. Lines represent highest ranked model for each life stage.
................................................................................................................................................... 70 

Figure 5.1-5. Effect of average of daily maximum temperatures in oviposition chambers, on 
number of eggs laid per day. Line represents a quasipoisson fit of the highest ranked model, 
which includes the additive effect of maximum temperature and its square. ........................... 71 

Figure 5.1-6. Changing proportion of individuals developing directly into third flight period 
adults by ordinal date that eggs were laid. Points represent 1 or 2 clutches (always 2 clutches 
per date, so single points on one date represent 2 clutches). Curve represents binomial fit 
predicting that 50% of eggs are laid on the ordinal date of 216. The critical photoperiod by 
definition occurs on this date. ................................................................................................... 72 

Figure 5.1-7. Relationship between average daily maximum temperature and egg (a) or larval (b) 
survival. Circles represent data from Michigan and triangles represent data from South 
Carolina ..................................................................................................................................... 73 

Figure 5.1-8. a) Annual DACSs. B) Annual mean maximum daily temperatures. Years of high 
cold snap scores (DACS) in blue c) Annual survival of western snowy plover females (dashed 
lines) and males (solid lines), indicating estimate and 95% CI of estimate. ............................ 74 

Figure 5.1-9. Relationship between fecundity and total precipitation during the previous breeding 
season after accounting for the relationship between eggs/mass and SVL (residuals of the 
relationship shown). Parameter estimates used in the SEED model can be found in Table 4.2-8
................................................................................................................................................... 77 

Figure 5.1-10. Predicted relationships between the average daily maximum air temperature and 
egg viability across all sites from our best performing model. Lines are color coded by site. . 78 

Figure 5.1-11. Average length of time for tadpoles to froglet once reaching 35 mm plotted 
against the average daily mean temperature from the global climate model used to simulate 
stage progressions at three representative northern red-legged frog breeding sites. ................ 79 

Figure 5.1-12. Projected survival of red-legged frog adults plotted against quarterly mean 
minimum temperature; to go into red-legged frog field study results section. ......................... 79 

Figure 5.1-13. a) The proportion of tadpoles that completed metamorphosis for each of the five 
hydroperiod treatments. The three shortest hydroperiod treatments had 0 tadpoles to complete 
metamorphosis. b) Variation of snout-to-vent lengths from froglets from the two longest 

 
 

vii 



hydroperiod lengths grouped by bullfrog and food level treatments in captive experiment. The 
bold line, triangle, box, whisker, and dots represent the median, mean, 25% and 75% 
quantiles, 95% confidence interval, and outliers. ..................................................................... 81 

Figure 5.1-14. Variation of snout-to-vent lengths from froglets from the two longest hydroperiod 
lengths grouped by bullfrog and food level treatments in captive experiment. The bold line, 
triangle, box, whisker, and dots represent the median, mean, 25% and 75% quantiles, 95% 
confidence interval, and outliers. ............................................... Error! Bookmark not defined. 

Figure 5.1-15. Relationship between development time and size at metamorphosis for froglets 
reared in warming and control tanks. ........................................................................................ 82 

Figure 5.1-16. Canopy cover effect on tadpole survival. Values and errorbars are the log odds 
ratio of estimated tadpole daily survival in the closed mesocosms compared to open 
mesocosms, and associated lower and upper confidence limits. Estimates are from the top 
performing tadpole survival model. .......................................................................................... 84 

Figure 5.1-17. Demographic rate functions for probability of survival (A), mean size after one 
year of growth (B), probability of fruiting (C), and number of fruits given fruiting (D) for a 
plant of median size. For A, we show how the impact of precipitation in the coldest month 
changes with coldest month conditions in the year prior. For example, if the coldest month in 
the year prior was warm and dry, then the probability of survival over a given year depends 
more strongly on precipitation in the coldest month of the current year. For B and C, we show 
how the impact of temperature varies with the associated precipitation during the same 
interval. ..................................................................................................................................... 87 

Figure 5.1-18. Examples of effects of climate and years since fire (A, B, C), and of experimental 
treatments (D) on demographic rates for a plant of mean size. Solid lines show the mean 
predicted demographic rates while holding all other climate variables or years since fire 
constant at the mean values. Dashed lines and error bars show 95% confidence intervals 
calculated across 500 bootstrap replicates. Panel A illustrates an interaction between 
precipitation and temperature in the warmest month; namely, we show how the effect of 
temperature in the warmest month differs with precipitation in that month (we show 
predictions for the 50th and 10th quantiles of driest month precipitation values from 2015-
2018). B and C show demographic rate functions with intermediate optima (with the optima 
shown with grey vertical lines), and C illustrates how these optima differ with temperature in 
warmest month (we show predictions for the 10th and 90th quantiles of warmest-month 
temperature). D shows effects of experimental manipulations of fire effects at two populations, 
and effects of an unanticipated fire at our Coastal population. Note that fire did not occur at 
the inland population. ................................................................................................................ 89 

Figure 5.1-19. The effect on D. muscipula population growth rate of experimental neighbor 
removal, neighbor removal plus ash addition, and of an accidental fire at the coastal 
population (which caused neighbor removal, ash addition, and tissue damage). We show the 
difference in population growth rate between the specified condition and an unmanipulated, 
unburned control for two separate populations, one inland and one coastal. Error bars indicate 
95% confidence intervals, where confidence intervals incorporate parameter uncertainty). A 
value of zero, indicated by the grey line, indicates no effect of a given condition on population 
growth. ...................................................................................................................................... 90 

Figure 5.1-20. Coefficients of climate signals in the best-fit mixed model for each climate driven 
demographic rate. Bars indicate SE of coefficients. Months include all days in that month. The 

 
 

viii 



wide SE in panel E is likely due to relatively few instances of this demographic rate (second 
and later nests are relatively rare compared to first nests). ....................................................... 92 

Figure 5.2-1. Projected changes in climate variables impacting hydaspe fritillary butterflies at six 
sites. Values represent the difference in the median projected climate between 2041-2050 and 
2006-2016 from 20 downscaled GCM data sets. ...................................................................... 93 

Figure 5.2-2. Projected changes in hydaspe fritillary butterfly demographic rates at six sites. 
Values represent the difference in the demographic rates between 2041-2050 and 2006-2016 
given the mean climate data from 20 downscaled GCM data sets at each site during each 
period. Two demographic rates, eggs per day and winter larval survival, are not expected to be 
affected by projected changes in climate conditions. ............................................................... 94 

Figure 5.2-3. SEED model projections for annual hydaspe fritillary butterfly population growth 
rates at six sites from 2007-2050. Dark solid lines show the median projected annual growth 
rate from SEED model runs linked to projected climate data from 20 downscaled global 
climate models. Dashed light lines show the 5th (bottom) and 95th (top) percentile of projected 
annual growth rates. .................................................................................................................. 95 

Figure 5.2-4. Projected changes in Appalachian brown butterfly demographic rates at six sites. 
Values represent the difference in the demographic rates between 2051-2060 and 2016-2025 
given the mean climate data from 20 downscaled GCM data sets at each site during each 
period. ....................................................................................................................................... 96 

Figure 5.2-5. Projected annual population growth rate for Appalachian brown butterflies over the 
years 2016-2100. The solid line represents the median and the dashed lines represent the 5th to 
95th percentile range from the output of 20 GCMs. .................................................................. 97 

Figure 5.2-6. Projected annual population growth rate for Appalachian brown butterfly over the 
years 2016-2100 assuming all caterpillars from second generations undergo diapause (left 
panel) or direct development (right panel). Solid line shows median projected growth rate and 
grey shows the range between the 5th and 95th percentile from the output of 20 GCMs. ......... 97 

Figure 5.2-7. Projected temperatures for eggs (a) and larvae (b) with projected demographic rates 
respectively (c, d). Solid line represents median and shading represents 5-95% range from 20 
GCMs. Michigan projected egg and larval survival rates are truncated as temperatures ranges 
occurring before 2058 were not tested in our experiments. In Michigan, our greenhouse 
temperatures were higher than those recorded in the field during 2018. We only projected 
demographic rates over temperature ranges that matched our experimental greenhouse 
temperatures. For the egg survival rates, this began in the 2040s, and for the larval survival 
rates this began in the 2050s (c and d). ..................................................................................... 98 

Figure 5.2-8. Projected changes between 2010-2020 and 2051-2060 in climate variables 
influencing western snowy plover demographic rates. Climate variables include average daily 
maximum and minimum winter temperatures and average daily mean temperatures during 
March (a), and duration-amplified cold scores (DACS) (b). .................................................... 99 

Figure 5.2-9. Projected changes in western snowy plover demographic rates at 24 sites 
considered in isolation (a) or accounting for dispersal (b). Values represent the difference in 
the demographic rates between 2051-2060 and 2010-2020 given the mean climate data from 
20 downscaled GCM data sets at each site during each period. ............................................. 100 

Figure 5.2-10. SEED model projections for annual western snowy plover population growth rates 
at four sites from 2010-2060 considered in isolation (left) or accounting for dispersal (right). 
Dark solid lines show the median projected annual growth rate from SEED model runs linked 
to projected climate data from 20 downscaled global climate models. Dashed light lines show 

 
 

ix 



the 5th (bottom) and 95th (top) percentile of projected annual growth rates. The populations 
represent the northernmost known breeding site (Midway Beach), our study site (Monterey 
Bay), and breeding sites on Department of Defense lands (Navy Base Coronado is represented 
by the Tijuana Estuary). .......................................................................................................... 102 

Figure 5.2-11. Projected changes between 2015-2024 and 2051-2060 in annual population 
growth rates. Bars show the difference in the 10 year average annual growth rate at each site 
projected from 20 runs of the western snowy plover SEED model, with each run linked to a 
different global climate model. Blue bars show projected change when dispersal is not 
included, and red bars show change with dispersal included in the model. ........................... 103 

Figure 5.2-12. Projected change in climate drivers of red-legged frog demographic rates. Bars 
show the difference in the average projected values between 2010-2020 and 2040-2050 from 
20 downscaled global climate models for the climate variables indicated on the x-axis. Each 
bar corresponds to a red-legged frog breeding site included in the study. Left to right position 
of each site corresponds to its north to south location. Blue bars are northern red-legged frog 
sites, purple bars are hybrid sites, and red bars are California red-legged frog sites. ............. 104 

Figure 5.2-13. Projected changes in red-legged frog demographic rates between 2010-2020 and 
2040-2050. Bars show the change associated with the in the average value for each 
demographic rate assuming the average projected climate conditions during each period from 
20 global climate models. Each bar corresponds to a red-legged frog breeding site included in 
the study. Left to right position of each site corresponds to its north to south location. Blue 
bars are northern red-legged frog sites, purple bars are hybrid sites, and red bars are California 
red-legged frog sites ................................................................................................................ 105 

Figure 5.2-14. SEED model projections for annual red-legged population growth rates at four 
sites from 2010-2050. Dark solid lines show the median projected annual growth rate from 
SEED model runs linked to projected climate data from 20 downscaled global climate models. 
Dashed light lines show the 5th (bottom) and 95th (top) percentile of projected annual growth 
rates. The four sites were chosen to be representative of the patterns observed across inland vs. 
coastal sites for the two species. ............................................................................................. 107 

Figure 5.2-15. Projected annual population growth rates for Alaskan douglassia through 2070 for 
populations in the Southern (a) and Northern (b) portion of our study area. The solid line 
represents the median and the dashed lines represent the 5th to 95th percentile range from the 
output of 5 GCMs. .................................................................................................................. 108 

Figure 5.2-16. Projected annual population growth rate for Venus flytraps through 2100 with a 
three-year burn cycle. The solid line represents the median and the dashed lines represent the 
5th to 95th percentile range from the output of 20 GCMs. ....................................................... 109 

Figure 5.2-17. Projected annual population growth rates for red-cockaded woodpecker through 
2100 for populations in on Eglin Air Force Base (a), Camp Lejeune (b), and Fort Bragg (c). 
The solid line represents the median and the dashed lines represent the 5th to 95th percentile 
range from the output of 20 GCMs. ........................................................................................ 110 

Figure 5.3-1. Demographic rate sensitivities for hydaspe fritillary butterflies (a), Appalachian 
brown butterflies (b), and red-legged frogs (c). Bars indicate the sensitivity of annual 
population growth rates to a small change in the demographic rate. ...................................... 112 

Figure 5.3-2. Climate contribution indices for hydaspe fritillary butterflies (a), Appalachian 
brown butterflies (b), and red-legged frogs (c). ...................................................................... 114 

 
  

 
 

x 



List of Appendices 
Appendix 8.1. GCM projections used in this manuscript for future climate correlations, 

downscaled to a 4 km x 4 km grid using the MACA method. 
Appendix 8.2 Observed nectar plant usage by adult hydaspe fritillary butterflies during mark-

recapture surveys at each site. Primary nectar plants (those with the most observations) are 
listed first for each site. 

Appendix 8.3 Relationship between the metric of size used in our demographic rate functions 
and IPMs (length of longest leaf x number of leaves) v. total leaf area. Here, total leaf area is 
calculated using the measured length and width of each leaf and assuming it is elliptical. R2 is 
0.8334, and the correlation between the variables is large (rho= 0.91) and significant (P = 
2.2e-16). 

Appendix 8.4 Parameter estimates (in first row) and standard error of parameter estimates (in 
second row) for best-fit models for each demographic rate from the Venus Flytrap 
experimental tests of fire effects. Parameter estimates significant at the alpha =  0.05 level are 
shown in bold. The absence of a parameter estimate indicates the parameter was not present in 
the best-fit model for the demographic rate. The last column shows the results of an 
ANCOVA testing for overall effect of condition on each demographic rate, using plant size as 
a covariate; the first row is the chi-square value (for binomial models) or the F-value (for 
linear models) for the condition effect, and the second row is the associated p-value. 
Condition effects significant at the alpha =  0.05 level are shown in bold. For recruitment, we 
show the difference between observed values for the indicated condition and the value of the 
control condition. 

Appendix 8.5 Generalized SEED model code 
Appendix 8.6 Snowy plover migration table. Values are the expected proportion of individuals 

migrating from a given site to each potential overwinter site. Site abbreviations listed below 
table. 

Appendix 8.7 Tadpole stage lengths (days from hatching to metamorphosis) predicted at each 
site each year for the 20 climate projection models (see Appendix 8.1). Site labels are 
abbreviated as follows, first letter: C = coastal, I = inland; second letter; C = CRLF, H = 
Hybrid, N = NRLF. 

Appendix 8.8 Model selections table for the analyses of the effects of climate on hydaspe 
fritillary butterfly egg laying rate. Climate variables include average maximum daily 
temperature while females were in the oviposition containers and snow melt date at each 
site/year. Other measures of temperature (daily mean and minimum) were correlated with 
maximum temperature and performed similarly. Neither climate variable was significant in a 
model that included site. 

Appendix 8.9 Model selection tables analyses of the effects of climate on hydaspe fritillary 
butterfly egg predation rate over the entire course of the predation trials. All models included 
female as random effect. While all model performed similarly, maximum temperature was 
never significant in any model 

Appendix 8.10 Model selection table for analyses of the effects of climate variable and site 
differences on hydaspe fritillary overwinter larval survival. The climate variables tested 
include: average daily minimum, maximum, and mean temperature recorded in larval cups 
between larvae being placed in the duff and first snow fall, the coldest winter temperature 
recorded in the cups, and snow melt date in the spring. All climate measures were correlated 
(|r|>0.5) and were the same value within site, so we only included one variable at a time in the 

 
 

xi 



models. While many of the temperature measures performed similarly or even very slightly 
better than the intercept only model, the p-values for temperature were always greater than 
0.1. 

Appendix 8.11 Model selection table for analyses of the effects of climate variable and site 
differences on hydaspe fritillary adult survival. The climate variables tested include: average 
daily minimum, maximum, and mean temperature recorded between sample occasions, and 
total annual (water year) precipitation. 

Appendix 8.12 Table showing model results from tadpole survival analysis in the canopy cover 
experiment. 

Appendix 8.13 Non-climate drivers of demographic rates. For fixed effect categorical variables, 
indicate the coefficient for each categorical variable (note that the missing categorical 
variable’s coefficient is estimated at zero), and for fixed effect numeric variables, we indicate 
the magnitude of the coefficient. For random effects, we show the standard deviation of the 
random effect. All numeric predictor variables are scaled, such that the magnitudes of the 
coefficients are comparable. 

 
List of Acronyms 
AIC: Akaike information criterion 
AICc: Corrected Akaike information criterion 
CCI: Climate contribution index 
CI: 95% confidence interval 
CJS: Cormack-Jolly-Seber 
CRLF: California red-legged frog 
CV: Coefficient of variatio 
DACS: Duration-amplified cold scores 
DIC: Deviance information criterion 
DoD: Department of Defense 
DPS: Distinct population segment 
ED: Environmentally driven 
FRI: Fire return interval 
GCM: General circulation model 
GDD: Growing degree days 
IMP: Integral projection model 
IUCN: International Union for Conservation of Nature 
JBER: Joint Base Elmendorf Richardson 
MACA: Multivariate Adapted Constructed Analogs 
MODIS: Moderate Resolution Imaging Spectroradiometer 
NFS: National Forest Service 
NRLF: Northern red-legged frog 
PG&E: Pacific Gas and Electric 
QAICc: Quasi-binomial corrected Akaike information criterion 
SEED: Spatially explicit environmental driver 
SERDP: Strategic Environmental Research and Development Program 
SNAP: Scenarios Network for Alaska and Arctic Planning group 
SVL: snout-vent length 
USACE: United States Army Corps of Engineers  

 
 

xii 



UTM: Universal transverse mercator 
VIE: Visible implant elastomer 
 
Keywords  
Climate change, conservation, demographic rates, demographic models, non-analogue 
environmental conditions, mark-recapture models, conservation-reliant species 

Acknowledgements 
This report relies heavily on work done by graduate students: Kelcy McHarry and Lindsey 
Gordon; research technicians and colleagues: Heather Cayton, Melissa Harbert, Melina 
Keighron, Henry Gwynn, Jenny McCarty, Ben Pluer, Victoria Amaral, Neha Savant, Kyoko 
Okano, Sam Christman, Aviva Hirsch, Gary Page, Matthew Reiter, Rachel Newell and Autumn 
Hudgens; students and colleagues who contributed years or decades to data collection for the 
non-experimental species. We also thank the many individuals who collected the data from red-
cockaded woodpeckers used in this project, especially Kerry Brust and Jay Carter from the 
Sandhills Ecological Institute. We thank Gary Kauffman for helping us locate Venus Flytrap 
sites and Sarah Sanders for providing report feedback. We also thank the land managers who 
allowed us to conduct research on their properties: DoD, USACE, PG&E, NFS, H. J. Andrews 
experimental Forest, Mendocino Redwood Company, Green Diamond, Humboldt Bay National 
Wildlife Refuge, Big Gun Conservation Bank, Joint Base Elmendorf-Richardson, Alaska State 
Parks, and Denali and Wrangell-St. Elias National Parks. Specials thanks to Stacy Huskins, 
Jackie Britcher, Brain Ball, and Jessie Schillaci at Fort Bragg, NC; Susan Cohen, Craig Ten 
Brink and Gary Haught at Camp Lejeune; Bruce Hagedorn and Kathy Gault at Eglin Air Force 
Base; Rhys Evans at Vandenberg Air Force Base.
  

 
 

xiii 



1 Abstract 
Introduction and objectives: The Department of Defense (DoD) is responsible for managing 
threatened, endangered, and rare species inhabiting its properties. Predicting which of these 
species will need ongoing management due to changing climate conditions is valuable for 
planning and prioritizing natural resource management needs. We developed and tested an 
empirical protocol and theoretical framework for determining if target species are likely to 
become conservation reliant in the future.   
Technical approach: We tested the empirical protocol using seven species: hydaspe fritillary 
butterfly (Speyeria hydaspe), Appalachian brown butterfly (Satyrodes Appalachia, western 
snowy plovers (Charadrius nivosus nivosus), red-legged frogs (Rana aurora and R. draytonii), 
Alaskan douglasia (Douglasia alaskana), Venus flytraps (Dionaea muscipula) and red-cockaded 
woodpeckers (Dryobates borealis). These species are either special status species or closely 
related surrogates for special status species managed on or near DoD properties. We used time 
series or space-for-time data and experimental manipulations to determine how climate 
influences the demographic rates of each species. We then used these relationships and 
downscaled global climate change models to build Spatially Explicit Environmental Driver 
(SEED) models to predict population level changes for each species under future climate 
scenarios. We also developed another tool, the Climate Contribution Index (CCI) that identifies 
the relative importance of different aspects of a species life history in shaping population 
responses to climate change. 
Results: Climate influenced demographic rates in numerous and complex ways. In many cases, 
demographic rates were affected by multiple climate variables, and it was not uncommon for the 
same climate variable to have opposing effects on different demographic rates. We found that 
projected population growth rates for our seven study species were typically either unaffected or 
positively influenced by future climate change. Only three of the 49 populations evaluated across 
all seven species were projected to have decreasing growth rates under future climate conditions. 
The populations most at risk for becoming conservation reliant due to climate change were those 
in the warmest parts of the species ranges. On the other hand, populations in the coolest parts of 
species ranges tended to benefit the most from projected changes in climate. Like the responses 
themselves, the demographic rate most responsible for shaping population responses to projected 
climate change varied among species and among populations within a species.  
Benefits: This project provides three main benefits to the DoD and other federal and nonfederal 
land managers. First, we identified many of the obstacles that need to be overcome when 
determining if a species is likely to be negatively (or positively) affected by projected changes in 
climate. Second, we developed and demonstrated the use of two tools to overcome those 
challenges. Both SEED models and CCI incorporate climate-demographic relationships 
throughout a species’ life cycle to: 1) predict how a species will respond to non-analogue climate 
conditions, and 2) to provide insight into which stages of the life cycle play shape that response. 
These tools can be used to prioritize future species management needs and evaluate potential 
mitigation actions. Third, we identified that many North American species will likely not require 
more intensive conservation efforts due to climate change. Management priorities aimed at 
existing threats, such as mitigating habitat destruction or invasive species are recommended. 
However, populations on the warmer edges of species ranges, particularly species with a large 
latitudinal or altitudinal range, are at greater risk, and thus should be evaluated more carefully.  
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2 Executive Summary 

2.1 Introduction 
In recent decades, climate change has had a negative impact on many species through 

changes in phenology (Walther et al. 2002, Parmesan and Yohe 2003, Chen et al. 2011) and 
demographic rates (Saether et al. 2000, Radchuk et al. 2013, Urban et al. 2016). The magnitude 
and multitude of changes associated with climate change pose several challenges to long term 
planning for wildlife management and endangered species conservation. Many species are 
currently conservation reliant, requiring ongoing, intensive management to persist. Even those 
that currently need only minimal or one-time management may become conservation reliant in 
the future (Scott et al. 2010). Long-term planning would benefit from knowing which species 
will be influenced by climate change and which species will require more, or less, intensive 
management given future environmental conditions. 

The difficulty in this challenge is that not all species will respond to climate change in the 
same way, as specific demographic rates (e.g. survival to reproductive age/stage classes, 
fecundity) have different optimal environmental conditions, which could result in little, or even 
positive, change to population growth with changing conditions (Deutsch et al. 2008). 
Furthermore, relationships between climate variables and demographic rates may be nonlinear 
(Doak and Morris 2010). Thus, predicting how populations will be affected by non-analogue 
future climate conditions is particularly difficult based on field observations alone. Instead, such 
predictions generally require population models to integrate changes in multiple demographic 
rates. Determining the overall impact of climate change on population growth requires 
integrating the effects of changing temperatures (and other climate drivers) over all life stages in 
an environmentally driven (ED) population model. Relationships between climate variables and 
demographic rates are typically measured using three possible approaches: 1) time series: using 
annual variation in climate and long-term demographic data from a single location, 2) space-for-
time: measuring demographic rates across populations currently experiencing different climates 
(requires fewer years of data), and 3) experimental: measuring demographic rates under a range 
of controlled climate conditions.  

In addition to integrating climate-demographic rate relationships across a species' life 
cycle, predictive models need to account for one or more spatial processes. First, projected 
climate variables used to determine demographic rates of different populations of a species are 
specific to the locations occupied by those populations. Second, for many species, migration or 
dispersal among different locations is a relevant factor influencing the modeled population(s), 
and the resulting redistribution of individuals in space must be tracked within the model. 
Consequently, models should be Spatially Explicit (SE). We developed Spatially Explicit 
Environmental Driver (SEED) models for a range of species. SEED models are a powerful tool 
because they: 1) allow researchers to explore combinations of environmental variables not 
currently seen but likely to be encountered in the future (non-analogue environments); 2) can 
include numerous scenarios to account for uncertainty in future environmental conditions; 3) 
accommodate influences of both local environmental conditions and surrounding landscape 
features; and 4) can be evaluated at multiple time steps to inform predictions about transient 
dynamics in a non-stationary world. 

2.2 Objectives 
The goal of this project was to develop and test an empirical protocol and theoretical 

framework for determining if target species are likely to become conservation reliant as global 
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climate change creates novel environments in and around DoD lands. Specifically, we: 1) used 
downscaled global climate change models (GCMs) to predict plausible temperature and water 
regimes faced by managed species on military lands; 2) used time series or space-for-time data 
and experimentally created non-analogue environments to determine how demographic rates for 
a suite of species are expected to change given future predicted temperature and precipitation 
regimes; 3) built Spatially Explicit Environmental Driver (SEED) models to predict population 
level changes expected to occur under non-analogue environmental conditions predicted to be 
present in the future; and 4) compared SEED model population dynamic predictions across 
species to explore characteristics that might make species or populations more likely to be 
negatively impacted by climate change. In addition, we developed a metric integrating both the 
sensitivity of demographic rates to projected changes in climate conditions and influence of 
those same demographic rates on population growth rates, the Climate Contribution Index (CCI) 
to measure the contribution of different life stages to population response to climate change.  
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2.3 Technical Approach 
We studied seven species of animals and plants: hydaspe fritillary butterfly (Speyeria 

hydaspe), Appalachian brown butterfly (Satyrodes Appalachia), western snowy plovers 
(Charadrius nivosus nivosus), red-legged frogs (Rana aurora and R. draytonii), Alaskan 
douglasia (Douglasia alaskana), Venus flytraps (Dionaea muscipula) and red-cockaded 
woodpeckers (Dryobates borealis). For the butterfly, frog, and plant species we collected 
demographic data from populations that varied in current climate conditions (space-for-time 
approach). For the two bird species we used previously collected demographic data from long 
term (>20 yrs) studies (time series approach). For the two butterfly species and the frogs we also 
conducted controlled experiments where we pushed climate conditions beyond those currently 
experienced at our field sites. These experiments allowed us to compare results in a controlled 
manipulation to those from the field in order to validate our field results. We also manipulated 
non-climate related variables for some species in order to examine the potential impacts of 
habitat and antagonistic interactions with other species on climate responses by our focal species. 
For each animal species we evaluated: the influence of climate on the following vital rates: 
fecundity, egg hatch rates, larval/juvenile survival, and adult survival. For the two plants we 
evaluated: seed production, germination rate, and size specific survival and growth rates. Study 
locations for each species can be found in Figure 2.3-1. 

For each species we used our measured climate-demographic rate relationships in 
combination with climate projection models to develop SEED models. SEED Models can project 
how populations would be impacted by predicted changes in local climates. These SEED models 
are defined by two salient characteristics. First, year to year changes in population size are 
predicted from a set of equations describing the relationship between demographic rates and 
relevant climate variables. In each future year, the predicted demographic rates change with the 
projected values of the climate variables on which they depend. Second, the models are spatially 
explicit. Projected climate variables used to determine demographic rates of different populations 
of a species are specific to the locations occupied by those populations. If migration or dispersal 
among different locations is a relevant factor influencing the modeled population(s), the resulting 
redistribution of individuals in space is tracked within the model.   
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Each SEED model includes six primary components. The first component is the location 

of each modeled population in the landscape, which allows each population to be linked with the 
proper downscaled climate projections. This also allows inter-site distances to be calculated for 
distance-based estimates of dispersal and/or migration probabilities. If there are non-climate 
related site-specific differences in demographic rates, this information is included in the 
landscape information. The second component is the relevant downscaled climate projection 
data. For populations outside of Alaska, we used projections that employed the Multivariate 
Adaptive Constructed Analogs (MACA) (Abatzoglou, Brown, 2011) method to downscale 
projections from the RCP8.5 Emissions Scenario for 20 global climate models to a 4 km2 
resolution. For populations of Alaskan douglasia, we used estimates of monthly temperature and 
precipitation for Emissions Scenario RCP8.5 from the CMIP5/AR5 models from the Scenarios 
Network for Alaska and Arctic Planning group (SNAP). The third component is the set of 
functions used to calculate all demographic rates expected for each population during each time 
step given its location and projected climate conditions. This step varies substantially from 
model to model, depending on each species' life history and how it is influenced by different 
climate variables. The fourth component is the integration of demographic rates across the life 
cycle to calculate changes in population size from year to year in each population. The fifth 
component is dispersal and/or migration as appropriate. This component is intertwined with the 

Figure 2.3-1. Locations of study populations for each species. Circles mark population locations and are color-coded 
by species.  
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previous component, with the timing of spatial redistribution due to dispersal/migration relative 
to other demographic rates dependent on each species’ life history. The final component is SEED 
model output, which is a record of the numbers of individuals at each population in each stage 
during each time step.  

2.4 Results and Discussion 
Most species we studied were affected by multiple climate drivers, with strong nonlinear 

effects in some cases (Figure 2.4-1). Our study species with the most complex life histories had 
no fewer than nine different climate variables impacting demographic rates. Only Appalachian 
brown butterflies were influenced by a single climate variable (mean temperature during the life-
stage), but there was a threshold effect in both egg hatch rates and larval survival. In fact, 
without experimentally elevating temperatures above those experienced at Fort Bragg during our 
study, we would not have detected these thresholds. As a consequence, we would have not been 
able to predict the reduction in egg or larval survival in the non-analogue climate conditions 
projected to be the new normal within the next decade.  

 
Figure 2.4-1. Summary of temperature and precipitation effects on demographic rates of the seven study species. 
Color coding shows positive (blue), negative (red) and mixed (purple) effects of increasing either temperature or 
precipitation on egg production and survival (left-most column for each species), larval survival or plant growth 
(middle column for each species) and adult survival (right-most column for each species). Mixed effects include 
quadratic nonlinear terms, different effects during different times of year and different effects on different 
demographic rates aggregated to these summary life stages (e.g., small tadpole survival, large tadpole survival, and 
froglet survival all contribute to red-legged frog juvenile survival in this figure). 

We found contrasting effects of climate across different life stages for most our study 
species. Only for the Appalachian brown butterfly and western snowy plover were the effects of 
climate on demographic rates all in the same direction. Opposing effects of climate across 
demographic rates may serve as a buffer, reducing the overall impacts of climate change on 
population growth rates (Doak and Morris 2010). This buffering effect likely contributed to the 
lack of effects of climate on population growth rates in some of our study species. For example, 
in red-cockaded woodpeckers increasing temperatures decreased post-fledging survival but 
increased adult survival. Likewise, in Alaskan douglasia increasing temperatures negatively 
affected reproductive demographic rates but increased survival and growth.  

We found temperature to be a factor in every demographic rate that was sensitive to 
climate except for the clutch size of the first nest and probability of double brooding in red-
cockaded woodpeckers and fecundity in re-legged frogs. In general, we found more negative 
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impacts of warming on early life stages. Warming reduced post-fledging survival in red-
cockaded woodpeckers, and in Appalachian brown butterflies the only demographic rate not 
negatively impacted by temperature was adult survival. With the exception of the Venus flytrap, 
survival of the adult/plant life stage of all the species we studied either benefited or was 
unaffected by increased temperatures. Temperature-driven phenological shifts also acted to 
buffer the effects of climate change. For the Appalachian brown butterfly this shift led to an 
additional generation. Adding this generation into our SEED models improved population 
growth rates, although not enough to prevent future population declines.  

Most projected population growth rates in our study were unaffected or positively 
influenced by future climate change (Figure 2.4-2). Of the 49 different populations we evaluated, 
only 3 (6.1%) are projected to have lower future population growth rates due to climate change. 
Positive effects of climate change on growth rates may seem unexpected, but this result is 
consistent with predictions for ectotherms in temperate regions, where species typically have 
broad thermal tolerances and often experience temperatures that are below their thermal 
optimum. Warming is generally expected to increase fitness of ectotherms living at higher 
latitudes, while for ectotherms living near their thermal optimum at lower latitudes, even 
moderate warming could have negative impacts on population growth rates as fitness typically 
drops steeply at temperatures above the thermal optimum (Deutsch et al. 2008, Angilletta 2009). 
This suggests that populations closer to the southern periphery of their range would be most at 
risk from warming temperatures, which is what we observed. All three populations projected to 
be adversely affected by climate change, Appalachian brown butterflies at Fort Bragg, NC and 
the two California red-legged frog populations at Vandenberg Air Force Base, are at the southern 
end of their species ranges (Figure 2.4-2). Among the remaining populations, there was a general 
trend for populations at warmer locations to respond less favorably to projected warming 
conditions than populations at cooler locations. This pattern held true not only for the ectotherm 
animals in our study, but also for snowy plovers. It is not obvious for Alaskan douglasia whether 
the southern or northern population currently experiences warmer conditions, because the 
northern population is closer to the coast and buffered from temperature extremes. 
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Figure 2.4-2. SEED model 
projections for annual discrete 
population growth rates (λ) for all 
study species. Dark solid lines show 
the median projected annual growth 
rate from SEED model runs linked 
to projected climate data from 5-20 
downscaled global climate models. 
Dashed light lines show the 5th 
(bottom) and 95th (top) percentile of 
projected annual growth rates. For 
the Appalachian brown butterfly 
and Venus flytrap we ran a single 
model based on data from all 
populations on Fort Bragg. For the 
other species we created at least 
two models from different 
populations across sites that varied 
in climate. For species with more 
than one model we present the 
results from the most southern and 
northern (or lowest and highest 
elevation for the hydaspe fritillary 
butterfly) populations that we 
studied. Southern (or low elevation) 
population growth rate projections 
are in red and northern (high 
elevation) are in blue. 
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Based on our SEED model results, two of our study species appear to be exceptions to this 
pattern, Venus flytrap and red-cockaded woodpecker. Both of these species occupy a smaller 
latitudinal range (spanning 10° or less) than the butterflies, red-legged frogs, or snowy plover, 
each of which have species ranges spanning at least 15° of latitude. The narrow distribution of 
Venus flytrap and red-cockaded woodpecker is clearly linked to specialized habitat requirements 
unrelated to climate. While our SEED models suggested little difference between the response of  
red-cockaded woodpecker populations to climate change in the northern and southern portions of 
their range, previous work has found evidence that this species may be more susceptible to 
climate change at the southern end of its range. Garcia 2014 and DeMay and Walters 2019 found 
that red-cockaded woodpecker productivity was high and increasing in the northeastern portion 
of the range, but low and decreasing in the southwestern portion. Two of the populations we 
analyzed for the SEED model are located at the northeastern edge of the species’ range (Lejeune, 
Sandhills), and one is located in the southwestern portion of the range (Eglin). Our modeling of 
relationships of demography to climate in red-cockaded woodpeckers was driven more by the 
large samples available from the two northern populations than the small samples from the 
southern one, which may account for the similar projections across populations.  

We did not find a general pattern relating climate effects on any particular life stage to 
climate change effects on future population growth. For example, negative effects of warming 
temperatures on tadpole survival rates had a strong influence on the coastal California red-legged 
frog populations, contributing to future declines in projected population growth at these sites. In 
contrast, reduced tadpole survival in northern red-legged frogs is more than offset by gains in 
adult survival, leading to increasing projected population growth rates. The demographic rate 
contributing the most to a population’s response to climate change did not necessarily 
correspond to the rate most heavily affected by differences in climate conditions nor to the rate 
with the greatest influence population growth rates (Figure 2.4-3). Instead, the demographic rates 
that tended to be the best predictors of population responses were those that were both relatively 
sensitive to climate conditions and had a relatively large influence on population dynamics. 
Identifying these demographic rates a priori is problematic, because there is an inherent tradeoff 
between the demographic rate variability and elasticity (Pfister 1998, Morris and Doak 2004). 

 
 

Figure 2.4-3. Demographic rates predicted to change the most due to differences in climate conditions (horizontal 
lines), have the highest demographic sensitivity (vertical lines) and have the largest CCI score (filled) for two 
butterfly species and two frog species. For Appalachian brown butterflies the highest climate sensitivity and 
demographic rate sensitivity are associated with first generation demographic rates while the largest CCI score is 
associated with fecundity in the second generation. Northern red-legged frog demographic rate elasticities differed 
from sensitivities with adult survival having the highest elasticity.     
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We found evidence of indirect effects of climate mediated through interactions with other 
species. Temperature strongly influence hydaspe fritillary butterfly egg survival by increasing 
daily egg predation rates by 46% per one ºC warming. While we did not measure it directly, we 
suspect that the quality of both host and nectar plants could influence hydaspe fritillary 
demographic rates. Nectar availability has been linked to fecundity in related species (Boggs and 
Ross 1993), and host plant quality likely influences larval survival. Early snow melt can reduce 
floral resources (Inouye 2008), and violets, the hydaspe fritillary’s host plants, require moist 
conditions and are negatively impacted by droughts. Temperature driven changes in phenology 
and development rates also have the potential to impact population growth rates through 
interactions with other species or processes. For example, the increased development rates we 
found with warming for hydaspe fritillary butterfly and red-legged frog eggs and larvae could 
reduce predation rates by reducing exposure of vulnerable life stages to predators. In hydaspe 
fritillary butterflies this reduced exposure time could mitigate some of the effects of warmer 
temperatures increasing the daily egg predation rates. Red-legged frog breeding phenology and 
egg/larvae development rates might also interact with canopy cover to affect the amount of 
shading to which these early life stages are exposed.  

2.5 Implications for Future Research and Benefits 
  

SEED models and the Climate Contribution Index are useful tools for predicting whether 
expected changes in future climate conditions will exacerbate or mitigate threats to special status 
species managed on DoD lands. These predictions provide useful information for planning future 
management needs. For example, our study included two military bases, Fort Bragg, NC and 
Vandenberg Air Force Base, CA, with managed species predicted to have different responses to 
projected climate change in the coming decades. On Fort Bragg, both red-cockaded woodpeckers 
and Venus flytrap populations are expected to be buffered from changing climate conditions, 
whereas warming temperatures are expected to cause Appalachian brown butterfly populations 
there to switch from sources to sinks. At Vandenberg Air Force Base, snowy plover populations 
are predicted to benefit from warming spring temperatures and milder winters along the west 
coast, while California red-legged frogs are predicted to do worse. Looking ahead, what this 
means is that Fort Bragg may want to plan now for mitigation projects to reduce the impacts of 
expected warming on Appalachian brown butterflies. Such mitigation may come in the form of 
habitat restoration focused on providing greater shade coverage while continuing to support 
robust host-plant coverage, or tactics to reduce predation on eggs and larvae to offset reduced 
survival during these stages associated with warmer temperatures. For Vandenberg Air Force 
Base, this means potentially devoting more resources to California red-legged frog protection 
(e.g., through bullfrog removal at breeding sites). In contrast, future budgeting needs for snowy 
plovers, or for red-cockaded woodpeckers and Venus flytraps, should be determined by 
mitigation requirements for non-climate threats. We note here that climate does play a role in 
critical management issues for all three species, fire frequency for red-cockaded woodpeckers 
and Venus flytraps and sea-level rise for snowy plovers.  

The populations of special status species most likely to be vulnerable to climate change in 
our study were wide-ranging species at the climatic edges of their ranges (i.e., these are most 
likely to become conservation reliant because of climate change). We note that climatic edges 
are not necessarily the same as the geographic periphery of a species range, as is evidenced by 
multi-directional shifts in avian species ranges in Britain (Gillings et al. 2015) and in presumed 
bioclimatic envelopes in the United States (Bateman et al. 2016). The mismatch between 
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climatic edges and geographic periphery may be due to landforms influencing temperatures or 
precipitation patterns, differences in the latitudinal and longitudinal directionality of temperature 
and precipitation patterns, and spatial patterns of extreme climate events. Another important 
climatic edge may be where winter precipitation occurs primarily as snow versus rain. For 
example, even though red-legged frogs occupy habitats with and without significant snowfall, we 
found that the relationship between adult survival and temperatures observed in populations 
without snowfall are not consistent with sustainable populations in places with snowfall. 
Differences in the timing of breeding between inland and coastal sites likely reflect strategies for 
avoiding colder winter weather by inland populations; similar patterns have been observed for 
populations of Ambystoma salamanders breeding in Massachusetts vs North Carolina (Petranka 
1989). The transition from winter snow to rain has been shown to increase thermal stress and 
even to lead to complete reproductive failure in some winter breeding birds (Wingfield et al. 
2017, 2011; Shipley et al. 2019). Changes in the timing of snowmelt are also associated with 
different coping strategies in mammals (Sheriff et al. 2017) and the flowering phenology of 
nectar plants, and consequently the length of butterfly flight periods (Section 5.1.1).  

We were surprised at the rarity of climate-related reductions in population growth rates 
predicted by our SEED models. Only three of the 49 populations we evaluated from the seven 
different species included in our study were predicted to do worse because of projected changes 
in climate over the next few decades. In contrast, seven populations were projected sinks under 
current climate conditions, not including snowy plover populations without active predator 
management known to be populations sinks (Colwell 2017) but predicted by our SEED models 
to be sources given fecundity and survival rates associated with active predator management. We 
interpret this result to reflect that for temperate special status species, climate-related threats are 
probably less prevalent than non-climate related threats, such as habitat loss, degradation and 
fragmentation, altered disturbance regimes, or competition with and predation by invasive 
species. 

3 Objective 
Global climate change will play a critical role in shaping future environments, and thus 

biodiversity. Key climate variables— temperature and precipitation― will shift (Girvetz et al. 
2009, IPCC 2013), affecting species ranges, phenologies, abundances and viability (Parmesan et 
al. 1999, Deutsch et al. 2008, Chen et al. 2011, Urban et al. 2016). In many cases, a changing 
world climate will lead to future environmental conditions unlike any currently experienced by 
species managed on DoD lands. As a result, many species will likely become “conservation 
reliant” requiring active management to prevent local, regional, and even global declines or 
extinctions. The goal of this project was to develop and test an empirical protocol and theoretical 
framework for determining which species are likely to become conservation reliant as global 
climate change creates novel environments in and around DoD lands. We demonstrated these 
protocols on a suite of species representing the spectrum of conservation reliance. Specifically, 
we: 1) used global climate change models (GCMs) to predict plausible temperature and 
precipitation regimes faced by species managed on military lands; 2) for each of demonstration 
species, used times series, space-for-time substitution, and experimentally created non-analogue 
environments to determine how demographic rates are expected to change given future predicted 
temperature and precipitation regimes; 3) built Spatially Explicit Environmental Driver (SEED) 
models to predict population level changes expected to occur in non-analogue environmental 
conditions predicted to be present in the future; and 5) compared SEED model population 
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dynamic predictions across those species to determine ecological characteristics of future 
conservation reliant and adaptive species.  

4 Technical Approach 

4.1 Background 
In recent decades, climate change has had a negative impact on many species through 

changes in phenology (Walther et al. 2002, Parmesan and Yohe 2003, Chen et al. 2011) and 
demographic rates (Saether et al. 2000, Radchuk et al. 2013, Urban et al. 2016). The magnitude 
and multitude of changes associated with climate change pose several challenges to long term 
planning for wildlife management and endangered species conservation. Many species are 
currently conservation reliant, requiring ongoing, intensive management to persist, but even 
species that currently need only minimal or one-time management may become conservation 
reliant in the future (Scott et al. 2010).  Long-term planning would benefit from knowing which 
species are likely to become conservation reliant, and, for species already managed on DoD 
lands, which species will require more, or less, intensive management given future 
environmental conditions. 

The difficulty in this challenge is that not all species will respond to climate change in the 
same way, as specific demographic rates (e.g., survival to reproductive age/stage classes, 
fecundity) have different optimal environmental conditions. Disparate effects of climate on 
different demographic rates could result in little, or even positive, change to population growth 
(Deutsch et al. 2008). Furthermore, relationships between climate variables and demographic 
rates may be nonlinear (Doak and Morris 2010). Large shifts in climate are more likely to cause 
dramatic population declines, corresponding to so-called demographic tipping points (Harley and 
Paine 2009, Doak and Morris 2010). Demographic tipping points may be especially relevant for 
populations located at species range boundaries, where even relatively small shifts in climate 
might lead to large effects on demographic rates. Thus, predicting how populations will be 
affected by future climate change (i.e., non-analogue conditions) is particularly difficult based on 
field observations alone, and generally requires population models to integrate changes in 
multiple demographic rates. 

Whether or not climate change causes a population to become conservation reliant will 
often depend on the climate conditions the population currently experiences. Intuitively, because 
performance (e.g., survival, fecundity) is typically a unimodal function of temperature, 
temperature increases from a cooler starting point should have a smaller negative effect – or even 
a positive effect – relative to increases from a warmer starting point. For example, decreasing 
latitude has been associated with greater extinction risk of California red-legged frogs in 
southern California‒ where temperatures are warmer ‒ but not in coastal central California 
(Davidson et al. 2001) where coastal populations are buffered from warm temperatures by 
marine influence.  

The most common strategy for studying the impacts of climate change on species 
extinction risk is to correlate a species’ current range with current climate conditions and assume 
that species will go extinct in regions where future climate conditions are no longer represented 
within the species’ current range (e.g., Lawler et al. 2009, Blaustein et al. 2010, Urban 2015). 
Metapopulation approaches represent an important advance to the correlative approach by 
accounting for species’ dispersal capabilities relative to the spatial scale of shifting climatic 
conditions (e.g. Anderson et al. 2009, Aiello‐Lammens et al. 2011). A parallel recent advance in 
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assessments of the impacts of climate change on extinction risk is the development of models 
based on environmental drivers of demographic rates. While it has long been recognized that 
climatic variables influence demographic rates (Davidson and Andrewartha 1948, Birch 1953), 
only recently have population models been used to integrate distinct responses of different 
demographic rates to predict population consequences of climate change. Determining the 
overall impact of climate change on population growth requires integrating the effects of rising 
temperatures (and other climate drivers) over all life stages in an environmentally driven (ED) 
population model.  

When ED models are linked into climate projection models (e.g., Jenouvrier et al. 2009), 
population trajectories can be used to predict whether a population is likely to become more, or 
less, conservation reliant due to climate change. Populations likely to become more conservation 
reliant due to climate change are characterized by a declining growth rate over time, particularly 
if projected growth rates switch from growing or stable trajectories under current climate 
conditions to declining trajectories under most future projected climate conditions. Likewise, 
populations projected to have increasing population growth rates under future climate conditions 
could be interpreted as becoming less conservation reliant (or less likely to become conservation 
reliant) due to climate change.  

In order to predict which species are likely to become more (or less) conservation reliant 
at the regional or species-wide scale, ED models need to incorporate spatial processes to link 
populations to the proper climate projections and to account for the potential influence of 
migration, dispersal-mediated metapopulation processes or population tracking shifting locations 
of favorable habitat. We developed Spatially Explicit Environmental Driver (SEED) models for 
a range of species. In SEED models, demographic rates are assumed to be functions of 
environmental drivers. SEED models provide a particularly powerful tool because they: 1) allow 
researchers to explore combinations of environmental variables not currently seen but likely to 
be encountered in the future (non-analogue environments); 2) can include numerous scenarios to 
account for uncertainty in future environmental conditions; 3) accommodate influences of both 
local environmental conditions and surrounding landscape features; 4) account for migration and 
for dispersal limitations that may constrain a species’ ability to track spatial shifts in suitable 
habitat; and 5) can be evaluated at multiple time steps to inform predictions about transient 
dynamics in a non-stationary world. 

Predicting population fates in non-analogue conditions requires extrapolation beyond 
current conditions. This can be done by using fitted performance curves that go beyond the range 
of the observational or experimental data. Previous studies have typically taken one of three 
approaches to obtain fitted performance curves. First, in the space-for-time substitution 
approach, demographic rates are measured at multiple sites along an environmental gradient. 
Often the gradient is latitude or elevation, where more equatorial (or lower elevation) sites 
currently experience warmer conditions (Lawler et al. 2009, Doak and Morris 2010, Picó 2012). 
While this approach uses realistic data by following individuals in the field, sites may differ in 
fundamental ways besides climate. The second approach is to exploit temporal variation in 
environmental conditions across years at a single site to quantify the relationship between 
demographic rates and environmental drivers. This approach also uses realistic data, but years 
may differ in other important ways besides climate. The third approach is to experimentally vary 
one or a few environmental variables outside normal ranges by means of a controlled 
environment (e.g., Deutsch et al. 2008). This latter approach is particularly well suited to 
exploring demographic responses to extreme climate conditions, which, due to their rarity, are 
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difficult to observe in the time frame relevant to most studies. However, controlled environments 
may not reflect realistic demographic rates. We use all three approaches, by using the two 
“natural experiment” approaches‒ space-for-time or time series‒ to parameterize SEED models, 
and then using controlled experiments to validate model predictions in extreme conditions.  

4.2 Methods 
We studied seven species of animals and plants: hydaspe fritillary butterfly (Speyeria 

hydaspe), Appalachian brown butterfly (Satyrodes appalachia, western snowy plovers 
(Charadrius nivosus nivosus), red-legged frogs (Rana aurora and R. draytonii), Alaskan 
douglasia (Douglasia alaskana), Venus flytraps (Dionaea muscipula) and red-cockaded 
woodpeckers (Dryobates borealis). For the butterfly, frog, and plant species we collected 
demographic data from populations that vary in current climate conditions (space-for-time 
approach), while for the two birds species we used previously collected demographic data from 
long term (>20 yrs) studies (time series approach). Study locations for each species are presented 
in Figure 4.2-1. For the two butterfly species, the frogs, and Venus flytraps we also conducted 
controlled experiments in which we pushed climate variables beyond conditions currently 
experienced at our field sites. This allowed us to compare results in a controlled experiment to 
those from the field in order to validate our field results. We also manipulated additional 
variables likely to be shaped by climate and some non-climate related variables for these species 
in order to examine the potential impacts of habitat, common management strategies, and 
antagonistic interactions with other species on climate responses by our focal species. For each 
animal species, we estimated the following demographic rates: fecundity, egg hatch rates, 
larval/juvenile survival, and adult survival. For the two plants we estimated: seed production, 
germination rate, and size specific survival and growth rates. Additional demographic rates, 
including developmental rates, migration rates, and dispersal were measured for some species as 
needed to adequately describe a species life history in the SEED model developed for the 
species. 
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Figure 4.2-1. Locations of study populations for each species. Circles marking population 
locations are color-coded by species.  
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4.2.1 Data collection 

4.2.1.1 Hydaspe Fritillary Butterfly (Speyeria hydaspe) 
Study system: Hydaspe fritillary butterflies occur throughout the northwestern US and south 
through the Sierra Nevada in CA. They are found in moist montane coniferous forest openings 
and meadows, typically between 1000-2000 m in elevation. They are univoltine with a flight 
period between June and September. The larvae overwinter as unfed first instars and feed on 
several species of violets (Viola spp.) in the spring (Scott 1986, Robinson et al. 2002). Adults use 
a variety of nectar plant species. We studied six hydaspe fritillary populations in Northern 
California and Oregon that varied in elevation from 1085 to 1585 m and spanned a latitudinal 
range from 39.2 to 44.2° N (Figure 4.2-2). Five sites were in California: three in the Sierra 
Nevada and two in the Coast Range. One site was in the Cascades in Oregon. Each site included 
a mix of wooded and open (meadow) habitat, and all sites typically have snow on the ground for 
some portion of the winter/spring. See Table 4.2-1 for site details. We deployed HOBO Pro data 
loggers (Onset Computer Corporation, Bourne, MA, USA) at each site to record air 
temperatures. 

 

Figure 4.2-2 Hydaspe fritillary butterfly study locations in California and Oregon. 
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Table 4.2-1. Study site locations, elevations, and demographic rates measured at each site each year. Demographic 
rates: F = Fecundity, E = Egg hatch rates, L = Larval survival, A = Adult survival. 

Site Elevation 2016 2017 2018 2019 
Cascades 1320 m A F, E, A F, E, A L 

Coast Range 1 1440 m A F, E, A F, E, A L 

Coast Range 2 1485 m A F, E, A F, E, A L 

Sierra Nevada 1 1085 m  F, E, A F, E, A  

Sierra Nevada 2 1400 m A F, E, A F, E, A L 

Sierra Nevada 3 1585 m   F, E, A L 

 
Demographic field methods: We used mark-recapture surveys to estimate adult survival across 
sites. We surveyed butterflies at each site along four to six transects that could be easily surveyed 
by a single person in 1-1.5 hours (total time for all transects) (Pollard 1977). We visited each site 
three to four times a week from prior to the beginning of the flight period in mid to late June 
through the end of the flight period in August or September. The one exception was Sierra 
Nevada 3, which we added in 2018 and missed the beginning of the flight period. We surveyed 
each site for the same amount of time each visit; however, the amount of time spent on a survey 
varied across sites depending on the survey area but was always between 1-1.5 hours. We 
marked adults with a unique number using fine-tip Sharpie markers. Getting the butterfly out of 
the net and marking it typically took about 1-3 minutes, and in order to account for the time 
spent handling butterflies and not surveying we added 2 minutes to the total survey time for 
every butterfly we marked (up to a total of 30 extra minutes). For each hydaspe butterfly that we 
caught, we recorded its age (subjective measure broken into 3 categories), sex, if it was on a 
nectar plant, and if so what species of nectar plant. We also recorded the GPS location at time of 
capture for all butterflies that we caught. 

In addition to our mark-recapture surveys, during the summers of 2017 and 2018, we 
recorded the nectar plants that were blooming along our transects at all of the sites every other 
week. We determined each plant species’ blooming progression by assigning them to one of five 
stages based on the majority of individuals in each section. The six stages were: 1 - no buds 
present, 2 - buds present, 3 - starting to bloom, 4 - peak bloom, 5 - finishing blooming/starting to 
go to seed, and 6 - completely done blooming/gone to seed. 
 We measured the number of eggs laid per female per day (egg laying rate) by placing 
females that we caught during our surveys into oviposition cages for 1-7 days. The cages were 
made of plastic flowerpots (~ 20 cm diameter) covered with screen. Inside of each pot we placed 
violet leaf clippings (larval host plant) in cups of water to prevent wilting. We placed cotton balls 
or sponges soaked with sugar water in each container with sticks for butterflies to perch on. We 
checked the cages every 1-3 days and released the female once eggs were laid or after several 
days with no eggs. If a female laid eggs, we carefully collected and counted all of the eggs. We 
calculated egg laying rate as the total number of eggs collected for each female divided by the 
number of days they were in the cage. If a female died while in the cage, we excluded that 
individual from the analysis. 
 We measured egg viability using the eggs we collected. We placed a maximum of 10-20 
eggs into white plastic 88 ml (3 oz) cups (keeping eggs from different females separate. We 
covered the cups with fine insect mesh secured with rubber bands. We checked the eggs at least 
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once a week until all the eggs had hatched, or until 2-3 weeks past the date that the first egg 
hatched. Any remaining eggs were considered unviable. On rare occasions, we observed larvae 
that were able to make it through the insect mesh cover on the cups (the openings were not 
totally uniform). In some cases, the number of unviable eggs left at the end and the number of 
larvae we observed post hatching did not sum up to the total number of eggs placed in the cups. 
In these cases, we assumed that the discrepancy was due to larvae escaping the cup, such that the 
egg hatch rates were calculated as follows: (total at start – unviable at end) / total at start. 
  We quantified egg predation rates in the field by placing eggs in plastic 88 ml cups buried 
in the duff and left uncovered. Hydaspe fritillary butterflies lay their eggs singly throughout the 
understory on twigs, leaves, and other debris in areas where their host plants (Viola spp.) grow 
(Capinera 2008). We placed two eggs in each cup and spread them out by at least 50 cm. We 
checked the predation cups at least once a week until both eggs were missing or until eggs from 
that female hatched in our predator-free cups. Because larvae are known to eat the egg husks 
after hatching and can crawl out of the cups, we only considered eggs to be predated if they went 
missing at least six days prior to the first observed larvae to hatch from that female. This ensured 
that we did not incorrectly count eggs as predated that actually hatched.   
 In the wild, hydaspe larvae overwinter as first instars and bury themselves a few 
centimeters into the duff prior to going into diapause. To track overwinter survival, we wanted to 
mimic natural conditions as much as possible while still making it easy to relocate larvae in the 
spring.  To do this, we caged larvae inside modified 88 ml white plastic cups. We modified the 
cups by cutting off the bottoms and replacing them with insect mesh, so that any rainwater or 
snow melt could drain through the cup. We filled the cups with pieces of Styrofoam packing 
peanuts to provide insulation and placed up to 10 larvae in each cup. Each cup contained larvae 
from a single female. We then covered each cup with insect mesh and buried all cups into the top 
layer of the duff such that the rim of cup was flush with the ground. We placed large pieces of 
bark over the cups to shelter them from direct rain. We placed HOBO Pro data loggers in empty 
cups also placed in the duff to record the temperatures the larvae experienced.  
 During the spring we monitored snowpack at our field sites and checked the larval 
overwintering cups shortly after the snow melted in the area they were placed. We counted the 
number of larvae that survived in each cup, and either placed them directly onto potting violets 
in larval rearing cages (methods below). If violets had not emerged yet, we placed the larvae 
back into overwintering cups and replaced them in the duff until violets could be transplanted.  
We created larval rearing cages by transplanting local violets into 15 cm diameter plastic pots 
and placing the pots in 30 cm x 30 cm x 30 cm popup mesh cages (Bioquip). We used the 
species of violet that was must abundant at each site which included three species: Viola 
glabella, V. lobata, and V. sempervirens. At one site both V. glabella and V. lobata were 
abundant and we used both species in the cages (half of the cages for each species). To increase 
the amount of variation in temperature the larvae were exposed to in the field, we positioned 
cages across a gradient in sun exposure and used HOBO data loggers to measure temperature 
differences.  

We checked on the cages every three to seven days from when larvae were placed in the 
cages until all surviving individuals had pupated and most had eclosed. We watered the violets as 
needed to maintain plant quality and added in new potted violets when vegetation became sparse 
due to feeding. We examined larval survival during two separate periods: overwinter survival 
and survival from ending diapause (placement on violets) to eclosion. At some of our sites time 
constraints required that we stopped checking the cage before a few of the latest pupae had 
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eclosed. We considered these individuals to have survived successfully if the pupae were viable 
(moved when prodded) during the last check.   
Experimental tests of climate effects: We used two methods to increase the range of temperatures 
experienced by different life stages: 1) we constructed greenhouses and 2) we relocated females 
(and the eggs they subsequently laid) to a lower elevation site that experiences higher 
temperatures. We constructed three small greenhouses (1.8 m x 1.2 m x 2.1 m Brighton 
greenhouses) positioned on a shade gradient and a mesh shade tent (3 m x 3 m x 2.1 m Coleman 
Instant Screenhouse) on Institute for Wildlife Studies property in Humboldt County, CA. Within 
each structure we set up shelves with three levels to house eggs, larvae, and adults. In addition to 
temperature differences among structures there was also a temperature gradient across the 
shelves in each structure. We deployed HOBO data loggers on each shelf in each structure to 
record temperature variation. 

We measured egg hatch rates in one of the greenhouses with eggs laid by two females 
from one of our field sites in Humboldt County during the summer of 2018. We also reared 
larvae on potted violets in the greenhouses and shade tent in 2019. Most of the larvae (85 
individuals) we used for this experiment came from our mid-elevation site in the Sierra Nevada 
and had overwintered in cups at that site. We also had a small sample of nine larvae which came 
from eggs collected from females at one Coast Range site, which overwintered in the 
greenhouses. We distributed larvae from the same female randomly across structures and shelves 
within each structure. We used the same methods as described in the field experiment for rearing 
larvae in the greenhouses and shade tent. 

In 2019 we collected egg laying and egg hatch rate data using adult females (and the eggs 
they laid) relocated from two of our field sites in the Sierra Nevada down in elevation to 
Sacramento County, CA, where average daily maximum temperatures experience by females 
exceeded that of any other site by 2-3 ºC. We used the same methods as in the field to measure 
egg laying and hatch rates. 
Fitting Relationships between demographic rates and climate variables: We used data from both 
the field and greenhouses to fit climate – demographic rate relationships. Minimum, maximum, 
and mean daily temperatures are often highly correlated, so for analyses described below we 
only included one measure of temperature at a time in our models. Because a high number of 
females laid no eggs (65%), we used zero-inflated negative binomial models, with site as a fixed 
effect, to examine the relationship between climate variables and fecundity (pscl package in R 
Studio v1.2.1335, R Studio Team 2018, Jackman 2017). The climate variables we tested were 
average daily minimum, maximum, and mean temperatures while females were in the cages, and 
the snow melt date for each site/year. Nectar intake correlates with fecundity in a related fritillary 
species (Speyeria mormonia) (Boggs and Ross 1993), and earlier snow melt dates in this system 
decreases nectar resources through frost damage (Inouye 2008).  Because we believed that 
butterflies not laying eggs indicated a stress response, we tested climate effects on the count 
portion of the model only, and not the zero-inflated portion. We considered that butterflies might 
also “egg-dump”, laying an unusually high number of eggs in a short time period, as a stress 
response. However, we did not observe any indication of this. Eggs were not laid in clusters 
within the cages, and the frequency distribution of numbers of eggs/day from females that laid 
eggs had no obvious breaks or secondary peaks indicative of egg dumping. We evaluated the 
relative performance based on AIC corrected for small sample sizes (AICc) (MuMIn package in 
R Studio v1.2.1335, R Studio Team 2015, Bartoń 2019). 
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 We used binomial mixed models to test the effects of climate on egg viability and both 
overwinter and post diapause larval survival (MCMCglmm package in R 3.3.3; Hadfield 2010, R 
Core Team 2017). For egg viability, we evaluated the influence of the average daily minimum, 
maximum, and mean temperatures as well as the maximum temperature experienced from when 
eggs were laid through hatching. We also tested the effects of total precipitation from that water 
year (October-September) on egg viability. We included female as a random effect and site as a 
fixed effect in the model. We used generalized linear models to test the effects of temperature on 
egg development rate, which we measured as the number of days from egg laying to hatching by 
female. 

We evaluated the effects of temperature on the chances of eggs being predated in our 
field trials using binomial mixed models with female as a random effect and site as a fixed effect 
(MCMCglmm package in R 3.3.3; Hadfield 2010, R Core Team 2017). We used the average 
daily minimum, maximum, and mean temperature from the time eggs were placed in predator 
accessible cups until the trial ended (last survey at least six days prior to first larvae hatching 
from that female).  

Egg predation rates found from our field trials are a function of both the daily predation 
rates and how long the eggs are exposed to predation. The exposure time is dictated by how 
quickly the eggs develop, which could be affected by temperature. In order to further explore the 
effects of temperature on predation probability, we evaluated the effects of temperature on daily 
egg predation rates using Cox proportional-hazards regression models (survival package in R 
Studio v1.2.1335, R Studio Team, 2015, Fox 2002). Because we surveyed the egg predation cups 
at different intervals at each sites, we specified our first survey date to start on day five or later 
(the earliest date at some sites), and used the average daily minimum, maximum, and mean 
temperature between each survey period at each site as our predictor variables. Because egg 
predators are likely to be relatively similar across sites within the same region but differ across 
regions, we included region in the model as well. The regions included two sites in the Sierra 
Nevada, (we did not obtain enough eggs for predation trails at Sierra Nevada 1), two sites in the 
Coast Range, and one site in the Cascades. We right-censored the data by female based on the 
last survey date at least six days prior to the first egg hatching from that female. We evaluated 
model performance based on AIC. 

For overwinter larval survival we tested the effects of average daily minimum, maximum, 
and mean temperature from when larvae were placed in the duff until first snow fall, the lowest 
temperature experienced over the winter, and snow melt date. We included female and 
overwintering cup as random effects and site as a fixed effect. Because all of our climate 
measures were correlated with each other, and because there was only one value of each climate 
variable for each site, we only included one fixed effect at a time in the models. For post-
diapause survival we assessed the effects of average daily minimum, maximum, and mean 
temperatures and maximum temperature experienced from when larvae were placed on violets 
until the last individual had eclosed at each site. We included female and container as random 
effects and site as a fixed effect. Because of low sample sizes we excluded larvae from Sierra 
Nevada 1 from the analyses (only 16 overwintering larvae and two post-diapause larvae), and we 
considered Coast Range 1 and Coast Range 2 to be one site for this analyses (there were larvae 
from only one female at Coast Range 1 and all larvae were reared at Coast Range 2). We 
evaluated relative performance of our models using the model deviance information criterion 
(DIC). DIC is a Bayesian generalization of the Akaike information criterion (AIC) that is 
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particularly suited to comparing models that use Markov chain Monte Carlo (MCMC) to obtain 
posterior distributions (Spiegelhalter et al. 2002).  
 We used generalized linear mixed look for effects of temperature of the development rate 
for eggs and larvae (MCMCglmm package in R Studio v1.2.1335, R Studio Team, 2015, 
Hadfield 2010). We measured development rate of eggs as the number of days from when eggs 
were laid until the first larvae hatched for each female. We tested the average daily minimum, 
maximum, and mean temperatures during development as fixed effects and included site as a 
random effect. We measured larval development rate as the number of days from when larvae 
were placed in cages until adults emerged. We tested average daily minimum, mean, and 
maximum temperatures and growing degree days (GDD) from when larvae were placed on 
violets until the last individual had eclosed at each site, as well as GDD for the first 30 and 50 
days of development as fixed effects. We included site, female, and cage as random effects. 
GDD is a measure of heat accumulation that is calculated by taking the daily integral of warmth 
between minimum and maximum temperature thresholds (Dmin and Dmax), which are typically 
based on the range of temperatures where plant or insect growth are possible. GDD is a common 
measure used for predicting plant and insect phenology in agriculture (Cross and Zuber 1972, 
Zalom et. al 1983, Russelle et al. 1984, McMaster and Smika 1988). We calculated GDD based 
on daily minimum and maximum temperatures using the single sine method (Zalom et al. 1983). 
We specified Dmin as 10 °C and Dmax as 30 °C, which are commonly used thermal thresholds for 
warm season plants and insects (Dethier and Vittum 1967, Nufio et al. 2010). 

We used multi-strata mark-recapture models to evaluate the effects of mean, minimum, 
and maximum daily temperature between capture occasions and total annual precipitation on 
adult survival (‘RMark’ package in R and Program MARK; White and Burnham 1999, R Core 
team 2017). Each site by year combination was modeled as a separate stratum. We used multi-
strata models because we suspected butterflies could disperse between the two Coast Range 
study sites. When no marked butterflies were observed to move between the two sites in three 
years we simplified the analysis by setting all transition probabilities to zero. Survival was 
estimated on a daily time scale. We accounted for occasions when a stratum was not surveyed 
but other strata were surveyed by modeling capture probability as a function of effort. Effort for 
a given stratum was set to one on occasions when it was surveyed and zero on occasions when it 
was not surveyed. 
Effects of climate variables on population growth and phenology: In addition to testing the 
effects of climate on each life stage, we used our survey data to explore how climate influences 
changes in abundance and flight period phenology. Results from this section were not included 
in the SEED model for hydaspe fritillary butterflies, but they can provide insight into some of the 
complexities of how climate change might affect this species. We used the adult mark-recapture 
data from our surveys to estimate the population size of male butterflies at each site each year. 
Because we caged a large proportion of the females we caught to obtain eggs, we could only use 
our mark-recapture data to estimate the population size of males. We used these population size 
estimates to assess the effects of climate and density dependence on continuous population 
growth rates using a multivariate form of the Gompertz population growth model (Gompertz 
1825):  
Equation 4.2-1                             𝑙𝑙𝑙𝑙 �𝑁𝑁𝑡𝑡+1

𝑁𝑁𝑡𝑡
� = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑙𝑙𝑙𝑙(𝑁𝑁𝑡𝑡) + 𝑐𝑐 ∗ 𝐶𝐶1 …𝐶𝐶𝑖𝑖 

where Nt is the population size estimate in year t and C1… Ci  are climate variables 1 through i. 
We tested the effects of GDD from snow melt to August 1st in year t and year t+1, snow melt 
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date in year t and year t+1, and total precipitation from October 1st through September 30th in 
year t and year t+1 using generalized linear models (stats package in R Studio v1.2.1335, R 
Studio Team, 2015).  
 We calculated four response variables related to hydaspe phenology: flight period start 
date, flight period end date, flight period peak date, and flight period length. We considered the 
first day we observed adult hydaspe fritillaries at each site/year to be the flight period start date 
and the last day we observed adults to be the end date. Because we surveyed each site two to 
three times prior to observing adults and at least three times after we stopped seeing adults each 
year, we believe our determinations of the beginning and end of the flight period to be fairly 
accurate. We also estimated the date of the peak abundance of adults during the flight period, 
because peak abundance is typically influenced less by detectability and variation in sample size 
(Moussus et al. 2010). To determine the date of peak abundance at each site and year 
combination we fit curves of our counts of hydaspe adults over time using nonlinear least 
squares (nls function in R) with a standard three parameter gaussian function:     
   
Equation 4.2-2                      𝑦𝑦 = 𝑎𝑎 ×  𝑒𝑒𝑒𝑒𝑒𝑒 (−1

2
× ((𝑥𝑥−𝑏𝑏)

𝑐𝑐
)2) 

The ordinal date of peak abundance corresponds to parameter b in the equation above (a is the 
amplitude and c is the width of the curve).   

We tested the effects of GDD, snow melt date, and region on the hydaspe flight period 
start, peak, end, and length using generalized linear models (stats package in R Studio v1.2.1335; 
R Studio Team, 2015). We used region (Sierra, Northern Coast, or Cascades) rather than site in 
our models because of our limited sample size (16 site/year combinations). The small sample 
size also preluded the use of mixed models with region or site as a random factor. We used AIC 
corrected for small sample sizes (AICc) to evaluate relative model performance. We considered 
there to be support for any model within two AICc of the best performing model. GDD was 
calculated from snow melt date to July 15th each year for analyses of flight period start date and 
from snow melt to August 1st for all other measures of abundance and phenology.  

Nectar resources can influence butterfly populations by affecting both adult survival and 
fecundity (Boggs and Ross 1993, Lebeau et al. 2016). Based on personal observations at our 
sites, we also suspected that nectar plant senescence might influence the timing of the end of the 
flight period. Our survey data showed that hydaspe fritillary butterflies used nectar plants 
preferentially, visiting one species a majority of the time (57 to 98% of visits across sites), but 
that the primary species visited was different at each site (Appendix 8.2). Based on our nectar 
plant surveys in 2017 and 2018 we determined the date that the primary nectar plant at each site 
fully senesced (6 on blooming progression scale). We used generalized linear models to test the 
influence of GDD, snow melt date, total precipitation in the current year, and Region on the 
timing of senescence. We also looked for a correlation between plant senescence date and the 
end of the flight period.  

4.2.1.2 Appalachian brown butterfly (Satyrodes appalachia) 
Much of the text in is section and in section 5.1.2 is drawn from Kiekebusch 2020. 

Study system: The Appalachian brown is a satyrine butterfly found in forested wetlands 
throughout the eastern United States. The range of the Appalachian brown butterfly encompasses 
a large portion of eastern North America (Cardé et al. 1970) and as far north as southern Quebec, 
Canada and as far south as the central Gulf States, with a small isolated population in northern 
Florida (Opler 1994). Appalachian brown butterflies have been observed to complete at least two 
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generations per year in the southeastern US and to overwinter as diapaused early-instar larvae. 
We carried out the field portion of our study on the US Army installation at Fort Bragg, NC 
where Appalachian brown butterflies are locally rare in wetland areas. A combination of land-
use change, fire suppression, and beaver extirpation at Fort Bragg have altered wetland habitat 
and reduced the number of early successional Carex species (Bartel et al. 2010), including Carex 
mitchelliana that is a known host plant for Appalachian brown butterflies (Kuefler et al. 2008). 
Although Appalachian brown butterflies have previously been considered bivoltine at this field 
location (Aschehoug et al. 2015, Sivakoff et al. 2016), recent observations revealed that a portion 
of the second generation individuals to develop directly into a third generation (Kiekebusch 
2020).  
Demographic methods: We measured survival rates for all life stages in the field at Fort Bragg, 
NC using plots that had experimental habitat restoration treatments implemented in 2011 with 
funding from a previous SERDP award (SI 04-014). The restoration treatments were intended to 
increase (or not) the abundance of host plants (sedges in the genus Carex) and the abundance of 
butterflies, including Appalachian brown butterflies and the federally endangered Saint Francis’ 
Satyr (Neonympha mitchellii francisci, methods in Aschehoug et al. 2015). The restoration 
treatments were implemented in a factorial design and included a control (no treatment), 
hardwood removal (“Cut”), dam installation (“Dam”; intended to increase soils moisture to favor 
sedges) and Cut + Dam. The restoration plots were 30 m x 30 m and there were a total of 16 
plots across three sites (three control and Dam plots and five Cut and Cut + Dam plots). The 
ambient temperature varied across restoration treatments due primarily to differences in canopy 
cover, etc.  
 We evaluated the effects of temperature on egg and larval survival in the field within the 
30 m x 30 m restoration plots. In addition to ambient temperature differences among restoration 
treatments, we used warming/cooling arenas within each plot to increase the range of 
temperatures experienced by eggs and larvae. For this experiment, we selected three plots in each 
of the three field sites, including one Cut plot and two Cut + Dam plots. We ignored uncut plots 
because the warming arenas relied on solar warming to increase temperatures.  
 To manipulate temperatures, we created three experimental arenas within each of the 
plots. Each arena consisted of a 208 L polyethylene drum cut into a ring 37 cm high and 57 cm 
in diameter. We established arenas around naturally occurring wetland plants including C. 
mitchelliana by burying them 10 cm deep in the ground. We planted extra sedges where 
necessary to maintain a similar amount of live sedge within each arena. We removed all visible 
predators from inside the arenas and excluded predators by enclosing arenas within no-see-um 
netting (Skeeta©). Within each plot, we randomly assigned each arena to one of three 
temperature treatments: 1) Control, 2) Shade and 3) Open-top warming. We shaded arenas by 
covering them with Coolaroo© shade fabric (84-90% UV Block) cut into 1.8 x 1.8 m squares 
and hung by the corners from PVC pipes at 1.5 m above the ground, such that the arena was 
centered beneath the shade fabric. We constructed open-top warming chambers using Sun-Lite© 
pre-fabricated solar glazing panels (Solar Components Corporation, New Hampshire USA). We 
cut the panels into 2.4 m x 0.9 m rectangles, rolled them into cylinders and fastened them with 
screws. The resulting cylinders were 0.9 m high with a circumference of 2.1 m, and each was 
placed over one arena per plot. Inside each arena, we placed a Maxim iButton temperature logger 
within the foliage of C. mitchelliana, shielded from direct sunlight under a plastic cup covered in 
reflective foil, and at an approximate height of 30 cm above the ground (typical height of 
naturally occurring eggs and larvae). 
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To measure egg survival, we collected eggs from wild-caught Appalachian brown 
butterfly females that we brought to a greenhouse located at the Endangered Species Branch of 
the Fort Bragg Army instillation. We placed the famales in a 15 cm high by 10 cm diameter 
‘oviposition chamber’ consisting of a single potted host plant (Carex mitchelliana) enclosed 
within mesh netting. After 48 hours, we removed the netting, released the butterfly and counted 
the number of eggs laid. We placed entire potted plants with known numbers of eggs into each 
experimental arena in the field for approximately 48 hours. Afterwards, we removed the plant 
and counted the remaining viable eggs. Non-viable eggs were identified by their altered color, 
shape and/or size. This allowed us to estimate daily egg survival. We carried out the egg survival 
experiments during three generations (first: 5/3 – 6/9/17, second: 7/20-8/12/16, and third: 8/31-
9/29/16).  

We estimated larval survival using the larvae that hatched from these eggs. We allowed 
the eggs to hatch at ambient temperatures in the greenhouse. As soon as all larvae hatched, we 
counted them and placed them back into the same experimental arenas in the field. Once we 
noticed formation of pupae, we checked the arenas daily for emerged adults. We carried out the 
larval survival experiments over all three annual generations (first: 5/19 – 7/10/17, second: 7/27-
9/25/16, and third: 9/7/16-5/31/17).  

To estimate adult survival rates and lifespan, we carried out mark-recapture surveys over 
a three-week period covering the second adult flight period of 2017 (7/14-8/3). We carried out 
surveys along transects established within a total of fifteen plots across the three restoration sites. 
We followed mark-recapture methods as described in Haddad et al. (2008). We carried out 
surveys on every weekday throughout the flight period. Over the same time period, we placed 
shielded iButtons into each plot and recorded hourly temperatures.  

We estimated egg laying rate by measuring oviposition in artificially warmed enclosures 
in the greenhouse. We carried out the experiment from 7/12 – 8/31/17. We caught wild females, 
placed them in oviposition chambers for 40-42 hours, and then counted the number of eggs laid. 
We manipulated temperature during oviposition by placing chambers under infrared lamps. We 
used a single iButton placed inside each chamber to record temperatures.  
Fitting Relationships between demographic rates and climate variables: To evaluate the effect of 
field arena temperatures on egg and larval survival rates, we carried out generalized linear mixed 
effects models using R statistical software (R Core Team, 2016). We used binomial regression 
analyses to evaluate effects of temperature variables on egg and larval survival. The temperature 
variables included: 1) the average of the daily mean temperatures, 2) the average of the daily 
maximum temperatures, and 3) the average of the daily minimum temperatures recorded by the 
iButtons over the period of time that an individual spent in each life stage in each arena. By 
design, this was two days for the eggs and the entire larval life stage for larvae. We compared a 
suite of models that included fixed effects of temperature, warming treatment (Control, Shade, 
Open-top warming), restoration treatment (Dam or No Dam), generation (first, second, third), 
and/or the interactions between generation and each of the three temperature variables. All 
models included a nested random effect of plot in site (block). Because the three temperature 
variables were highly correlated, we only included one temperature variable at a time in the 
models. We ranked models using corrected Akaike’s Information Criterion (AICc, Hurvich and 
Tsai 1989) and used the best-supported model in all subsequent analyses. 

We analyzed adult survival via a multistate mark-recapture model using the package 
RMark (Laake, 2013) in R to run the program MARK (White and Burnham 1999). In order to 
test for effects of temperature on dispersal, we compared five models using covariates of 
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probability of transition (Psi) between plots that included maximum, minimum, and mean 
temperatures, distance between plots, and constant dispersal across sites and time. We ranked all 
models using corrected Akaike’s Information Criterion (AICc) and selected the best covariate for 
use in subsequent analyses. In order to evaluate possible effects on detection, we carried out a 
second round of model selection and compared two covariates of detection probability (p) that 
were linked to detection in a prior study (Sivakoff et al. 2016). We tested for plot and restoration 
(Cut) effects on detection, while holding survival probability (Phi) constant across sites and time. 
We selected the highest ranked covariate for further use. In order to test for effects of 
temperature on adult survival probability, we carried out a third round of model selection. We 
ranked seven models using AICc to compare survival probability covariates that included 
average daily minimum, maximum, and mean temperature, field site, plot, Dam treatment and 
constant survival across sites and time. We selected the best supported model for further 
analyses.  

To evaluate temperature effects on daily fecundity, we regressed number of eggs laid per 
day against temperature variables using a quasipoisson generalized linear model to account for 
overdispersion. We compared a suite of six egg laying rate models to evaluate effects of mean 
temperature, average daily maximum temperature, average daily minimum temperature, and the 
quadratic effects of these variables. We defined the average daily minimum and maximum 
temperatures as the mean of the daily minima and maxima over the 40-42 hour period that each 
female was in an artificial warming chamber. We carried out QAICc model ranking using the R 
package MuMIn (Bartoń 2017) to assess support for each temperature variable. To calculate 
daily fecundity, we accounted for propagation of females by assuming a 1:1 sex ratio and halving 
the number of eggs laid per day as fitted by the highest ranked temperature model. 
Determining cues for shifting voltinism and phenology: We carried out an experiment to 
determine the timing of the occurrence of the critical photoperiod cueing the onset of diapause in 
Appalachian brown butterflies. Individuals exposed to this cue during a sensitive early life stage 
halt development and initiate diapause through the winter. Warmer temperatures result in earlier 
annual emergences, shifting the exposure of the offspring of second generation individuals prior 
to the critical photoperiod and leading to their direct development into an additional third 
generation.  

Over a ten-week period beginning in mid-July, we caught adult female Appalachian 
brown butterflies that emerged during the second annual flight period. Each week we caught two 
females and placed each one into a 15 cm high by 10 cm diameter ‘oviposition chamber’ 
consisting of a potted host plant (Carex mitchelliana) enclosed within mesh netting. After 48 
hours, we removed the netting, released the butterflies, and put each potted plant with eggs into a 
separate netted enclosure. As we could not be sure of the exact date that each egg was laid, we 
defined the date eggs were laid per clutch as the second day of the 48-hour period. We placed all 
enclosures onto a bench located at a shaded wetland field site and monitored the larval 
development over a three-month period. We recorded the proportion of surviving offspring 
within each clutch that developed directly into adults versus those that initiated diapause. We fit 
a binomial generalized linear model to the resulting data to understand the relationship between 
the date that eggs were laid and the likelihood that they developed directly into adults. As has 
been done in previous studies (e.g. Xue et al. 1997), we considered the critical photoperiod to 
occur at the point at which 50% of individuals developed directly. 

We estimated the timing of annual first emergence of Appalachian brown butterflies in 
the spring using data from the larval warming experiments and a degree-day model. Our goal 
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was to quantify Appalachian brown butterfly development as a combination of time and 
temperature, such that we could later project future emergence ordinal dates using future 
temperatures. Degree-day models have long been used in the fields of agriculture, biological 
control, and species distribution modelling under climate change (Moore and Remais 2014). 
Cumulative growing degree days (GDD) are a more accurate predictor of butterfly emergence 
timing than the ordinal date (Cayton et al. 2015). 

During the warming experiments, we raised diapausing larvae during the winter in 
enclosures placed at field sites. We recorded hourly temperatures throughout the winter by 
placing a single Maxim iButton temperature logger in each enclosure. When we observed the 
formation of pupae in the spring, we began daily monitoring of all enclosures and recorded the 
exact date of each butterfly’s emergence. For each individual, we extracted daily maximum and 
minimum temperatures during its larval development from recorded temperature data. We 
calculated GDD using a lower threshold of 10 °C and an upper threshold of 30 °C and applied 
the single-triangle method to extracted temperatures. These temperature thresholds have been 
applied to other Satyrinae (Kuefler et al. 2008) as well as many other butterfly species (Crozier 
and Dwyer 2006, Cayton et al. 2015, Bryant et al. 2002). We began accumulating degree days on 
March 1st. We identified the lowest accumulated degree days necessary for emergence and used 
this for further analyses.  
Range boundary experiment: We reared eggs collected from adult female Appalachian brown 
butterfly populations located near the southern (South Carolina) and northern (Michigan) ends of 
the species geographic range. We collected females during June-August of 2018 when adults are 
active at both population locations. In South Carolina, we collected female butterflies in a 
forested wetland area at the Savannah River Site in Jackson, SC located at the approximate 
latitude of 33 °N. We transported individuals to a greenhouse located on site at the Savannah 
River Ecology Laboratory for the experiment. In Michigan, we caught females at a forested 
wetland site managed by the Southwest Michigan Land Conservancy at approximately 42 °N and 
transported them to a greenhouse located at the Kellogg Biological Station in Hickory Corners, 
MI.  

We brought all wild-caught females to the greenhouses and placed them into oviposition 
chambers consisting of a single potted host plant (Carex sp.) enclosed within mesh netting. We 
allowed females to lay eggs for approximately 48 hours before releasing them. We created 
warming enclosures using 27 x 27 x 48 “Pop Up Butterfly Terrariums” (Educational Science©). 
We placed 100 W 110 V infrared ceramic heating lamps (theBlueStone©) inside the enclosures 
and manipulated the temperatures emitted by connecting the lamps in series to TT-300H-WH 
plug-in dimmers (Lutron©). We aimed to increase temperatures by up to 5 °C above ambient 
greenhouse temperature. We randomly assigned each enclosure to one of three warming 
treatments: 1) control (no lamps), 2) one lamp set at medium dimmer intensity, 3) two lamps set 
at high dimmer intensity. We placed a single iButton temperature logger (Maxim©) into each 
enclosure to record hourly temperatures throughout the experiment.  

We removed eggs from oviposition chambers in order to count them and then returned 7-
12 eggs to the enclosures on film caps placed next to the potted plants. We estimated egg 
survival rates based on the proportion of eggs to successfully hatched, and larval survival as the 
proportion of larvae to successfully eclosed. We estimated the length of time individuals spent in 
each life stage as the mean number of days it took all individuals within each enclosure to 
develop from eggs to larvae and from larvae to adults.  
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We used generalized linear mixed effects models using R statistical software (R Core 
Team, 2017) to evaluate the effect of temperatures on egg and larval survival rates at the two 
sites. We combined the data from both sites and used binomial regression analyses to compare a 
suite of models, which included fixed effects of the site of population origin (i.e., Michigan or 
South Carolina), average daily mean, maximum, and minimum temperatures experienced by 
individuals in each enclosure as well as interactions between site and temperature variables. We 
also included row (location within the greenhouse) as a random effect. We ranked models using 
corrected Akaike’s Information Criterion (AICc, Hurvich and Tsai 1989). Mean temperatures 
were correlated with maximum and minimum temperatures at R2 > 0.5 and were excluded from 
candidate models for selection. Maximum and minimum temperatures were less well correlated 
(R2 < 0.5) so both were included in candidate models. 

 We used the fitted egg and larval survival curves and projected climate data for the 
Michigan and South Carolina field sites to estimate future survival rates of these early life stages. 
We used the temperature variable that emerged as the highest ranked in our model selection 
process for egg and larval survival and extracted projected future temperatures from the 
Multivariate Adapted Constructed Analogs (MACA) downscaled climate dataset (Abatzoglou 
and Brown 2012). We extracted daily temperature data from each of the two 4-km grid cells 
containing the butterfly population sites for time periods that corresponded to approximate dates 
during which our egg and larval experiments were carried out (June 1 – July 1 for the egg 
survival and June 15 – September 1 for larval survival). We used data from 20 General 
Circulation Models (GCMs) parameterized by the RCP 8.5 (“business as usual”) emissions 
scenario for the years 2018 – 2098 (Appendix 8.1). From the resulting 20 values, we calculated 
the median and 5 - 95% range and used these values to estimate future juvenile survival rates 
using the fitted juvenile survival curves.  

4.2.1.3 Western snowy plover (Charadrius nivosus nivosus) 
Study system: The western snowy plover is a temperate breeding shorebird that nests on sand 
beaches and, less commonly, alkali flats along the Pacific Coast from central Washington State 
to southern Baja California (Page et al. 2009). In the U.S. western snowy plovers occur on DoD 
lands from Santa Barbara to San Diego counties and, from 2013-2018, western snowy plovers 
nesting on DoD lands account for 54-66% of the breeders in those counties and 20-29% of the 
U.S. portion of the breeding population (USFWS unpublished data). This distinct population 
segment (DPS) was listed as threatened in 1993, due to documented substantial declines in the 
number of western snowy plover breeding sites and individuals along the coast, threats from 
human activity and development on the coast, and the impacts of introduced species in its 
breeding range (USFWS 2007). Introduced species of special concern at the time of listing 
included red fox (Vulpes vulpes) and invasive beach grasses (Ammophila arenaria). Released or 
escaped from inland fur farming operations, the fox exerted unsustainably high levels of nest and 
chick predation on western snowy plovers on the coast (USFWS 2007). The beach grass alters 
natural beach and dune sand dynamics and eliminates the open, lightly vegetated habitat required 
by the western snowy plover for nesting. Since the time of listing, additional meso-predators, 
whose populations are augmented by human food and shelter subsidies (e.g., ravens, Corvus 
corax, Burrell and Colwell 2012) have been found to exert a large negative effect on western 
snowy plover breeding success. There has been a growing awareness of the threat to the western 
snowy plover’s coastal breeding habitat from accelerated sea level rise (Aiello‐Lammens et al. 
2011).  

 
 

27 



An extended breeding season is characteristic for the species, with nest initiations underway 
throughout the range by early April. In the California and Mexico portion of the range nest 
initiation usually begins in March and very rarely in February. Nest initiations occur only rarely 
after mid-July (Page et al. 2009, Point Blue Conservation Science unpubl. data). Modal clutch 
size is three eggs. Western snowy plovers employ a serially polygamous breeding system in 
which both sexes share incubation, but typically one parent, usually the male, tends chicks to 
independence. The female normally abandons the brood to the male’s care within a few days of 
the nest hatching and initiates a new nesting attempt with a different male. Males often initiate 
additional nesting attempts when either failing or succeeding to fledge young before the end of 
June (Warriner et al. 1986, Stenzel et al. 1994). This breeding system is facilitated by a sex ratio 
slightly skewed toward males (Stenzel et al. 2011). Incubation and chick-rearing periods are 
approximately a month long. Because of the lengthy breeding season, females may hatch eggs 
from three nests and males fledge young from two broods within a breeding season. The 
individual plovers occupying sites are in flux over the course of a year, with some individuals 
remaining year-round in the general area in which they bred and others moving variable distance 
after breeding to winter elsewhere (Warriner et al. 1986, Hudgens et al. 2014). 

The longest running intensive study of western snowy plover demographics has been 
conducted on the shores and alkali flats of Monterey Bay since 1977, with coverage of the entire 
bay shore starting in 1984 (Warriner et al. 1986, Stenzel et al. 2011). Monterey Bay shoreline, in 
Monterey and Santa Cruz counties, is in Recovery Unit 4 (RU4), which spans the outer coastline 
from Monterey to Sonoma counties, California. Annually, the Monterey Bay area has supported 
15-20% of the listed distinct population segment breeding within the United States (USFWS 
unpublished data). Until 2015, Monterey Bay researchers attempted to 1) find all nests laid (or 
broods, in the few cases each year in which chicks hatched from nests that had previously not 
been found), 2) identify the individual identity of both parents for each nest, 3) determine the fate 
of nests (i.e., number of chicks hatched) and broods (i.e., number of chicks fledged) from each 
nest found, 4) maintain >90% rate of individually-banded breeders and also to individually band 
a similar proportion of chicks each year, and 5) follow banded individuals during the non-
breeding season to determine fidelity to and dispersal from breeding or natal areas (Warriner et 
al. 1986, Stenzel et al. 1994, Neuman et al. 2003, Stenzel et al. 2007). We modeled demographic 
rates for this study using the data from Monterey Bay breeders because the study at Monterey 
Bay was both long-term and intensive, the size of the breeding population was large relative to 
the U. S. portion of the DPS, and Monterey Bay’s location sufficient variability in temperature 
and precipitation. We focused on modeling annual survival, breeding season length, and the 
annual number of fledglings per male as key elements through which temperature and 
precipitation might affect demographic rates. 

To measure the effect of local winter weather conditions on annual survival, we fit 
Cormack-Jolly-Seber (CJS) mark-recapture models to May (our capture occasion) capture and 
sighting data with program Mark version 9.0. We compared different models within an 
information-theoretic framework (Burnham and Anderson 2003) using QAICc, the Akaike 
Information Criterion corrected for overdispersion and small sample size. We estimated over-
dispersion using program MARK’s median procedure and adjusted model outputs by the 
estimate. We modeled effects with a logit link function. The CJS mark-recapture model 
estimates “apparent” survival and cannot differentiate between that die and those that 
permanently emigrate. However, in these analyses individuals enter the sample after having bred 
locally during May, a central month of the breeding season. Breeding site fidelity has been 
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documented to be high among these breeders (mostly > 95% for males, Stenzel et al. 2011). 
Therefore, we believe these apparent survival estimates to be very close to true survival values. 

We examined the sighting histories of banded males and females that bred in the 
Monterey Bay area during the month of May from 1984 to 2016 and extracted histories for 635 
male and 584 female breeders that were found wintering in Recovery Unit 4, from 40 km south 
to 230 km north of the Monterey Bay area. We compiled encounter histories for those breeders 
starting with the first year in which they were found breeding in the Monterey Bay area in May 
and were known to be wintering in RU4.  

To characterize conditions for each winter (November - February), we used weather data 
from Monterey Bay and from Point Reyes, approximately 170 km north. We suspected low 
temperatures or large storms to be the most likely weather conditions to negatively affect 
survival. Because the range between the minimum and maximum daily temperature was greater 
on Monterey Bay and precipitation amounts greater at Point Reyes, we used minimum and 
maximum daily temperature data from Monterey Bay and precipitation data from Point Reyes. 
For each year, we calculated the mean minimum daily temperature, mean maximum daily 
temperature, and mean daily precipitation. Suspecting that extreme events, particularly cold 
snaps, could have a greater effect than average conditions, we also calculated two versions of a 
cold score for each winter. The bases for the cold score were daily cold anomalies, consisting of 
1) the number of degrees by which the minimum daily temperature did not exceed 2 °C, added to 
2) the number of degrees by which the maximum daily temperature did not exceed 10 °C, only 
for days in which the minimum temperature did not exceed 2 °C. The basic annual cold score 
(ACS) was the sum of the daily cold anomalies from November through February. To include 
the effect of the duration of a cold event (as opposed to the same number of low temperature 
days occurring for only one day’s duration), we also calculated a duration-amplified cold scores 
(DACS), in which we added to each day’s cold anomaly one half the previous day’s amplified 
cold anomaly. Each year ACS and DACS were calculated for both Monterey Bay and Point 
Reyes and the two locations summed for final scores so that cold events better reflected 
conditions in all of RU4 in winter. 

We compared two competing global models in the mark-recapture analysis. Both global 
models included the following variables: sex, a linear trend through time, mean maximum daily 
temperature, and mean daily precipitation. We did not include mean minimum temperature to 
avoid collinearity between independent variables. One global model included the ACS and the 
other the DACS. With a model weight ~1.5 times higher for the DACS (0.61) than for the ACS 
(0.39), we proceeded with variable reduction using the DACS global model. We made detection 
time-dependent for all models.  

We assessed how the beginning and end of the breeding season affected the length of the 
breeding season by examining dates of nest initiations at either end of the season, 1984 - 2016. 
Since the first nest initiation (date on which the first egg was laid) of a year was sometimes 
separated from subsequent initiations by as many as 11 days (Point Blue Conservation Science 
unpubl. data), we considered two dependent variables, the date on which the first nest of the 
season was initiated (first nest models) and the date of the onset of breeding (breeding onset 
models). We defined the onset of breeding as the first date on which at least three nests were 
initiated within a three-day period. We similarly defined the conclusion of nest initiations as the 
date the last nest was initiated after which there were no more than two nests in any subsequent 
three-day period. Thus, the onset to the conclusion of nest initiations includes all initiation dates 
except those we defined as outlying. 
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We examined all clutch initiation data up to 21 April from 1984-2016 to examine the 
effects of weather variables during the spring and prior winter on the timing of the breeding 
season start. We considered 13 predictor variables: the DACS of the previous winter and the 
mean daily temperature and daily precipitation for the following periods: November through 
January, February, March, 1-10 March, 11-21 March, and 22-31 March. We used linear 
regression in R (version 3.6.1, R Core Team 2016) to construct 13 single factor and four global 
models for each response variable, differing only by including temperature and precipitation for 
either all of March or one of the three periods in the month, because of generally high (> 0.6) 
correlations among some of the climate variables for these four periods. 

We suspected that males whose first nests were earlier would fledge more young during a 
breeding season than males whose first nests were initiated later, because they would have more 
time to renest after failure and to double brood. Further, we suspected that first-time breeders 
would fledge fewer young in a season than older more experienced males. We explored models 
predicting the total number of young fledged in a breeding season, summed over all nesting 
attempts, by 715 known-age males from 1984 to 2016, using a mixed generalized linear model 
and selected the most parsimonious model by comparing AIC values in R (version 3.6.1, R Core 
Team 2016). Predictor variables included the clutch initiation date of the male’s first nest for that 
year, the age of the male (0 = first-time breeder, 1 = second-time or older breeder), and random 
effects male identification and year, to account for differences in the qualities between different 
males and general differences between years in breeding success. With up to two successful 
nesting attempts possible for males and a modal clutch size of three eggs, the response variable, 
number of young fledged, varied between 0 and 6, (mean = 1.43, variance = 1.86, thereby 
slightly over-dispersed for a Poisson distribution and slightly zero-inflated). Therefore, to assess 
the most appropriate model structure, we fit models with an intercept and random effects male 
and year and compared Poisson, zero-inflated Poisson, negative binomial, and zero-inflated 
negative binomial errors. The best supported structure, zero-inflated Poisson, was used to 
examine the effect of the first nest date and age of the male. 
  

4.2.1.4 Red-legged frog (Rana aurora and R. draytonii) 
Study system: We combined data from two closely related and ecologically similar species for 
the purposes of this study, the California red-legged frog (Rana draytonii) and the northern red-
legged frog (Rana aurora). We were particularly interested in California red-legged frogs, which 
are federally listed as threatened and are endemic to California and northern Baja California, 
Mexico. In California, their current distribution is primarily restricted the coast ranges from 
Riverside County to Mendocino County, with a few remnant populations in the Sierra Nevada. 
This species is managed on Vandenberg Air Force Base, Camp Parks, and Camp San Luis 
Obispo. However, because we could not quickly get the necessary federal permits to work with 
California red-legged frogs, we used northern red-legged frogs as a surrogate species, allowing 
us to collect a more robust data set. Northern red-legged frogs are identified as a Sensitive 
species in Oregon and a Species of Special Concern in California. They are found throughout the 
Pacific Northwest form Mendocino County, CA to British Columbia, Canada. There is a narrow 
zone of overlap in Mendocino County, CA, where breeding pools may support either species, 
both species, and hybrids of the two species (Shaffer et al. 2004). Both species breed in the still 
waters of ponds, marshes, and streams and can be found from sea level to about 1200 -1500 m 
elevation. For this report, we refer to the species complex comprising California red-legged 
frogs, northern red-legged frogs and hybrids as red-legged frogs. 
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We studied 11 populations of red-legged frogs at sites that vary in elevation from 2 to 
1043 m and span a latitudinal gradient from approximately 34.5 to 44.4° N (Figure 4.2-3) in CA 
and OR. Of these, six sites support northern red-legged frogs (R. aurora), three sites support 
California red-legged frogs (R. draytonii), and two sites potentially support both species and/or 
hybrids (Shaffer et al. 2004). See Table 4.2-2 for details. 

 

 

Figure 4.2-3 Red-legged frog study locations in California and Oregon. 
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Table 4.2-2. Red-legged frog study sites with the species, location, and breeding pool type listed, as well as which 
demographic rates were measured at each study site each breeding season. Demographic rates: F = Fecundity, E = 
Egg hatch rates, T = Tadpole survival, FL = Froglet survival, A = Adult survival. Sites are named by whether they 
were inland or coastal and which species of red-legged frog was there (NRLF = northern red-legged frog, CRLF = 
California red-legged frog). 

Site Species Breed site type 
2015-
2016 

2016-
2017 

2017-
2018 

2018-
2019 

Inland NRLF 1 R. aurora Semi-ephemeral 
pond F, T F, E, T   

Inland NRLF 2 R. aurora Ephemeral pond T,  F, E, T, E, T  

Inland NRLF 3 R. aurora Semi-ephemeral  
pond 

F, T, FL, 
A 

F, E, T, 
FL, A 

F, E, T, 
FL, A A 

Coastal NRLF 1 R. aurora Ephemeral pond F, A F, E, A A F, A 

Coastal NRLF 2 R. aurora Ephemeral 
wetland F, T, FL F, E, T, 

FL A 
F, E, T, 
FL, A 

F, E, T, 
FL, A 

Coastal NRLF 3 R. aurora Semi-ephemeral  
pond T, FL F, E, A F, E, T, 

FL, A F, E, A 

Coastal hybrid 1 R. aurora/ 
R. draytonii 

Permanent ponds 
(3)  T, FL E  

Coastal hybrid 2 R. aurora/ 
R. draytonii Ephemeral pond  FL   

Inland CRLF  R. draytonii Semi-ephemeral  
Ponds (6)   FL, A F, FL, A 

Coastal CRLF 1 R. draytonii Stream   E E 
Coastal CRLF 2 R. draytonii Stream   E F, E 
 
Demographic field methods: We estimated fecundity (number of eggs per mass) at each site by 
photographing a subsample of randomly chosen egg masses (typically >20 masses per site) in 
shallow containers and then counting the number of eggs in the photographs. To estimate the 
proportion of eggs that successfully hatched at each site, we placed 20-50 eggs collected from 
the same mass in predator excluded cages. We used eggs from a different egg mass for each cage 
and had up to 15 cages per site per year. The cages consisted of a plastic frame with three sides 
and the bottom covered by a fine (~1mm) fiberglass mesh to allow water flow and a mesh lid 
covering the top. The cages were attached to stakes within each breeding pond and positioned 
such that they were at a similar depth in the water column as the egg masses they were collected 
from. During the course of the 2017 breeding season, at one site we found a high number of eggs 
missing from containers and noticed that amphipods were able to enter the cages through the 
mesh sides. We confirmed our assumption that amphipods were preying on the eggs in the closed 
containers by adding cages with extremely fine mesh that excluded amphipods completely 
(Hudgens and Harbert 2019). We subsequently conducted plankton tows at all of our other study 
sites, and in 2018 we deployed amphipod free cages, in addition to the standard cages, at all sites 
where we observed amphipods. 

We checked egg cages every 7-10 days through hatching and recorded the number of 
viable and non-viable embryos, and the Gosner stage of viable embryos (Gosner 1960). We 
opened cages once eggs reached stage 21/22 (just prior to hatching) to ensure tadpoles were free 
to leave the cages once hatched. We determined the proportion of eggs that successfully hatched 
(egg viability) based on the number of viable embryos observed during the survey when we 
removed container lids.  
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We used mark-recapture methods to estimate survival rates for tadpoles, recently 
metamorphosed froglets, and adults. We used visible implant elastomer (VIE; Northwest Marine 
Technology, Anholt 1998, Grant 2008) tags to identify individual animals for mark-recapture 
analyses. The marking procedure involved injecting the fluorescent polymer just under the skin 
using a 0.3 cc insulin syringe. We also used photos as a secondary method of identification for 
tadpoles and adults that lost tags (froglets we caught did not have distinct enough markings to 
use for photo identification). We took photos of every capture and when a recapture was missing 
one or more tags. We typically visually determined the identity of individuals with missing tags, 
however in the few cases where the number of possible individuals was large, we used the 
Interactive Individual Identification System (I3S) program (Van Teinhoven et al. 2007) to assist 
with identification.  

We marked tadpoles once they reached a total body length >35 mm using unique color 
combinations of four VIE tags, two on either side of the tail, and also photographed the left side 
of each tadpole we marked. Prior to tagging, we recorded the total length, body size from the tip 
of snout to junction of the body and tail at the midline, categorical development stage (hind limb 
buds, hind legs, front limb buds, front legs) and any injuries or deformities. To reduce the risk of 
injury during the tagging procedure, we anesthetized tadpoles using a solution of Tricaine 
methanesulfonate (MS-222; Cecala et al. 2007), in an immersion bath using established protocols 
(Anholt 1998, USGS National Wildlife Health Center). Tagging methods are descried in further 
detail in McHarry et al. (2018). Capture-recapture surveys were conducted 1-3 times/week 
during the time tadpoles were in breeding ponds.  

Because recapture rates were extremely low in open ponds, we confined tadpoles to  
mesocosms maintained within each pond in areas where tadpoles were regularly observed. From 
2017-2019, we used 2 m x 4 m mescosms constructed of drift fence, which allowed water to 
freely pass but prevented tadpole escape. Mesocosms were larger and irregularly shaped in 2016. 
Most aquatic predatory invertebrates, birds, and snakes could access mesocosms. We left the 
pond vegetation intact within each mesocosm to provide refugia from predators and surfaces for 
algae and bacteria (the primary sources of food for tadpoles) to grow on. If pond drying led to 
water levels in a mesocosm dropping below 10 cm, we lifted the bottom of the drift fence, which 
was buried or weighted with gravel bags, to allow any tadpoles that had not yet metamorphosed 
out to swim to deeper waters.  

We tagged froglet and adult red-legged frogs on the feet in the webbing between the toes. 
We used four tags in total, with two on each foot in a unique color combination. We did not 
anesthetize froglets or adults because we were able to secure them safely for tagging without 
causing injury and we wanted tot to minimize the risk of anesthesia induced mortality. We also 
photographed the right inner thigh of each adult, where markings are pronounced, and recorded 
the snout vent length (SVL) and the presence of injuries or deformities.  
Fitting Relationships between demographic rates and climate variables: We assessed the effects 
of temperature and precipitation on fecundity (number of eggs per mass), egg hatching success, 
egg development rates, and tadpole survival. We deployed HOBO Pro data loggers (Onset 
Computer Corporation, Bourne, MA, USA) to record the water and air temperature at each site. 
Because projections of future water temperatures were not available, we used air temperatures at 
the site when fitting climate-demographic rate relationships to be used in SEED models. Unless 
specified otherwise, all temperature data were taken from the HOBO Pro data logger collecting 
air temperatures. We downloaded precipitation data for each site from the gridMET database 
(Abatzoglou 2013). Daily minimum, maximum, and mean temperatures are often highly 
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correlated, so for analyses described below we only included one measure of temperature at a 
time in our models. 

To test the effects of climate on fecundity, we used generalized linear models (stats 
package in R 3.3.3; R Core Team 2017) to evaluate the effects of total rainfall (mm) for one 
calendar year prior to the onset of breeding, total rainfall from June 1 to November 30 prior to 
onset of breeding, total days of measurable rainfall from June 1 to November 30, and total 
rainfall during the previous breeding season (October 1 to March 31) on the number of eggs per 
egg mass. All of the precipitation variables were highly correlated, so we only included one in 
the model at a time. We also included species (R. aurora vs. R draytonii), and either site or the 
average snout vent length (SVL) of females at each site in our models. We used SVL data that 
we collected at all of our sites, except for one site, Coastal CRLF 2, where we did not work with 
adults. We obtained SVL data for R. draytonii on Vandenberg Air Force Base (where Coastal 
CRLF 2 is located) from biologists at ManTech SRS Technologies, Inc. 

We evaluated the effects of climate on egg viability using data from the predator 
excluded egg cages. We used binomial mixed models, with cage and female as random effects 
and site as a fixed effect, to test the effects of mean, minimum, and maximum daily water and air 
temperature from the time eggs were placed in egg cages until they hatched, cumulative season 
precipitation from September 1 through the time that eggs hatched in each cage, and cumulative 
precipitation from the prior water year (October 1 to September 30) (MCMCglmm package in R 
Studio v1.2.1335, R Studio Team, 2018, Hadfield 2010). Using our best performing climate 
model, we also explored if there were any effects of frog species (R. aurora vs. R. draytonii) or 
interactions between species and climate.  

We used generalized linear models (stats package in R 3.3.3; R Core Team 2017) to test 
the effects of water temperature on egg development rates. In this analysis we used water 
temperature rather than air temperature because egg development rate was not included in our 
SEED model.We used data from the predator free egg cages and considered development time to 
be the number of days from being placed in cages to hatching. We excluded any cages were eggs 
were greater than stage 12 when placed in the cage.  

We used ordinal regression models to evaluate the effects of daily mean temperatures and 
cumulative growing degree days (GDD) on tadpole development rates of marked tadpoles 
recaptured at least once. The regression models estimated the probability of remaining in the 
same developmental stage or transitioning one or multiple stages between captures given the 
number of days between captures, starting stage, number of days since the start of the breeding 
season, and mean temperature or GDD. We considered all tadpoles to be in one of seven stages 
based on leg development: no leg buds present, hind leg buds present, hind feet present, hind 
legs present, front leg buds present, front legs present, or froglet. Even though tadpoles are a 
fully aquatic life stage, we used air temperatures in these regressions to facilitate using them to 
link projected air temperatures from global climate models to development rates in our SEED 
models. 

We used Cormack-Jolly Seber models to evaluate the effects of climate variables on 
tadpole, froglet, and adult survival (‘RMark’ package in R and Program MARK; White and 
Burnham 1999, R Core team 2017) of animals marked in 2016 - 2018. We separated animals 
from different sites or different years into different groups such that each group represented a 
single site x year combination. For tadpoles, we also put animals in different mesocosms within 
each site into separate groups, so tadpole groups represented different mesocosm x year 
combinations. We estimated survival in terms of daily intervals for tadpoles, monthly intervals 
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for froglets, and quarterly intervals for adults. If there were multiple surveys at a site within the 
same interval, we combined capture data from the surveys, such that if an animal was captured or 
recaptured during any survey it was recorded for that interval. In order to account for numerous 
unmeasured factors potentially effecting animal catchability, we modeled detection probability 
as a function of the number of animals captured during all occasions sampled during an interval. 
This resulted in the capture probability for any animal in a group that was not sampled during a 
given interval being equal to 0, since no animals could have been caught. We evaluated the 
possible effects of several climate variables on survival for each life stage. For tadpoles we 
evaluated: daily minimum, mean, and maximum air temperatures, total winter precipitation, and 
combinations of precipitation and each temperature variable. For froglets we evaluated: the 
monthly average daily minimum, mean, and maximum temperature, monthly precipitation, 
cumulative monthly precipitation since April 1, total annual precipitation during the previous 
water year (October 1 of the previous year through September 30 of the year when a froglet was 
tracked) and total precipitation during the previous two water years. We also tested each 
combination of minimum temperature, maximum temperature and the precipitation variables. 
For adults, we evaluated quarterly mean daily minimum, mean and maximum temperature, 
quarterly precipitation, and all combinations of one temperature variable plus quarterly 
precipitation.  
Experimental tests of environmental effects: Predicting how changing climate conditions will 
influence population growth rates of managed species is only the first step to planning future 
management needs. We conducted a set of experiments with red-legged frogs to address a few of 
the additional factors that will likely influence future management decisions for this taxon. First, 
we addressed the issues of how multiple stressors might interact to influence red-legged frogs 
through two sets of experiments. In the first experiment, we simultaneously varied pool drying 
rates, the presence of an invasive competitor widely recognized as a threat to red-legged frogs, 
and temperatures experienced by tadpoles. We used these experiments to evaluate how invasive 
species might influence responses to climate change and to ask if increased temperatures either 
mitigated or exacerbated the effects of shortened hydroperiods often associated with warmer 
spring and summer conditions. In a second experiment, we manipulated canopy cover 
experienced by tadpoles at several of our study sites to ask if 1) the effect of canopy cover on 
red-legged frogs varied among sites in a way that indicated a climate influence, and 2) habitat 
management at breeding pools could have a large enough effect on egg and tadpole survival to 
influence population growth rates. The results from these experiments were not included in the 
SEED models for this species.  
Hydroperiod, invasive species, and temperature experiment: We used experimental mesocosms 
to explore the influence of climate and non-climate related stressors on the performance of 
northern red-legged frog early life stages. We tested direct effects of climate by elevating the air 
and water temperatures experienced by developing tadpoles and potential indirect effects of 
climate by shortening hydroperiods. Hydroperiods, or the length of time that an ephemeral 
breeding pond holds water, can be influenced by a variety of factors including precipitation, 
temperature, soil characteristics, and emergent vegetation. We also evaluated the effects of an 
introduced species known to influence red-legged frog populations. American bullfrogs 
(Lithobates catesbeiana) are listed among the top 100 world’s most invasive alien species by the 
IUCN (Lowe et al. 2000) and have been identified as threats to native amphibians worldwide 
(Kats and Ferrer 2003, Kiesecker 2003). Bullfrogs are invasive in the western U.S. and threaten 
red-legged frogs through a variety of mechanisms including direct competition and predation, 
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causing behavioral changes that reduce tadpole foraging efficiency, and increasing the spread of 
pathogens (Kiesecker and Blaustein 1997, Lawler et al. 1999, Kiesecker et al. 2001, Yap et al. 
2018). 

We designed a 6 x 3 multi-factorial mesocosm experiment to determine how shortened 
hydroperiods and bullfrog presence affect northern red-legged frog tadpole survival and froglet 
size post metamorphosis. We had three bullfrog treatments 1) northern red-legged frog tadpoles 
only (control) 2) northern red-legged frog and bullfrog tadpoles separated by a permeable divider 
(signal) or 3) northern red-legged frog and bullfrog tadpoles together without divider (direct). 
This design allowed the separation of the direct effects of bullfrogs via competition and indirect 
effects due to behavioral changes in response to bullfrog presence. For each bullfrog treatment 
we applied six hydroperiod treatments, and we had two replicates of each bullfrog x hydroperiod 
treatment combination. We implemented the hydroperiod treatments by varying the date at 
which the mesocosm began drying down, (i.e. all mesocosms dried at the same rate but how soon 
they began drying varied). We had 12 additional mesocosms with only northern red-legged frog 
tadpoles that were warmed above ambient temperatures using greenhouse lids. We had two 
replicates of each of the six hydroperiod treatments with the warming lids, which could be 
compared to the control mesocosms from the factorial bullfrog experiment to look at the 
interactive effects of temperature and hydroperiod on northern red-legged frog tadpoles. We 
deployed two HOBO Pro data loggers in each mesocosm; one in the water near the bottom of the 
tank to measure water temperature and one attached to the underside of the lid to measure air 
temperature.  

The mesocosms consisted of 150-gallon water stock tanks housed at the Institute for 
Wildlife Studies’ (IWS) property near Fieldbrook, California. Each tank had a capacity of 567 l 
(approximate dimensions: 99.06 cm x 147.32 cm x 60.96 cm). We arranged the tanks in a 6 x 7 
grid, separated by approximately 2 m, and covered each tank with a screen or plastic lid to 
exclude predators and prevent animals from escaping. Prior to introducing northern red-legged 
frog egg masses and bullfrog tadpoles, we allowed each tank to fill with rainwater during the fall 
and winter season and added plant material (dead cattails and grasses) from our Coastal NRLF 2 
study site (the egg collection site) to provide refuge and food resources. We measured 
temperature, pH, dissolved oxygen, nitrites, phosphates, ammonia, and alkalinity in each tank at 
initial set up and monthly thereafter in order to ensure tadpoles were being kept in a healthy 
environment based on standard captive amphibian care guidelines (Odum and Zippel 2008). All 
tanks started the experiment with water depths of 50 cm, and we maintained this water level in 
each tank until we initiated drying.  

We seeded each tank with 80 - 170 northern red-legged frog eggs that came from 10 egg 
masses collected from our Coastal NRLF 2 study site. We placed eggs in floating cages to 
maintain thermoregulation and facilitate counting unviable eggs and hatchlings. We released 
tadpoles into the main tank as they hatched. We constructed refuge cylinders from hard plastic 
fencing with ½ inch square openings and placed one in each bullfrog tank to allow newly 
hatched northern red-legged frog tadpoles to enter the cylinder while restricting bullfrog tadpoles 
access. We added 10 bullfrog tadpoles to each direct and signal treatment 33 days after we 
seeded the tanks with northern red-legged frog eggs. In the direct treatment, bullfrog tadpoles 
had access to the whole tank and could interact directly with northern red-legged frog tadpoles. 
In the signal treatment, bullfrog tadpoles were confined to a mesh cage (35.56 cm x 35.56 cm x 
67.31 cm) placed within the tank. The permeable material of the mesh cage allowed for the 
exchange of water, nutrients, and chemical cues. 
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We based the drying rate for the hydroperiod treatments on water depth data from the 
Coastal NRLF 2 site in 2018. We did not completely dry out the tanks, so that any remaining 
tadpoles that did not metamorphose could be euthanized humanely at the end of experiment. We 
considered any tadpoles remaining three days after the water level reached 3 cm as mortalities 
for our survival analyses. The drying rate was constant across the six hydroperiod treatments, but 
the date of initiation of draw-down varied such that the total number of days from the beginning 
of the experiment to final drying varied from 87 to 147 days in increments of 10-12 days for each 
treatment (Figure 4.2-4). The longest hydroperiod treatment (147 days) was designed to 
completely dry down at the same time of the year that most of pond at Coastal NRLF 2 dried out 
in 2018 (early July). We maintained the appropriate water level in each tank by drilling holes in 
standpipes or by adding stored rainwater when to compensate for water lost to evaporation.  

 

 
Figure 4.2-4. Hydroperiod treatments for captive experiment. Drying rate is the same across all hydroperiod 
treatments and shortened by changing the start day of water draw down. 

Due to concerns about tadpole size, we began administering algae and spirulina tablets 
(Aquatic Foods Inc., United States) to all tanks on day 70 of the experiment. We gave half of the 
tanks twice as many tablets to see if food resource availability affected interactions between 
northern red-legged frog and bullfrog tadpoles. We randomly assigned the low and high food 
treatments to all tanks.  

We measured two response variables in this experiment: survival through metamorphosis 
and froglet size post metamorphosis. We considered successfully metamorphosed individuals 
(froglets) to be any individual with all limbs fully developed, mouth down turned, and tail fully 
absorbed by the final draw-down date. We measured the froglet’s snout vent length (SVL) as 
measure of body condition. For the analyses related to the bullfrog portion of the experiment, we 
used data from 29 of the 36 tanks for analyses because seven tanks experienced complete die offs 
prior to the end of the experiment. The die off occurred in all six of the 121-day hydroperiod 
treatments, which had the lowest water level at the time of the die off, and one control tank in the 
147-day hydroperiod treatment. The die off was likely caused by unusually warm temperatures 
experienced for three consecutive days in June, which caused water temperatures in the effected 
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tanks to reach nearly 35 ºC. We conducted analyses related to temperature both with and without 
the die-off tanks included. 

To look for effects of bullfrog treatment, hydroperiod, and food addition on survival 
through metamorphosis we used logistic regression with a quasibinomial distribution to account 
for overdispersion (Warton and Hui 2011). The three shortest hydroperiod treatments (87, 99, 
and 109 days) ended before any tadpoles completed metamorphosis (0% survivorship). With all 
hydroperiod treatments included there was clearly a strong effect of hydroperiod on survival, but 
our ability to detect effects of bullfrog treatments or food was hindered by the complete mortality 
in fast drying tanks. Therefore, we also ran the analysis with a truncated dataset where we 
excluded the shortest three hydroperiod tanks.  

We analyzed the interactive effects of bullfrog treatment, hydroperiod, and food 
availability on size at metamorphosis (SVL) using linear mixed-effects models with tank as a 
random variable using the lme4 package in R (Bates et al. 2012). All analyses were performed in 
R Studio (R Studio Team, 2018).  We used the Akaike information criterion (AICc) or 
overdispersed modification of AICc, QAICc, both corrected for small sample size, to compare 
models for each analysis (Burnham and Anderson 2002) with the MuMIn package (Bartoń 
2019). 

To examine the effects of temperature on survival through metamorphosis and size at 
metamorphosis we used data from the control tanks in the bullfrog experiment and the warming 
top tanks. We used logistic regression to assess the effects of average daily minimum, maximum, 
and mean air temperature in each tank over the course of the experiment, the maximum air 
temperature experienced anytime during the experiment, hydroperiod, and food availability on 
survival through metamorphosis. We also included a temperature by hydroperiod interaction in 
our models. Because all of the temperature measures were highly correlated, we only included 
one measure of temperature at a time in the models. We used air temperature from the tanks 
because 1) we had found that air temperature was a stronger predictor than water temperature of 
tadpole survival in the field, and 2) climate models project future air temperatures but not water 
temperatures. We ran the analysis with and without die off tanks included as well as with and 
without hydroperiods with zero survival included. 

For size at metamorphosis (SVL), we used growing degree days (GDD) as our measure 
of temperature. There is a long history of using GDD for explaining patterns of growth and 
development in plants, insects, and other ectotherms (e.g. Seamster 1950, Atkinson 1994, 
Bonhomme 2000). We calculated GDD using the daily minimum and maximum air temperature 
recorded in each tank for the first 95 days of the experiment using the single sine method (Zalom 
et al. 1983) We used two specification of Dmin and Dmax: 1) 10 and 30 °C, 2) 15 and 35 °C, and 
tested each to see which performed better in our models. In addition to GDD, we tested the 
effects of hydroperiod, food availability, and development time (days to metamorphosis) on 
froglet SVL using mixed-effects models with tank as a random variable in the lme4 package in R 
(Bates et al. 2012). We also explored the effects of GDD, hydroperiod, and food availability on 
larval development time (days to metamorphosis) using the same analytical methods. 
We performed all analyses in R Studio (R Studio Team, 2019) and used AICc to compare 
models for each analysis (Burnham and Anderson 2002) with the MuMIn package (Bartoń 
2019). 
Effects of canopy cover: We conducted a short-term (single breeding season) field experiment to 
test the effects of canopy cover on egg and tadpole survival. Conservation efforts for pond-
breeding amphibians often focus on improving breeding habitat. Habitat modifications have the 
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potential to influence population growth rates directly and potentially indirectly through 
interactions with other environmental variables. For example, canopy cover surrounding 
breeding ponds might influence pond water temperature via shading, and potentially buffer 
aquatic early life stages from warming air temperatures. Studies have shown that canopy cover 
can influence tadpole growth and survival in several anuran species, with more open canopy 
conditions typically benefiting tadpoles (Werner and Glennemeier 1999, Skelly et al 2002, 
Thurgate and Pechmann 2007). We investigated the effects of canopy cover surrounding 
breeding ponds on egg viability and tadpole survival rates at five of our northern red-legged frog 
sites.  

To assess the impacts of canopy cover on egg viability we used the same egg cage study 
design described previously, but placed sets of paired cages in relatively shaded (closed canopy) 
and relatively open (open canopy) areas of each breeding pond at four sites during the 2017-18 
breeding season. We estimated in the amount of average monthly solar exposure the shaded and 
open portions of the pond received using a Solar Pathfinder™ device (The SolarPathfinder 
Company, Linden, Tennessee, United States of America). We tested the effects of canopy cover 
on egg hatching success using logistic regression with a quasibinomial distribution to account for 
overdispersion (Warton and Hui 2011). We include canopy cover, site, and interactions between 
site and canopy cover as our explanatory variables. We assessed relative model performance 
using QAICc, the overdispersed modification of AIC corrected for small sample size (Burnham 
and Anderson 2002). We used the stats and MuMIn packages in R Studio (R Studio Team, 2018, 
Bartoń 2013). 

For tadpole survival we placed drift fence enclosures (mesocosms) in relatively shaded 
and relatively open areas of each breeding pond at five of our northern red-legged frog sites 
during the 2015-16 breeding season. We used the mark-recapture methods described previously 
to estimate tadpole survival in each canopy treatment. We tested models that assumed that 
tadpole survival was a function of site, canopy treatment, and temperature. We also tested 
models with interactions between canopy cover and site, and canopy cover and temperature. We 
assessed model performance using Akiake information criterion corrected for small sample size 
(AICc) (Akiake 1973, Burnham and Anderson 2002) 

To determine if canopy cover had an effect on discrete population growth rates (λ) 
through its influence on egg viability or tadpole survivorship, we created pre-breeding stage-
based matrices (Lefkovitch 1965). The matrix transition elements were calculated from 10 total 
parameters (Table 4.2-3). Six of those parameters (proportion of adult females breeding, eggs per 
mass, egg hatch success rate, tadpole daily survival, tadpole stage length, juvenile survivorship, 
froglet survival) contributed to a single transition rate describing fecundity and first year 
survival. The transition elements were either estimated directly from the data in this study or 
taken from Licht (1974). We created two sets of matrices for each site that had non-overlapping 
95% confidence intervals in either egg hatch success or tadpole survivorship between canopy 
treatments. These matrices differed only in the value of the parameter that was affected by 
canopy cover at the site. Each set of matrices included one matrix using the best estimate of the 
demographic rate, and two matrices using associated lower and upper confidence limits, 
respectively.  

To determine the relative contribution of different life stages to population growth, we 
performed an elasticity analysis (Caswell 2000). We calculated elasticities analytically using 
eigenvalues and eigenvectors (de Kroon et al. 1986), in the R software program version 3.4.0 (R 
core team 2017). Elasticities were evaluated using a matrix with the mean value of the combined 
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early stage transition rate, for the mesocosms/site combinations included in the population 
growth rate analysis. 
Table 4.2-3. Basic matrix showing parameterization for transition rates. The six parameters contributing to the early 
life stage transition rate are: Fb = proportion of adult females breeding, Em = eggs per mass, H = egg hatch success 
rate, Sh = recruitment into tadpole population, Sd = tadpole daily survival, n = tadpole stage length (days), and FLs = 
froglet survival. The later life stage transition rates are: J1s = J2s = juvenile survivorship, and As = adult survivorship 

 J1 J2 A 

J1 0 0  (Fb * Em)* [(H * Sh) * (Sd
n) * FLs] 

J2 J1s 0 0 

A 0 J2s  As 

 

4.2.1.5 Alaskan douglasia (Douglasia alaskana) 
Study system: The Alaskan douglasia is a perennial alpine plant with leaves occurring in one to 
three rosettes with fruits presented on short (<15 cm) peduncles. Its occurs in alpine scree on 
ridgelines and mountaintops in Southwest Alaska. Alaskan douglasia populations are typically 
small, ranging from 4-300 individuals in our study. The species is uncommon, with a very small 
fraction of seemingly suitable habitat occupied. Individuals drop seeds within 30 cm of the 
parent plant into unvegetated scree fields. The species is partially semelparous, with most 
(775/987) individuals dying after reproducing. 
 

 
Figure 4.2-5. Map of South Central Alaska in grey, with the approximate range of Alaskan douglasia indicated by 
the black polygon (Hulten). Populations used in this work are indicated by dots, and the labels of populations 
correspond to those of other figures. E2 and E1 are offset from one another to allow readability. 

Demographic field methods: To quantify response of Alaskan douglasia to climate, we 
conducted a demographic survey at five populations (Figure 4.2-5) over one transition interval. 
In 2016, we marked and mapped 56-196 individuals at two populations, measuring size and 
number of fruits of each individual. We returned in 2017 to score survival and measure size and 
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number of fruits. In 2017-2018, we repeated these procedures on three additional populations, 
with 218-383 individuals marked and mapped at each population in 2017. From the 2016-2018 
interval, we obtained five population x years of data with 1162 individual x years of data. We 
derived six demographic rates from these data: annual survival, mean size after one year of 
growth, variance in size after one year of growth, probability of fruiting, and number of fruits 
given fruiting. We also estimated seedlings per fruit in the prior year by counting all seedlings 
within a 15 cm radius the year after an individual fruited at four of these five populations. At 
each population, we deployed 1-2 temperature loggers (iButtons) to measure local temperature 
variation over the period of our study. We buried these temperature loggers ~5 cm underground, 
and used the resulting data to obtain mean monthly temperature for every month (besides July, 
for which we were missing data from some populations). 
Fitting Relationships between demographic rates and climate variables: To estimate the timing 
of snow-free periods, we combined projections of temperature and precipitation with satellite 
images of daily snow cover at each of these populations from the Moderate Resolution Imaging 
Spectroradiometer Dataset (MODIS; Hall and Riggs 2016). Specifically, we estimated months of 
snowmelt and snowfall using the Daily Snow Cover MODIS dataset for 2007-2018. We used the 
month of the first observation of zero daily snow cover to estimate month of snowmelt, and the 
month of the last such observation to estimate month of snowfall. We then obtained downscaled 
projections of monthly average, minimum, and maximum temperatures for five global 
circulation models from the CMIP5/AR5 models from the Scenarios Network for Alaska and 
Arctic Planning group (SNAP). Delta downscaling used CRU CL v. 2.1 climatological datasets 
from 1961-1990 as the baseline, generating 2 km x 2 km spatial resolution climate projections 
from 2006-2099 (Scenarios Network for Alaska and Arctic Planning, University of Alaska). We 
then determined the relationship between timing of snowmelt and snowfall and climate using a 
model selection approach. We regressed 2007-2018 month of snowfall and 2007-2018 month of 
snowmelt on total annual precipitation, mean annual monthly temperature, and their interaction, 
using a model selection approach to select a best-fit model (temperature and precipitation 
projections were averaged across the five GCM’s). We then used this best performing model to 
predict snowmelt dates and snowfall dates for all subsequent analyses. For all analyses, we 
defined each year by the August 1 to July 31 interval; for example, to estimate precipitation in 
2018, we calculated cumulative precipitation from August 1 2017 - July 31 2018.  

We synthesized our iButton temperature and SNAP data into six metrics of 2015-2018 
climate at each population: 1. average annual temperature; 2. average snow-free season 
temperature; 3. average snow-covered season temperature; 4. coldest month temperature; 5. 
hottest month temperature; 6. annual precipitation. We determined the identity of the coldest and 
hottest month from the average monthly temperatures across the five GCMs and determined the 
identity of the snow-free months and snow-covered months using the MODIS regression 
described above. Recall that we were missing iButton data for July, which was often the hottest 
month; thus, we used the predictions of the SNAP data for the temperature of the hottest month 
(averaged across GCMs). We calculated cumulative annual precipitation using the mean 
predicted annual precipitation across the five GCM’s. We determined the identity of the coldest 
and hottest month from the average monthly temperature across the five GCMs and determined 
the identity of the snow-free months and snow-covered months using the MODIS regression 
described above. 

We assessed the impact of these climate metrics on demographic rates using a model 
selection approach. For mean log size after one year of growth, log variance in size after one 
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year of growth, probability of fruiting, and log number of fruits per size, we tested all possible 
subsets of a global model with log size in previous time step, average annual temperature, 
cumulative annual precipitation, and the interaction of average annual temperature and 
cumulative annual precipitation as predictor variables. We used AICc to select a best performing 
model, correcting for collinearity as described in the next paragraph. We repeated this process 
for four other global models: 1) snow-covered season temperature and precipitation, 2) snow-
free season temperature and precipitation, and 3) coldest and 4) hottest month temperatures and 
precipitation, testing the best performing model from each of these five comparisons against each 
other using AICc. We used the resulting best performing model in subsequent analyses. We used 
a linear model for all demographic rates besides probability of fruiting, for which we used a 
general linear model with a binomial distribution. 

We modified our model selection approach for probability of survival, which likely 
depends on both climate variables over the year of interest as well as probability of fruiting in the 
year prior (which itself depends on the climate conditions the year before the year of interest). 
Specifically, we tested the same five global models as described above, but also allowed these 
models to have terms for coldest month temperature and precipitation in the year prior, as well as 
an interaction between log size in the year prior and coldest month temperature, and between log 
size in the year prior and coldest month precipitation. Coldest month conditions affected the 
probability of reproduction; thus, we allowed for lagged effects of these climate variables on 
probability of survival. Note that climate variables in the year prior were transformed into 
population-specific climate variables using the differences between SNAP and iButton data. 
Specifically, the SNAP temperature data could differ from the iButton temperature data due to 
elevation of the population, insolation, or other microsite characteristics; thus, we converted the 
prior years’ SNAP projections into predictions of local temperature using the population-specific 
differences between the SNAP and iButton temperature data for the first four metrics of climate.  

We ensured our best performing model was robust to collinearity among predictor 
variables. Freckleton (2011) shows that information theoretic approaches are largely robust to 
collinearity, with the exception of correlated variables that have quite different effect sizes. For 
all best performing models with linear predictor variables correlated at |R|> 0.6, we ensured that 
the absolute value of the coefficient estimates of correlated predictor values (a rough estimate of 
their true effect size) were similar to one another (ratios of coefficients were <= 3). If ratios of 
coefficients differed by more than a factor of three, we replaced the best performing model with 
the next best model with a coefficient ratio <= 3 (or with no correlated predictor variables). Note 
that the approach outlined here uses conservative cutoffs, according to Freckelton’s analysis of 
simulated data.  

4.2.1.6 Venus flytrap (Dionaea muscipula) 
Study system: Venus flytraps are endemic to North and South Carolina and occur primarily in 
mesic savannas, usually dominated by longleaf (Pinus palustris) or pond pine (Pinus serotina). 
Tree-ring records indicate fire return intervals (FRIs) of one to two years throughout the majority 
of its range prior to European settlement (Frost 1998). Some of our study populations are 
currently subjected to prescribed burning, with target FRIs dictated by threatened and 
endangered species in the area, but FRIs vary widely among our study populations, and likely 
among all extant populations. Venus flytraps are carnivorous, consuming small insect prey to 
alleviate nitrogen limitation in the sandy, waterlogged soils in which it grows. They are small in 
stature relative to most other plants in the community, which likely limits both light and prey 
acquisition, and could impede access by its insect pollinators (Youngsteadt et al. 2018). They are 
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moderately long-lived, survive fire, and regrow quickly following either fire or mechanical 
disturbance. Lack of recruitment immediately following a reproductive-season fire demonstrates 
the absence of a multi-year seed bank.  
Demographic field methods: We measured demographic rates at two populations in each of three 
regions spanning the East-West axis of the historical range of Venus flytraps. The study 
populations were within 2 km of each other within each region (Figure 4.2-6). In the middle of 
June in 2015, at each population, we searched exhaustively for all plants within areas of a high 
density of Venus flytraps. We mapped, marked, and measured ~300 individual plants in each 
population, measuring number of leaves, length of longest leaf, and number of fruits for each 
individual. In all subsequent analyses, we use as a metric of plant size ln(number of leaves x 
length of longest leaf), where number of leaves x length of longest leaf correlates well with total 
leaf area (Appendix 8.3). In the middle of June each year until 2018, we scored survival of the 
marked plants and remeasured survivors. To estimate seedlings per fruit (recruitment), we 
searched exhaustively for all unmarked plants within 25 cm x 25 cm quadrats containing fruiting 
plants in each population in 2018. We then divided the number of seedlings per area by the 
number of fruits per area in the previous year to obtain seedlings per fruit. We synthesized our 
data into six demographic rates: annual survival, mean and variance in plant size after one year 
of growth, probability of producing fruits, number of fruits given a plant produced fruits, and 
seedlings per fruit. All demographic rates other than seedlings per fruit were size-dependent.  
 

 
Figure 4.2-6. Counties in North and South Carolina where Venus flytraps were found historically are shown in green 
(United States Department of Agriculture 2019b). We also show approximate locations of our populations using 
points; populations indicated by red points included both observational and experimental work, whereas populations 
in black only included observational work. 

 In each population and year, we quantified temperature, precipitation, and years since 
most recent fire. To quantify local soil temperature, at each population we deployed two 
temperature loggers (iButtons; 

 
 

43 



https://www.maximintegrated.com/en/products/ibutton/ibuttons/index.cfm) enclosed in a plastic 
container and buried 5 cm underground immediately adjacent to our marked plots. We also 
obtained regional estimates of temperature and precipitation from gridMET (Abatzoglou 2013) 
for each population and year, averaging minimum and maximum daily temperatures to estimate 
mean daily temperature. We quantified years since most recent burn either by direct observation 
during our censuses or using records of burn history available from land managers.  

Due to iButton failure, we had short time periods of missing local temperature data. To 
fill these gaps, we regressed mean daily local temperature on mean daily regional temperature 
and the square of mean daily regional temperature for each population, and then used the fitted 
regressions to predict any missing local daily data (correlations between local and regional 
temperature estimates were high and AICc supported a quadratic term). We conducted the same 
procedure for daily maximum and minimum temperatures. 
Experimental tests of fire effects: To parse the role of the three key effects of fire (neighbor 
removal, ash addition, and tissue damage) on how climate influences fire responses in Venus 
flytraps, we conducted an experimental manipulation of the first two effects (addition of ash-
derived nutrients and removal of competitors) and quantified the effects of an accidental burn 
(allowing us to see any additional effects of tissue damage). In 2016, at two of our populations 
(one in the cooler inland region and one in the warmer coastal region; Figure 4.2-6), we marked 
and measured additional plants in 12 50 x 50 cm quadrats (127 plants in the coastal; 194 in the 
inland population). We randomly assigned each quadrat to one of three conditions: 1) 
unmanipulated control; 2) ash addition; or 3) ash addition and neighbor removal. In the latter two 
treatments, we manually removed above-ground vegetation every year in June, and to the last 
treatment, we also added enough ash annually, collected from nearby recently burned areas, to 
mimic the amount of ash deposited during a fire.  

We remeasured these plants annually at both populations, repeating these experimental 
manipulations. Specifically, for both our ash addition conditions, ash was added annually in June 
at the inland population and in October at the coastal population (a fire just before the June 2016 
census at the coastal population had left sufficient ash). At our inland population, we measured 
demographic rates in 2017 and 2018 and measured recruitment in 2018 using the same protocol 
outlined above. In 2018, we did not resurvey control plots, so we used demographic rate data 
from our demography study as the control condition over the 2017-2018 interval. For our coastal 
population, we measured all demographic rates outlined again in 2017. Fortuitously, at the 
coastal population, an accidental burn (most likely caused by hunters) occurred over the 2017-
2018 interval. To take advantage of this burn as a way to quantify effects of plant damage, we 
combined our experimental data from 2016-2018 (inland population) or 2016-2017 (coastal 
population) with our 2017-2018 observational data from the coastal population, coding data from 
the burn as a fourth condition in our statistical analyses, and used this combined dataset in 
subsequent analyses.  
Fitting Relationships between demographic rates and climate variables: We synthesized climate 
data for each year x population combination during 2015-2018 into a series of regional and local 
climate variables, which were estimated across the entire year and over extreme (driest, wettest, 
coldest, and hottest) months of the year. We identified extreme months using regional 
temperature and precipitation data from analogous climate data from the historical period (1979-
2018). In all analyses, we assume a survey date of June 15, with months beginning and ending on 
the 15th of each month. We estimated the mean of the daily mean temperatures over the entire 
year, the maximum of the daily mean temperatures in the hottest month (July 15- August 14), the 
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minimum of daily mean temperatures in the coldest month (January 15- February 14), and the 
mean of the daily mean temperatures in the driest (December 15- January 14) and the wettest 
(August 15- September 14) months, for both local temperatures (derived from iButtons) and 
regional temperatures (derived from gridMET data). We calculated total annual precipitation and 
total precipitation in the wettest, hottest, and driest months from gridMET data. We also 
synthesized temperature and precipitation data into two metrics of cumulative water stress. First, 
climatic water deficit (calculated using Redmond 2019) quantifies the degree to which potential 
evapotranspiration exceeds actual evapotranspiration. We calculated soil moisture using the soil 
water capacity at 30 cm depth (United States Department of Agriculture 2019a). Second, we 
defined water balance as the difference between potential evapotranspiration and precipitation, a 
metric of potential plant stress from lack of water. We calculated both climatic water deficit and 
water balance for the whole year and for the hottest, wettest, and driest months, using both local 
temperatures derived from iButtons and regional temperatures derived from gridMET data. Note 
that for precipitation, only gridMET data were available. 

We used a model selection approach to assess support for three alternative ways 
(temperature × precipitation, climatic water deficit, and water balance) to represent interactive 
effects of temperature and precipitation on Venus flytrap performance (Table 4.2-4). For each 
demographic rate and each measure of water stress, we fit a suite of models using annual and 
extreme monthly values of the climate variable as predictors (as well as years since fire). For 
each suite of models, we compared the performance of climate variables derived from regional 
and local temperatures, while accounting for collinearity among climate variables (Freckleton 
2011, Table 4.2-4). Thus, our analytical approach determined which of six different ways of 
representing climate at two different time scales (annual and monthly) best predicted 
demographic rates: 1) local temperature × precipitation (including main and interactive effects); 
2) local climatic water deficit; 3) local water balance; 4) regional temperature × precipitation 
(including main and interactive effects); 5) regional climatic water deficit; and 6) regional water 
balance. 

For each of these 12 ways of representing climate, we fit climate-dependent demographic 
rate functions that included the effect of years since most recent fire. For each demographic rate, 
climate variable, and time scale, we first fit a global model (Table 4.2-4; either a generalized 
linear model for binomial responses, or a general linear model for normal responses) using as 
predictors: size in the previous time step, years since fire, the square of years since fire, 
population nested in region, annual climate variables, and the square of the annual climate 
variable. For each climate variable, we used AICc to compare all possible subsets of the global 
model (using the MuMIn package in R) and selected a best perfoming model. We conducted the 
same analysis using monthly climate variables, including all three extreme months (and their 
squares) in the best performing model (Table 4.2-4). We then asked, using AICc, which 
combination of terms from the best performing monthly and annual models best predicted plant 
responses, yielding an overall best performing model for each climate variable which could 
contain both annual and monthly climate effects. Finally, we compared the performance of the 
six resultant best performing models to one another using AICc and used the best model for each 
demographic rate to construct our population models. Survival and probability of reproduction 
were binomial response variables, and mean and variance in plant size, seedlings per fruit, and 
log-transformed number of fruits given fruiting per unit size were normal response variables.  

After each AICc comparison step described above, we ensured our best performing 
model was robust to collinearity among predictor variables using methods derived from 
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Freckleton’s (2011) analysis of simulated data. Freckleton (2011) shows that information 
theoretic approaches are largely robust to collinearity, with the exception of correlated variables 
that have quite different effect sizes. For all best-fit models with linear, additive predictor 
variables correlated at |R|> 0.6, we ensured that the absolute value of the coefficient estimates of 
correlated predictor values (a rough estimate of their true effect size) were similar to one another 
(ratios of coefficients were <= 3). If ratios of coefficients differed by more than a factor of three, 
we replaced the best performing model with the next best model with a coefficient ratio <= 3 (or 
with no correlated predictor variables). Note that the approach outlined here uses conservative 
cutoffs, according to Freckleton’s analysis (2011).  

For seedlings per fruit, we had only one year of data for each population, and thus were 
unable to test for the effect of climate drivers on seedlings per fruit. Because preliminary data 
suggested strong effects of fire on seedlings per fruit, we compared using AICc three different 
(binomial) models for seedlings per fruit: constant seedlings per fruit, years since fire, and 
whether or not a fire occurred in the year immediately prior (yes/ no). Note that our approach 
assumes that any variation among populations in seedlings per fruit is due only to burn effects, 
rather than population-level differences in recruitment. Our experimental analysis of burn effects 
supports this assumption, in that it also suggests strong effects of fire on recruitment (Appendix 
8.4).   
Table 4.2-4. Climate variables present in the annual and monthly global models for regional and local water balance, 
climatic water deficit, and temperature/ precipitation. The terms shown here were present in the global model for 
each demographic rate x climate variable x annual/monthly time frame, and we then used AICc to determine which 
subset of the terms best predicted demographic rates, also allowing other terms such as years since fire (both linear 
and quadratic). The first letter of the subscript indicates the time period of the effect; “a” (annual) represents effects 
over the entire year, whereas “w” (wettest), “d” (driest), “h” (hottest), “c” (coldest) or indicate characteristics of 
extreme months. The second subscript for temperature variables indicates whether the variable is regional (“r”) or 
local (“l”). The monthly temperature and precipitation models have terms for temperature (but not precipitation) of 
the coldest month, but the water balance and climatic water deficient models do not because temperature alone, 
rather than water stress, likely affects coldest-month performance. Note that for probability of survival or fruiting, 
we did not include any quadratic precipitation terms (Pw

2 , Pd
2), nor terms including temperature in the wettest month 

(e.g., Tw, r , Tw, r × Pw) and for probability of reproduction, we did not include a quadratic temperature in the coldest 
month term (e.g., Tc, r

2) in the monthly temperature and precipitation models, as there were not enough data to 
reliably fit these terms. 

Climate variable Annual Monthly 

Regional water balance (W) Wa, r + Wa, r
2 Wc, r + Wc, r

2 + Ww, r + Ww, r
2 + Wd, r + 

Wd, r
2 

Regional climatic water deficient 
(C) Ca, r + Ca, r 2 

Cc, r + Cc, r
2 +Cw, r + Cw, r

2 + Cd, r + Cd, 

r
2 

Regional temperature (T) + 
precipitation (P) 

Ta, r + Pa + Ta, r × Pa + Ta, r
2 + Pa

2+ 
Ta, r 2 × Pa 2 

Tc, r + Tc, r
2 +  

Tw, r + Pw + Tw, r × Pw + Pw
2  

Td, r + Pd + Td, r × Pd + Pd
2  

Th, r + Ph + Th, r × Ph + Th, r
2 

Local water balance (W) Wa, l + Wa, l
2 Wc, l + Wc, l

2 + Ww, l + Ww, l
2 + Wd, l + 

Wd, l
2 

Local climatic water deficient (C) Ca, l + Ca, l
2 Cc, l + Cc, l

2 +Cw, l + Cw, l
2 + Cd, l + Cd, l

2 

Local temperature (T) + 
precipitation (P) 

Ta, l + Pa + Ta, l × Pa + Ta, l
2 + Pa

2+ 
Ta, l

2 × Pa
2 

Tc, l + Tc, l
2 +  

Tw, l + Pw + Tw, l × Pw + Pw
2  

Td, l + Pd + Td, l × Pd + Pd
2  

Th, l + Ph + Th, l × Ph + Th, l
2 

 

 
 

46 



We fit the same demographic rates described for our observational work (survival, mean 
and variance in size after one year of growth, probability of fruiting, number of fruits given 
fruiting, and recruitment) to test for effects of experimental manipulations of burn effects. For 
each demographic rate, we fit a global model including size, population, condition, year, and the 
interaction between population and condition. We then compared all possible subsets of the 
global model using AICc. The functional forms of demographic rates were the same as in our 
observational work. For recruitment, we simply used the mean recruitment for each condition 
(because each condition was only represented by one population x year combination). 

We used the best performing models from each of these comparisons in our SEED 
models. 

4.2.1.7 Red-cockaded woodpecker (Dryobates borealis) 
Study system: Red-cockaded woodpeckers are a cavity nesting species that lives in cooperatively 
breeding, territorial family groups consisting of a breeding pair and zero to six non-breeding 
adult helpers (Walters and Garcia, 2016). In addition to breeders and helpers, adult (> 1 year old) 
birds can also act as floaters, non-breeding adults not part of a group. The demographic data used 
in this analysis come from long-term studies at three locations, the Sandhills region in south-
central North Carolina, which includes colonies on Fort Bragg Army Base (1980-2015), Marine 
Corps Base Camp Lejeune on the central coast of North Carolina (1986-2015), and Eglin Air 
Force Base on the Gulf Coast in the western panhandle of Florida (1996-2015; hereafter, 
“Sandhills,” “Lejeune”, and “Eglin”, respectively). Sandhills is the largest site, consisting of 716 
groups of birds, of which 313 were monitored in 2017. Eglin is also a large population (462 
groups in 2017), but only a small sample of groups is monitored there (39 in 2017). Lejeune is a 
smaller population (115 groups in 2017), but all the groups are monitored there. The data 
collection methods are much the same at all three sites and are described in detail in Walters et 
al. (1988); briefly, we conducted complete sampling of populations or subpopulations of marked 
birds at each site, including censusing of all, individually identifiable adults and monitoring of all 
nesting attempts during each breeding season (May-June). We base our estimates of survival on 
a hypothetical census taken on May 1 of each year. 
Fitting Relationships between demographic rates and climate variables: We synthesized the 
demographic data into 11 response variables: 1) annual adult survival (including data from both 
males and females); 2) survival from fledging to the following breeding season (including data 
from both males and females, hereafter, “post-fledging survival”); 3) probability of a female 
breeder attempting a first nest; 4) probability of success of a first nest (given a first nest was 
attempted; success means at least one egg survived to fledging and failure means no eggs 
survived to fledging); 5) number of eggs in first nest (given a first nest was attempted and 
successful; hereafter, clutch size); 6) fraction of eggs surviving to fledging from the first nest 
(given a first nest was attempted and successful); 7) probability of a female breeder attempting 
two or more nests (given the first nest was attempted and failed); 8) probability of attempting 
double brooding (attempting two or more nests, given the first nest was attempted and 
successful); 9) probability of success of any second and later nests (given first and later nests 
were attempted); 10) total number of eggs in second and later nests (given first nest was 
attempted, second or later nests were attempted and at least one of the second and later nests are 
successful; hereafter, additional clutch size); and 11) total fraction of eggs surviving to fledging 
from second and later nests (given first nest was attempted, second and later nests were 
attempted and at least one of the second and later nests were successful). Third nests were too 
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rare to consider separately from second nests (only 25/10,004 first nesting attempts led to a third 
nesting attempt).  

To obtain functional forms for demographic rates, we used AICc (Hurvich and Tsai 
1989) to select a best performing mixed model for each demographic rate, comparing the 
perfomance of a global model to all possible subsets of this global model. In all of these models, 
we used site (Sandhills, Lejeune or Eglin) as a random effect to control for systematic 
differences among sites, such as habitat quality (models did not consistently converge when 
using individual-level random effects). For adult survival, fixed effects in the global model were: 
group size, status, age, age^2, and sex; for post-fledging survival, sex was the only fixed effect. 
For all reproductive demographic rates, fixed effects were: maternal age, paternal age, maternal 
age^2, paternal age^2, and number of helpers. All demographic rates were fit with a binomial 
error term using the lme4 package (Bates et al., 2015) in R (version 3.3.2, R Core Team 2016), 
except for clutch size and additional clutch size, which were fit with a quasi-Poisson variance 
using the glmmADMB package (Fournier et al. 2012, Skaug et al. 2014). For both first nests and 
second and later nests, we fit two distinct demographic rates (probability of initiating a nest, and 
clutch size or additional clutch size given the nest was initiated) because we wanted to determine 
whether probabilities of initiating nests, clutch size, and additional clutch size were determined 
by different climate drivers. Fitting two demographic rates is not possible with the commonly 
employed hurdle model (e.g. Reynolds et al. 2017). Importantly, our final models never predict a 
mean clutch size or additional clutch size of zero for first nests or for second and later nests, 
respectively, which would be a biologically impossible scenario (i.e., our models do not predict 
that a nest was initiated but no eggs were produced). Similarly, we chose to fit two distinct 
demographic rates (probability of nest success, and fraction of eggs surviving given nest success) 
to determine whether these two demographic rates were dependent on different climate drivers. 
We used chi-square tests to ensure that a binomial distribution was a good fit to the fraction of 
eggs surviving to fledging when only including instances where fraction of eggs surviving was 
>0 (as was done to fit the models). The predicted fraction of eggs surviving is never zero, for 
first or second and later nests, indicating that our models never predict that a nest was successful, 
but no eggs survived (also biologically impossible). 

We used the best performing model lacking climate drivers for each demographic rate as 
a baseline model to look for climate effects. We obtained observed daily climate data (daily 
maximum and minimum temperatures, precipitation, and wind velocity (daily mean 10 m above 
the ground surface, hereafter “windspeed”) over the period 1979-2016 at a resolution of 4 km2 
from the gridMET dataset (Abatzoglou 2013; Supporting Information). We calculated daily 
mean temperatures using the average of the maximum and minimum daily temperatures. We 
then extracted monthly summaries of these climate variables (mean windspeed, cumulative 
precipitation, and mean of daily minimum, maximum, and mean temperatures) for the 4 km2 
climate grid cell overlaying each territory center. We assumed that all individuals occupying 
each territory experienced the same climate as the territory center. For each of these five climate 
variables, we used a sliding window approach (Bailey and van de Pol 2016, van de Pol et al., 
2016) to assess support for a series of climate signals varying in timing and duration. We 
assessed support for each of 78 climate signals spanning the 12-month period from the beginning 
of a breeding season on May 1 to the following May 1 (where window size ranges from 12 
months to one month, in increments of one month), modifying this approach slightly to test for 
effects of multiple climate signals and interactions among climate signals. This procedure 
allowed us to include both short-lag (more recent) and long-lag (more distant) climate signals as 
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demographic rate drivers (short- and long-lag sensu van de Pol et al. 2016). For example, both 
spring maximum temperatures just before a breeding season, a short-lag signal, and summer 
maximum temperatures just after the previous breeding season, a long-lag signal, might affect 
survival. 

4.2.2 SEED models 
We developed several Spatially Explicit Environmentally Driven (SEED) models of 

population dynamics linked to downscaled future climate projections to project how populations 
of our study species would be impacted by predicted changes in local climates. These SEED 
models are defined by two salient characteristics. First, year to year changes in population size 
are predicted from a set of regression equations describing the relationship between demographic 
rates and relevant climate (and sometimes non-climate) variables. In each future year, the 
predicted demographic rates change with changes in the projected values of the climate variables 
on which they depend. Second, the models are spatially explicit. Projected climate variables used 
to determine demographic rates of different populations of a species are specific to the locations 
occupied by those populations. If migration or dispersal among different locations is a relevant 
factor influencing the modeled population(s), the resulting redistribution of individuals in space 
is tracked within the model. The models followed a general framework, with modifications made 
to accommodate differences among the species in their life history and ways in which climate 
influenced demographic rates. We first describe the general framework shared by all SEED 
models developed for this project, and then the species-specific modifications. Sample R code 
for the general framework is provided in Appendix 8.5. 

Each SEED model includes six primary components. The first component is to read in 
the information required to locate each modeled population on the landscape. This information 
typically includes a site location identifier and UTM coordinates for each modeled population or 
population segment. The site location identifier allows it to be linked with the proper downscaled 
climate projections. The UTM coordinates also allow inter-site distances to be calculated for 
distance-based estimates of dispersal and/or migration probabilities. If there are non-climate 
related site-specific differences in demographic rates, this information is included in the 
landscape information read in. The second component is to read in the relevant downscaled 
climate projection data. We used projections that employed the Multivariate Adaptive 
Constructed Analogs (MACA) (Abatzoglou and Brown 2011) method to downscale projections 
from 20 global climate models to a 4 km2 resolution for all species except Alaskan douglasia, for 
which we used downscaled projections from the Scenarios Network for Alaska and Arctic 
Planning (SNAP) as described in section 4.2.2.5. The third component is to define the functions 
used to calculate all demographic rates expected for each population during each time step given 
its location and projected climate conditions. This step varies substantially from model to model, 
depending on each species' life history and how it is influenced by different climate variables. 
The fourth component is to integrate the different demographic rates to calculate changes in 
population size from year to year in each population. This step also varies substantially from 
model to model. For structured populations, the numbers of individuals in each stage class are 
updated during this step. The fifth component is to incorporate dispersal and/or migration as 
appropriate. This component is intertwined with the previous component, with the timing of 
dispersal/migration spatial redistribution relative to other demographic processes dependent on 
each species’ life history. The final component is to record numbers at each population in each 
stage during each time step. SEED model output comprises these data, which can be summarized 
in different ways to facilitate their interpretation.  

 
 

49 



4.2.2.1 Hydaspe Fritillary Butterfly (Speyeria hydaspe) SEED model 
We modeled hydaspe fritillary butterfly population dynamics at our six study sites. We 

did not include dispersal in the hydaspe fritillary butterfly model because of the large distances 
between sites relative to the butterfly's dispersal capabilities.  

The hydaspe fritillary butterfly has the simplest life history among the species studied in 
this project. Unlike the multivoltine Appalachian Brown Butterfly, the hydaspe fritillary butterfly 
completes one generation per year throughout its range. Throughout their one to three week 
lifespan, adult female butterflies lay eggs singly on plants, twigs, and other debris in areas near 
violets, their host plant (Capinera 2008). Eggs hatch after 30-35 days. First-instar larvae remain 
unfed in the duff after hatching and go into diapause with cooling autumn temperatures. Larvae 
emerge and begin feeding when violets appear after spring snowmelt. Larvae typically take one 
to two months to pupate, with the first adults typically eclosing in early July. The relevant 
demographic rates for hydaspe fritillary butterfly are thus: adult lifespan and eggs laid/day, 
which together determine fecundity; egg survival rate (a combination of egg viability and 
predation rates); larval overwinter survival; and larval spring survival.  

We incorporated several climate related variables and site-specific non-climate variables 
that influence hydaspe fritillary butterflies throughout their life cycle into the hydaspe fritillary 
butterfly SEED model. Adult longevity, and therefore fecundity, was positively influenced by 
higher total precipitation in the 12 months prior to the flight period, and by warmer daily 
minimum temperatures during the flight period, which occurs July through September. Hatch 
rates were negatively influenced by warmer daily minimum temperatures during the flight period 
and by site-specific egg predation rates. Spring larval survival was positively influenced by 
warmer daily maximum temperatures during the late instar development period (June-August).  
Average number of eggs laid per day and larval overwinter survival were unaffected by climate 
variables and did not vary significantly among sites. Thus, we modeled year to year changes in 
hydaspe fritillary butterfly populations as: 
Equation 4.2-3       𝑁𝑁𝑡𝑡+1 = 𝑁𝑁𝑡𝑡 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒/𝑑𝑑𝑑𝑑𝑑𝑑 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ∗ ℎ𝑎𝑎𝑎𝑎𝑎𝑎ℎ. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) ∗
                                                     �1 − 𝑒𝑒𝑒𝑒𝑒𝑒.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� ∗ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤. 𝑠𝑠𝑠𝑠𝑠𝑠𝑣𝑣 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 

where Nt is the number of adult butterflies in year t 
The functional forms and parameter values used in equation 4.2-3 are shown in Table 4.2-5 and 
site specific demographic rates are shown in Table 4.2-6. 
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Table 4.2-5. Hydaspe fritillary butterfly demographic rates used in the SEED model with functional forms and 
parameter values. 

Demographic rate1 
Demographic 
rate symbol Functional form5 

eggs/day eggs see Table 4.2-6 
logit transformed adult daily 
survival2 logit.ad.surv 1.2748+0.03961*min.temp+0.000217*precip 

adult daily survival3 ad.surv exp(logit.ad.surv)/(1+exp(logit.ad.surv)) 

lifespan lifespan 1/(1-ad.surv) 

logit transformed hatch rate2,4 logit.hatch.rate 3.38-0.1703*min.temp 

hatch rate hatch.rate exp(logit.hatch.rate)/(1+exp(logit.hatch.rate)) 
egg predation rate egg.pred see Table 4.2-6 
larval overwinter survival winter.surv 0.7022 

logit transformed larval spring/early 
summer survival2 logit.spring.surv -5.615+0.147*max.temp 

larval spring/early summer 
survival3 spring.surv exp(logit.spring.surv)/(1+exp(logit.spring.surv)) 

 
Table 4.2-6. Site specific egg predation rates (egg.predation), average number of eggs laid per female per day 
(eggs), and logit transformed egg viability rates (baseline.hatch). 

Site Egg.predation Eggs Baseline.hatch2 
Cascades 0.7744 9.18 3.8834 
Coast Range 1 0.3077 6.82 0.976 
Coast Range 2 0.3498 7.65 0.5647 
Sierra Nevada 1 0.72451 3.03 1.52927 
Sierra Nevada 2 0.8323 17.84 2.3734 
Sierra Nevada 3 0.6166 12.86 1.9976 
1 Predation not measured at this site, rate listed/used is the average predation rate at the two other Sierra Nevada 
sites. 
2. Because models with and without site differences in baseline hatch rates had similar model support (see Section 
5.1), we ran  two sets of SEED models; one based on parameter estimates assuming a single baseline hatch rate 
(Table 4.2-5) and one assuming these (logit transformed) site-specific hatch rates. 
 

 
  

1. Variables appearing in Equation 4.2-3 are bolded. Other non-bolded variables appear in the functional 
forms of variables appearing Equation 4.2-3. 
2. Linear functional forms were fit to logistically transformed data. These variables represent the projected 
logit transformation of demographic rates used in the model. 
3. Inverse-logit transformation of the projected logit transformation of demographic rate calculated from 
linear equations of climate variables.  
4. Alternative functional form was baseline.hatch-0.0655*min.temp. See Table 4.2-6 for site specific 
values of baseline.hatch 
5. Temperature values are in degrees C. Precipitation values are in mm. 
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4.2.2.2 Appalachian brown Butterfly (Satyrodes appalachia) SEED model 
We modelled Appalachian brown butterfly population dynamics for the metapopulation 

of butterflies at Fort Bragg. Two aspects of Appalachian brown butterfly life history at this site 
added complexity to these SEED models compared to the Hydaspe fritillary butterfly. First, 
butterflies frequently dispersed among subpopulations, which means that the model had to keep 
track of how many individuals emigrated out of each patch and how far they dispersed during 
each butterfly generation. Second, Appalachian brown butterflies go through two to three 
generations a year, with the fraction of butterflies from the second generation contributing to the 
third generation determined by the timing of the second flight period, which is affected by 
climate. Thus, for each growing season, our SEED model kept track of population sizes for each 
site on each day of all of the flight periods.  

To determine emigration rates we used a spatially explicit individual based model 
(SEIBM) built in Netlogo v.5.2.1 (Wilensky 1999) to simulate the movement of individual 
female Appalachian brown butterflies over multiple generations within a landscape 
representative of the real landscape occupied by the species on Fort Bragg. The simulated 
landscape was composed of 30 m x 30 m grid cells characterized as one of the following habitat 
types: wetland, riparian forest, upland forest, and open areas (including grasslands and developed 
areas). Simulated butterflies started in wetland habitat, and at each five second increment moved 
or rested based on empirical movement data collected as part of an earlier SERDP project (SI 
1471) (Kuefler et al. 2010). Movements were characterized by turn angle and distance, with 
values drawn from empirical data from Appalachian brown butterflies (Keufler et al. 2010). If 
the resulting move led to the crossing of a habitat boundary, the move was completed or rejected 
based on empirical boundary-crossing probabilities (Kuefler et al. 2010). If the move was 
rejected, a new turn angle and distance was drawn until the move resulted in the butterfly staying 
in the originating habitat. We simulated the movement of 200 butterflies in a single year (two 
flight periods) for 300 simulations. We simulated movement of butterflies starting in patches of 
wetland ranging in size from 0.45 ha up to 1.8 ha. For each patch size, we ran simulations under 
two crossing probability matrices, 1) using the empirical crossing probabilities found in Kuefler 
et al. 2010, and 2) using a modified version that assumes that any time a butterfly crosses from a 
less preferred to a more preferred habitat, it will always cross the boundary, but will follow 
probabilities in Kuefler et al. 2010 if going from more preferred to less preferred habitat.   

To determine the distance that emigrating butterflies moved, we drew the distances from 
a dispersal kernel estimated from mark-recapture data Sivakoff et al. (2016).  

We identified occupied and unoccupied sites at Fort Bragg via a species distribution 
model (Wilson et al. 2013). We distinguished between the two via observation of Appalachian 
brown butterflies at the sites. We estimated current population sizes at each occupied site using a 
mark-recapture study (described in the field methods section) and subsequent analysis using the 
package RMark (White and Burnham 1999, Laake 2013). The study was carried out at three 
occupied sites (see section 4.2.1.2). We extrapolated the population sizes at the other sites using 
the ratio of the population size to the area of each site.  

We initialized populations at their current sizes and summed population numbers across 
all sites at Fort Bragg for the results that we present in this report. To determine population size 
at a given site in a given year, we assumed that the total number of butterfly-days in the first 
flight period was equivalent to 11.1 (the average lifespan of a butterfly, in days), multiplied by 
the population size (number of butterflies) in that flight period. We assumed that emergence date 
of the first flight period was determined by the growing degree days (as outlined in section 
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5.1.2). We also assumed that the total number of butterfly-days was approximately normally 
distributed, with a flight period lasting 45 days, such that the maximum number of flying 
butterflies was observed 22.5 days following the emergence date of the first flight period. We 
determined the number of eggs laid on each of those 45 days as the product of daily fecundity (a 
function of climate conditions on that day) multiplied by the number of butterflies flying on that 
day. We limited the total number of eggs laid per day to 5.3, which is derived from the average 
maximum number of female eggs counted during dissection of female ovaries (58.457 eggs, 
Sivakoff et al. 2016), divided by average lifespan (11.1 days). We modeled egg survival to 
hatching over the next seven days based on daily temperatures over that period. We determined 
larval survival over the next 48 days by climate during that period, and multiplied the overall 
larval survival by 0.16 in order to incorporate an estimate of larval predation (Aschehoug et al. 
2015). We modeled dispersal, and then negative density dependence, during the flight period but 
before eggs are laid, such that an egg could be laid in any site to which the butterfly disperses 
during the flight period. Eggs laid in any one population survived to hatching and developed as a 
larva in the population in which they were laid.  

We modeled adult butterflies as emerging during the second flight period 55 days after 
they were laid as eggs (seven days to survive as eggs plus 48 days to survive as larvae). In the 
model, the adults dispersed among populations, underwent density dependence, and laid eggs 
over their lifespan (the next 11 days). We determined the probability of an egg laid on a given 
day to going into diapause and overwintering versus developing into a third flight period using a 
binomial function of day of year; eggs laid before a certain critical photoperiod developed into a 
third adult generation, but eggs laid after this photoperiod overwintered as larva. If an egg was 
laid before the critical photoperiod, the resultant adult butterfly again developed over 55 days as 
an egg and then larvae (the survival of both life stages was dependent on climate over that same 
time period). After hatching, adult butterflies dispersed, suffered density dependence, and then 
laid eggs at the same climate-dependent but limited daily fecundities as for previous flight 
periods. Those eggs survived to hatching over the next seven days (at a rate dependent on 
climate over that time period) and overwintered as larvae at the climate-dependent overwintering 
rate we estimated in demographic rate regressions. If an egg was laid after the critical 
photoperiod during the second flight period, the individual survived to hatching over the next 
seven days (again, at a rate dependent on climate), and overwintered as a diapaused larva until 
re-initiating development and emerging as an adult butterfly the following year. We did not 
estimate overwinter survival rates for butterfly larvae that were offspring of butterflies that only 
had two generations per year. Instead, we used overwinter survival rates for butterfly larvae that 
were offspring of butterflies that had three generations to calculate a daily survival probability 
for the winter, which we then used to calculate overall overwinter survival for the longer time 
period associated with larvae from two generations per year butterflies.  

We carried out two additional modeling exercises to understand how changing climate 
conditions might affect this species. First, we used a simplified SEED model to determine the 
potential for a climate-mediated increase in generations per year to offset climate-mediated 
declines in fecundity and survival. This model used the same parameter values for demographic 
rate functions but assumed a single start to the second flight period, and that either all larvae 
from the second generation entered diapause or all larvae from the second generation underwent 
direct development into a third generation.  
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4.2.2.3 Western snowy plover (Charadrius nivosus nivosus) SEED model 
We modeled the 24 western snowy plover breeding sites used by Hudgens et al. 2014. 

These sites span the United States coastal range of the species. We considered both dispersal and 
winter migration rates between pairs of populations to depend only on the distance between 
them. We used dispersal rates among populations from Hudgens et al. 2014 and estimated 
Migration rates from banded birds breeding at Monterey Bay and observed at coastal locations in 
the United States. We fit a negative exponential curve to the proportion of migrating birds 
observed in each western snowy plover recovery unit. We assumed that the distance of each 
recovery unit to Monterey Bay was equal to the mean distance between of all known breeding 
sites in the recovery unit and Monterey Bay. There was no evidence that birds from Monterey 
Bay were more likely to migrate to southern wintering grounds than to northern wintering 
grounds the same distance away, so we modeled migration as being equally likely in either 
direction.  

The western snowy plover life cycle can be broken down into three stages corresponding 
to the first three years of their life. Hatch year birds suffer the highest mortality rate as they 
transition from eggs to nestlings to fledglings and finally independent young. Second year birds 
have similar survival rates as older birds but may have more limited breeding opportunities. 
Western snowy plovers are partially migratory, with most birds remaining near their breeding 
site. Most dispersal takes place during a bird's first winter/spring. 

We modeled climate influencing western snowy plover population dynamics through 
effects on two demographic rates. Warmer early spring temperatures led to longer breeding 
seasons, which in turn led to greater fecundity. Adult survival was influenced by weather at their 
wintering grounds. Warmer mean daily maximum temperatures were associated with higher 
survival, while an effect of cold snaps (DACS; extended periods of days with lows below 2 ⁰C 
and highs below 10 ⁰C) were associated with higher mortality.  

In the absence of dispersal, the year to year changes in a western snowy plover 
population would be described by: 
Equation 4.2-4 

𝑁𝑁1𝑡𝑡+1 = (𝑁𝑁1𝑡𝑡 + 𝑁𝑁2𝑡𝑡) ∗ 0.5 ∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �
𝑁𝑁1𝑡𝑡

(𝑁𝑁1𝑡𝑡 + 𝑁𝑁2𝑡𝑡)
,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ.𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡� ∗ 𝑗𝑗𝑗𝑗𝑗𝑗. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

𝑁𝑁2𝑡𝑡+1 = (𝑁𝑁1𝑡𝑡 + 𝑁𝑁2𝑡𝑡) ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 
where N1t is the number of second year birds, N2t is the number of after-second year birds at the 
start of the breeding season in time t, and DACS is an index of the number, length, and severity 
of cold snaps experienced birds from that population over the previous winter. This climate 
variable was calculated as a weighted average of the DACS for each potential overwintering site, 
weighted by the proportion of birds from the breeding site expected to migrate to that 
overwintering site. 

The functional forms and parameter values used in Equation 4.2-4 are shown in Table 
4.2-7. 
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Table 4.2-7. Western snowy plover demographic rates used in the SEED model with functional forms and parameter 
values. 

Demographic rate1  Functional form7 
proportion breeders that migrate2   0.163 

expected proportion migrating to each potential 
overwinter site see Appendix 8.6 

nest.season.start3  49.18-2.13*mean.March.temp 

fecundity 

juvenile survival  

0.37+0.22*p.ASY- 0.004*first.nest.day 

0.67*adult.survival 

logit.adult.survival4,5  -1.736+0.1759*max.temp-0.00375*DACS 

adult.survival6   exp(logit.adult.survival)/(1+exp(logit.adult.suvival)) 

 

4.2.2.4 Red-legged frog (Rana aurora and R. draytonii) SEED model 
We modeled red-legged frog populations dynamics at each of our eleven study sites. We 

did not include dispersal in the red-legged frog model because of the large distances between 
sites relative to the frog’s dispersal capabilities.  

The red-legged frog life history is characterized by two phases, an aquatic larval phase 
and terrestrial post-metamorphic phase. Eggs are laid at different times of year in different parts 
of the range. Coastal northern red-legged frogs may breed from October through March, 
depending on local rainfall patterns and hydrology. Inland northern red-legged frogs breed in 
mid-February, typically after the harshest winter temperatures. Both modelled populations of 
California red-legged frogs bred in March and April, corresponding to the end of wet season 
when the streams used as breeding habitat in the coastal populations are less prone to flash 
flooding, and to warm temperatures and snow melt for the inland population. Eggs hatch after 
several weeks and the timing is influenced by water temperatures; eggs develop faster in warmer 
waters. Tadpoles are less than 1 cm long when they emerge from eggs. After two to four months 
tadpoles have grown to 40 mm— large enough to escape predation by smaller aquatic 
invertebrates— and begin forming rear leg buds. Tadpoles continue to progress through a 
gradual metamorphosis, growing rear legs, then front legs, and resorbing their tails, until they 
become fully metamorphosed into froglets capable of living on land. They remain in this juvenile 

1. Variables appearing in Equation 4.2-4 are bolded. Other non-bolded variables appear in the functional forms 
of variables appearing Equation 4.2-4. 
2. Conversely, the proportion of breeders that are expected to overwinter at their breeding site is 0.837 
3. March temperatures are based on where adults overwinter. The value used at a given breeding site is the 
weighted average of the values calculated for all potential overwintering sites with the weighting factor equal to 
the expected proportion of the population overwintering at any given overwinter sites. 
4. Mean daily maximum temperatures during the winter months (November-February) and Duration Amplified 
Cold Scores (DACS) are based on where adults overwinter. The value used at a given breeding site is the 
weighted average of the values calculated for all potential overwintering sites with the weighting factor equal to 
the expected proportion of the population overwintering at any given overwintering site. 
5. Linear functional forms were fit to logistically transformed data. These variables represent the projected logit 
transformation of demographic rates used in the model. 
6. Inverse-logit transformation of the projected logit transformation of demographic rate calculated from linear 
equations of climate variables.  
7. Temperature values are in degrees C. 
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terrestrial phase over their first winter, and become reproductive adults during the following 
breeding season, at age two.  

We incorporated several climate related variables and site-specific non-climate variables 
that influence red-legged frogs throughout their life cycle into the red-legged frog SEED model. 
We assumed that each breeding female laid a single egg mass each breeding season. The number 
of eggs per egg mass increased with the average size (snout-vent length) of adult females 
observed at the site and the amount of precipitation at the breeding pond the previous breeding 
season. We assumed early tadpole (from hatching to 40 mm length) survival to be constant. 
Daily survivorship of later-stage tadpoles (from 40 mm to metamorphosis) decreased with 
warmer temperatures. The length of time required to complete metamorphosis after tadpoles 
reached 40 mm decreased with warmer temperatures and varied among sites independent of 
climate (Appendix 8.7). We tracked froglet survival for the final 1-4 months of their first year, 
with the starting month depending on site-specific breeding times and the combined length of the 
aquatic stages, which was temperature dependent. Monthly survival rates increased with froglet 
size and warmer mean daily maximum temperatures and decreased with warmer mean daily 
minimum temperatures and higher precipitation. We calculated adult survival quarterly to 
account for seasonal variation in temperature-related mortality; quarterly adult survival rates 
increased with warmer mean daily minimum temperatures. We calculated annual adult survival 
from October through the following September as the product of the corresponding four 
quarterly survival rates. Year to year changes in red-legged frog populations are approximated 
by: 
Equation 4.2-5 

𝑁𝑁1𝑡𝑡+1 = 𝑁𝑁2𝑡𝑡 ∗ 0.5 ∗ 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙. 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)
∗ ℎ𝑎𝑎𝑎𝑎𝑎𝑎ℎ. 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)                                                                                    
∗ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠              
∗ 𝑙𝑙𝑙𝑙. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡.𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑑𝑑)
∗ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡,𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) 

𝑁𝑁2𝑡𝑡+1 = (𝑁𝑁1𝑡𝑡 + 𝑁𝑁2𝑡𝑡) ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑚𝑚𝑚𝑚𝑚𝑚. 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) 
                 

where N1t is the number of pre-breeding juvenile frogs and N2t is the number of 2+ year old 
adult frogs in year t. All climate variables correspond to the time period when the stage is 
present, except for last.breeding.season precip, which is the precipitation during the previous 
breeding season.  

The functional forms and parameter values used in Equation 4.2-5 are shown in Table 
4.2-8 and site specific parameters are shown in Table 4.2-9. 
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Table 4.2-8. Red-legged frog demographic rates used in the SEED model with functional forms and parameter 
values. 

Demographic rate1 Symbol Functional form7 
adult.svl svl see Table 4.2-9 
eggs.per.mass epm 10760-272.7*svl+1788*svl^2+0.1253*last.breeding.season.precip 

baseline.hatch.rate  

See  

see Table 4.2-9 

logit.hatch.rate2  baseline.hatch.rate-0.3607*max.temp 

hatch.rate3 hatch.rate exp(logit.hatch.rate)/(1+exp(logit.hatch.rate)) 
sm.tadpole.surv4  0.042 

logit.daily.tadpole.surv2  3.7-0.05947*mean.temp 

daily.tadpole.surv3  exp(logit.daily.tadpole.surv)/(1+exp(logit.daily.tadpole.surv)) 
tadpole.stage.lgth  see Appendix 8.7 
lg.tadpole.surv  daily.tadpole.surv^tadpole.stage.lgth 
froglet.svl  23.67+0.003699*GDD 

Logit.froglet.surv5  

-1.279+0.32*froglet.svl-
0.396*min.temp(month)+0.414*max.temp(month)-
0.324*precip(month) 

monthly.froglet.surv5  exp(logit. froglet.surv)/(1+exp(logit. froglet.surv)) 

logit.adult.quarterly.surv6  -2.2594+0.8561*min.temp 

adult.quarterly.surv6 
QSa1, QSa2, 
QSa3, QSa4 exp(logit.adult.surv)/(1+exp(logit.adult.surv)) 

adult.annual.surv   QSa1*QSa2*QSa3*QSa4 

 
  

1. Variables appearing in Equation 4.2-5 are bolded. Non-bolded variables appear in the functional forms of variables appearing 
Equation 4.2-5. 
2. Linear functional forms were fit to logistically transformed data. These variables represent the projected logit transformation 
of demographic rates used in the model. 
3. Inverse-logit transformation of the projected logit transformation of demographic rate calculated from linear equations of 
climate variables. 
4. From McHarry 2017 and Licht 1974 
5. Overall froglet survival was calculated as the product of monthly froglet survival rates from the month of emergence to the 
following October. The month of emergence was calculated as the breeding month + 3 months + tadpole.stage.lgth/30; rounded 
to the nearest month. The three months in this calculation accounts for the egg and small tadpole development times. 
6. Adult survival was calculated quarterly, with annual adult survival equal to the product of the four quarterly survival rates. 
Temperatures for each quarter were calculated as the average of the monthly mean daily minimum temperature for the 
corresponding three months. 
6. Temperature values are in degrees C. Precipitation values are in mm. 
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Table 4.2-9. Red-legged frog primary month when breeding occurs (breed.month), average SVL of females captured 
(mean.SVL), and the logit transformed egg viability rates (hatch.base) for each site. 

Site Breed.month Mean.svl 
 
Batch.base 

Inland NRLF 1 Feb 74 8.56 
Inland NRLF 2 Feb 73 7.07 
Inland NRLF 3 Feb 73 6.34 
Coastal NRLF 1 Jan 82.5 7.3 
Coastal NRLF 2 Dec 71 7.17 
Coastal NRLF 3 Nov 72 8.87 
Coastal hybrid 1 Dec 71 8.22 
Coastal hybrid 2 Mar 71 8.22 
Inland CRLF 1 Apr 95 8.02 
Coastal CRLF 1 Mar 90 7.35 
Coastal CRLF 2 Mar 90 11.1 
 
      

4.2.2.5 Alaskan douglasia (Douglasia alaskana) SEED model 
We modeled Alaskan douglasia population dynamics at our five study sites. Note that 

while we attempted to conduct this work at Joint Base Elmendorf Richardson (JBER), we were 
unable to obtain reliable temperature data at JBER, and the small number of plants found at this 
location (four individuals) made it impossible to make robust inferences about population 
dynamics. Our “Central” site is just adjacent to JBER and population dynamics at this site are 
likely similar to those at JBER. In addition, we were unable to use the MACA climate 
projections, but instead used Alaska-specific projections (described in more detail below). We 
did not include dispersal in the Alaskan douglasia model, because of the large distances among 
sites relative to the plant’s dispersal abilities.  

Instead of using the MACA climate projections, we obtained estimates of monthly 
temperature and precipitation for Emissions Scenario RCP8.5 from the CMIP5/AR5 models 
from the Scenarios Network for Alaska and Arctic Planning group (SNAP). These projections 
were downscaled using CRU CL v. 2.1 climatological datasets from 1961-1990 as the baseline, 
generating 2 km x 2 km spatial resolution climate projections from 2006-2099 (Scenarios 
Network for Alaska and Arctic Planning, University of Alaska). These data include climate 
projections from 5 GCMs, rather than the 20 GCM’s represented by the MACA data (Appendix 
8.1). We corrected our SNAP data to better represent soil temperature data (soil temperature data 
were derived from iButtons, used to fit demographic rate functions) using population specific 
differences between SNAP and iButton temperatures. Namely, we only had temperature data 
from both iButton and SNAP sources for the 2016-2017 or 2017-2018 period, depending on site. 
For each site, climate variable, and GCM, we calculated a difference between the iButton and 
SNAP data, and then used this difference to ‘correct’ all SNAP data used in population 
projections. Note that we did not measure precipitation at our populations, so all precipitation 
data used in projections was obtained from SNAP. 
  For each site, we constructed a standard integral projection model (IPM) with no density 
dependence using climate projections. We used the demographic rate regressions outlined in 
section 5.1.5 to construct climate-driven population-specific IPMs for future conditions. We used 
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SNAP temperature (‘corrected’ using the iButton data, as described above) and precipitation data 
to predict demographic rate functions. As in our demographic rate fitting procedure, the identity 
of hottest and coldest months could vary across years, sites, and GCMs. Our integral projection 
models used log size as a size variable and had an additional class for seedlings. We initialized 
projections with the size distribution from the mean 2008-2099 kernel. We used the population-
specific estimates of seedlings per fruit in the year prior as an estimate of recruitment (using the 
across-population average for our S population, for which we were missing recruitment data). 
Seedlings survived at the average rate across populations, and survivors joined the IPM kernel 
with a mean and variance in size equivalent to the mean and variance across all populations in 
our field study. Our integral projection model had 40 mesh points (or size classes), and upper and 
lower size limits were +/- 10% more than the range of sizes observed during our study. We 
renormalized predicted size in the next time step to avoid eviction (Williams et al. 2012). To 
prevent complete eviction below the lower size bound (where all predicted sizes, not just mean 
size after one year of growth, were below the lower bound of the kernel), we assumed in these 
cases that all individuals transitioned to the smallest size class (Williams et al. 2012). No 
complete eviction over the upper limit occurred.  

4.2.2.6 Venus flytrap (Dionaea muscipula) SEED model 
We modeled Venus flytrap metapopulation dynamics at Fort Bragg, NC using a standard 

integral projection model with no density dependence. We did not include dispersal in the model 
because of the large distances between sites relative to the plant’s dispersal abilities.  

We estimated the plant’s dispersal abilities by delimiting the geographic extent of three 
introduced populations in Florida for which we know from herbarium records an approximate 
establishment date. At each of these three populations, we quantified geographic extent by 
demarcating the boundaries of the Venus flytrap population; we then assumed that populations 
were circular and quantified the increase in radius per year since establishment of the 
populations. The increases in radius per year at the three populations were 0.12, 0.18, and 0.34 
m/year. These dispersal estimates are much too low to warrant inclusion of dispersal into our 
SEED model, given the distances between occupied sites at Fort Bragg.  

We identified 35 currently or recently occupied sites at Fort Bragg using data available 
from managers at Fort Bragg and constructed projections of population growth rate at each of 
these 35 sites. We initialized population models using the number of plants observed in the most 
recent census (2014) at each site, which ranged from 1 to 259. We summed the projections of 
population size across all 35 sites at Fort Bragg to obtain estimates of metapopulation size 
through time.  

We used the best performing demographic rate functions from the regression analysis 
described in section 4.2.1.6 to construct IPMs (Ellner and Rees 2006) to project metapopulation 
growth of Venus flytraps at Fort Bragg. We used MACA climate projections for each site to 
predict site-specific future demographic rates. For the demographic rates for which soil iButton 
temperatures were included in the best performing models, we used a regression of soil 
temperatures (derived from iButtons) against the analogous gridMET temperatures for 2015-
2018, the years for which we had both types of data. Namely, for each climate variable, we fit a 
linear regression with the iButton climate variable (e.g., iButton annual mean daily temperature) 
as the response variable, with population (one of the six monitored populations used to fit 
demographic rates), the analogous gridMET climate variable (e.g., gridMET annual mean daily 
temperature), and their interaction as predictor variables. We used the relationship (for the 
average for Fort Bragg populations) to generate predicted future iButton climate variables. One 
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climate variable present in the best-fit model for fruit number, local climatic water deficit in the 
driest month, was not well-correlated with its analogous regional climate variable; therefore, we 
used the next-best model, which included regional water balance (but not local climatic water 
deficit) to construct our IPMs.  

We used future climate variables for each of the 35 currently occupied sites across Fort 
Bragg to predict future demographic rates for each occupied site. When demographic rate 
functions contained a term for population or region, we used the region coefficient for Fort 
Bragg, and for site effects, we averaged the two Fort Bragg populations’ coefficients. Identities 
of extreme months do not change substantially in a future climate, so we used the same extreme 
months as the demographic rate function fitting.  

We then used these future demographic rates to construct integral projection models 
(IPMs) that assumed a fire return interval of three years (as usually occurs at Fort Bragg , where 
all fire is prescribed). In our simulations, a fire always occurred in the first year. We used natural 
log of plant size [namely, ln(number of leaves x length of longest leaf)] as a metric of size in our 
IPM. Our kernel had 100 mesh points, and bounds of the kernel were 30% more and 10% less 
(on the log scale) than the range of sizes observed during our study. We renormalized predicted 
size in the next time step to ensure that no plants were lost because they grew or shrank to sizes 
not included in the model (eviction, Williams, Miller, and Ellner 2012). Seedlings entered the 
kernel with a normal size distribution reflective of the seedling size distribution in 2018 (on the 
logged scale, mean of 3.38 and variance of 0.33), similarly renormalized to avoid eviction. To 
prevent complete eviction below the lower size bound (where all predicted sizes, not just mean 
size after one year of growth, were below the lower bound of the kernel), we assumed in these 
cases that all individuals transitioned to the smallest size class (Williams et al. 2012). No 
complete eviction over the upper limit occurred. We initialized integral projection models using 
the stable size distribution over the mean 2018-2099 IPM kernel. 

Because future climate scenarios could result in unrealistic predicted demographic rate 
values, we bounded demographic rate values to improve realism. First, for each bin in the 
discretized IPM kernel, we limited fruit number, mean size after one year of growth, and 
variance in size after one year of growth to be at most 20% more than the range of observed 
values for that bin (when there were at least five observations at that bin). We allowed survival to 
vary +/- 20% beyond the range of observed probabilities for that bin (where probabilities were 
calculated across size class x population x year combinations with at least five observations). For 
probability of fruiting, we allowed predicted probabilities 30% more than the observed 
probabilities of that size class (minimum or maximum probabilities, as we used for survival, 
were unstable due to relatively sparse data).  

4.2.2.7 Red-cockaded woodpecker (Dryobates borealis) SEED model 
We modeled red-cockaded woodpecker population dynamics at our three study sites: 

Sandhills, Lejeune, and Eglin. At each site, we used an individual-based model in which the 
‘individuals’ were territories; each territory had associated breeders, helpers, and nestlings (with 
floaters associated only with the site). Our SEED model did not include detailed treatment of 
dispersal within a site; as described in more detail below, an individual had the same probability 
of dispersing to a territory 0.1 v. 2 km away. Because reproductive demographic rates depended 
on both male and female breeder age, we kept track of both males and females in our model. We 
did not include dispersal in our SEED model, because dispersal probabilities among these three 
sites were too low to warrant their inclusion (see more details below). In our SEED models, 
density dependence is present because the number of breeding territories, and thus breeding 
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pairs, is limited to the number of breeding territories occupied by a breeding pair in the last year 
of our demographic monitoring (2015); however, the number of nestlings and helpers at each 
territory is not limited, nor is the number of floaters across the site.  

We predicted demographic rates using the average climate in a given year at that site, as 
well as individual- or territory-specific characteristics such as number of helpers or age. For each 
year of our simulation, we calculated a weighted average of the MACA predictions for that site, 
where the weights correspond to the number of territories occupied by a breeding pair in 2015 
that are present in each 4 km x 4 km MACA climate grid cell. We used this weighted average to 
predict demographic rates in each year of our simulations. We used territory- or individual-
specific characteristics to predict demographic rates of each individual or territory. For each age, 
status, and territory combination in each year, we calculated a predicted mean demographic rate 
(e.g., mean survival) and then sampled from an appropriate distribution to simulate fates of 
individuals. For example, in the case of simulating survival of a breeding male three years of 
age, we calculated the predicted mean survival rate for a three year old breeding male using our 
demographic rate functions, then sampled from a Bernoulli distribution to determine whether 
that particular three year old male breeder survived. Similarly, for each territory, we calculated a 
mean probability of initiating a first nest, and then sampled from a Bernoulli distribution with 
this mean probability to determine whether a first nest actually occurred in that territory. In this 
way, we incorporate demographic stochasticity in most demographic rates; note that we do not 
include demographic stochasticity in the case of number of eggs or the fraction surviving to 
fledging from nests, as occasionally the observed value was predicted to be zero, which is 
biologically impossible. 

To improve biological realism, we limited all adult survival rates to the maximum and 
minimum observed, across years and sites, for that status and sex. We limited survival during the 
year of hatching to be no less than the 0.25 quantile of observed values across years and sites, 
with no upper limit. We imposed similar limits on all reproductive demographic rates; namely, 
we limited all reproductive demographic rates to the minimum observed across years and sites, 
with no upper limit. Finally, if a bird happened to live to 18 years of age (the maximum age 
observed in our dataset), we assumed it did not survive to the next year. 

We initialized projections of population growth with the observed sex, age, and status 
distribution in each territory in each site in 2015. We incorporated the social dynamics of this 
species using a series of rules that dictated what happened when a breeder died, or when new 
hatchlings transitioned into the pool of adults (where they could become helpers, floaters, or 
breeders). We first outline what occurs when male breeders dies, then when female breeders die, 
and then what happens to nestlings that survive to fledge and become adults. When a male 
breeder did not survive, the oldest helper at that territory replaced the male breeder (or, if there 
were no helpers at that territory, we selected a new male breeder randomly from all floating 
males at that site). If the oldest helper at a given territory replaced the breeding male but was 
younger than the breeding female at that territory, we assumed that he was her son, so that she 
left the territory to become a floater. When this scenario occurred, her survival rate was 50% of 
her predicted survival rate as a breeder (Daniels and Walters 2000). If she survived to the next 
year, she occupied any female breeding positions that were abandoned or where the breeding 
female died; the identity of the territory to which she moved was selected randomly. If she 
survived to the next year but no female breeding positions were available, she transitioned into 
the floater class. If there were additional unoccupied female breeding positions, we selected 
randomly from the female floaters at that site to fill the breeding position. If male or female 
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nestlings were not selected to occupy a breeding position, they became helpers at their natal 
territory at the average sex-specific nestling-to-helper transition rate observed at that site across 
all years of our study. Otherwise, they became floaters.  

If population numbers declined, some territories became unoccupied. We allowed 
territories to become occupied by a male (without an associated female breeder), as can happen 
in the field, but females could not occupy a territory alone (without an associated male breeder). 
Thus, unoccupied territories were treated as vacant breeding positions for males, but not females. 
If a female breeder’s mate died and was not replaced due to low numbers in the population, we 
assumed that she left the territory, after which her survival rate was 50% of her predicted 
survival rate as a breeder (Daniels and Walters 2000). A breeding female that left a territory was 
preferentially selected to occupy any female breeding positions that were abandoned or where 
the previous female did not survive (as occurs when a breeding female’s son succeeded the 
breeding male position) or where the female did survive.  

We used the observed dispersal events in our demographic data to fit a Weibull 
distribution (following Kesler et al. 2010). Here, we define dispersal as a bird leaving a territory 
and relocating to another territory in the next census. The best-fit Weibull distribution had a 
shape parameter of 0.969 with a scale parameter of 3.421, yielding a cumulative probability of 
0.9999999 at 60km. This cumulative probability indicated that birds were unlikely to disperse > 
60km (probability=  0.00000001). Further, because this Weibull distribution is fit with data from 
dispersal distances among largely contiguous longleaf pine habitat, the probability of dispersing 
between populations that are separated by inhospitable matrix is likely even lower, we did not 
include dispersal among sites in our SEED model.  

4.2.3 Climate Contribution Index (CCI) 
We developed a method for measuring the contribution of each life stage to a 

population's response to climate change that accounts for both the sensitivity of demographic 
rates to climate drivers and the influence of those demographic rates on population growth. We 
start with an observation that the change in population growth rates caused by a change in 
climatic conditions between two time periods can be approximated by the following equation:  
Equation 4.2-6 

∆𝜆𝜆 = ��∆𝑐𝑐𝑐𝑐
∆𝑉𝑉𝑗𝑗
∆𝑐𝑐𝑐𝑐
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𝑛𝑛𝑛𝑛

𝑖𝑖=1

𝑛𝑛𝑛𝑛
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The term ∆𝑐𝑐𝑐𝑐 ∆𝑉𝑉𝑉𝑉
∆𝑐𝑐𝑐𝑐

 describes how much a given demographic rate (v) changes given the difference 
in climate driver i between the two periods (hereafter, “climate sensitivity”). When summed over 
all nc climate variables, this is the climate sensitivity of the demographic rate. The term ∆𝜆𝜆

∆𝑉𝑉𝑉𝑉
 

describes how much the population growth rate changes with a small change in the demographic 
rate vj, (hereafter, “demographic rate sensitivity”). The total change in a population's growth rate 
then is described by the sum of the product of the sensitivity of the population growth rate to 
each demographic rate and the climate sensitivity of that demographic rate over all nv 
demographic rates composing a species' life history. For any given demographic rate, the larger 
the product of the two sensitivities, the more it will influence how future population growth rates 
respond to a changing climate. Thus, this product serves as an index of the relative contribution 
of each demographic rate to a species' response to climate change. We call this index the Climate 
Contribution Index (CCI).  

 
 

62 



We calculated the CCI for three of our study species to demonstrate its use in practice 
and to help inform our interpretation of SEED model results: Appalachian brown butterflies, 
hydaspe fritillaries butterflies, and red-legged frogs. For the Appalachian brown butterfly, we 
assumed that the entire population went through three generations each year, so that the annual 
population growth rate can be described by the equation: 
Equation 4.2-7 

The terms fi, ei, and li represent fecundity, egg hatch rate, and larval survival in each of the three 
generations. The fecundity terms are further broken down to: 1

1−𝑎𝑎
𝑑𝑑𝑖𝑖 where a is the daily survival 

of adult female butterflies (which does not vary among generations) and di is the average number 
of eggs laid per day in generation i. For the hydaspe fritillary butterfly and red-legged frogs, we 
used the equations presented in the SEED model methods sections Equation 4.2-3 and Equation 
4.2-5, respectively. 

We assumed the same climate-demographic rate relationships for each species as were 
used for their respective SEED models. We calculated climate sensitivities for each demographic 
rate as the difference between the average value of the parameter during the first 10 years during 
which SEED models were run (representing the current climate conditions) and the average 
parameter value over a 10 year period 25-30 years later (representing future climate conditions). 
Average parameter values for each period were calculated as follows. First, we calculated the 
projected value of each demographic rate given the climate conditions projected by each of the 
20 GCMs used in the SEED models (Appendix 8.1). We then extracted the median value for 
each demographic rate for each year. Finally, we calculated the mean value over the 10 year 
period of these median projected values.  

We calculated population growth rate sensitivities to demographic rates for each species 
from Equation 4.2-7 (Appalachian brown butterfly), Equation 4.2-3 (hydaspe fritillary butterfly), 
and Equation 4.2-5 (red-legged frog) based on the demographic rates in the current period. For 
each demographic rate, we calculated the sensitivity assuming a change in the average value of 
the demographic rate during the current period of 0.01 in the direction indicated by its climate 
sensitivity. We calculated population growth rate sensitivities to demographic rates not projected 
to change (i.e., with a climate sensitivity equal to 0) assuming a positive change.  

We calculated the CCI for Appalachian brown butterflies based on climate conditions at 
Fort Bragg, NC. Because current climate conditions (and hence, current demographic rates) 
noticeably varied among hydaspe fritillary butterfly populations, we calculated separate CCIs for 
each of our study populations. Because we suspect that projected adult survival rates for inland 
populations of red-legged frogs are biased low due to local adaptation for cold winters (see 
section 5.2.4 below), we calculated CCIs only for coastal populations.  

5 Results and Discussion 

5.1 Relationships between demographic rates and climate variables 

5.1.1 Hydaspe Fritillary Butterfly (Speyeria hydaspe) 
We found a complex set of relationships between climate and hydaspe fritillary 

demographic rates. Some demographic rates were positively affected by warmer temperatures, 
while others were negatively affected. Some demographic rates were affected by both 
temperature and precipitation, and some were not influenced by any climate variable we tested.  
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Egg and larval development rates and the timing of the adult flight period were strongly 
influenced by climate. Observed population growth rates based on adult mark-recapture data hint 
at climate-demographic relationships we were unable to capture in the short duration of our field 
studies.  
Demographic rates for SEED models: We found no significant effects of any of the climate 
variables tested on the number of eggs laid per female per day when site was included in the 
model (Appendix 8.8). Adding or removing the data from the females held under experimentally 
elevated temperatures in the greenhouse and Sacramento County did not change the results.  

Higher temperatures reduced egg viability, with strong effects of average daily minimum 
temperature. The best performing model included minimum temperature and site (Table 5.1-1, 
Figure 5.1-1a). However, models that included only temperature or only site performed nearly 
the same (Table 5.1-1, ∆ DIC < 1). The results presented included eggs that were housed under 
elevated temperatures in the greenhouses and Sacramento County. The results were the same 
qualitatively regardless of whether or not the experimental data were included. While the 
greenhouses reached higher temperatures during the day, the nighttime temperatures were not 
elevated compared to the butterfly field sites in Humboldt County where the females that laid the 
eggs came from (natal site), resulting in no difference between the two in minimum 
temperatures. The Sacramento County eggs experienced temperatures that were over 10 °C 
warmer for the average daily minimum temperature than the egg’s natal site, which was the site 
with the lowest minimum temperatures. However, the minimum temperatures were still within 
the range currently experienced at our warmest study site, the lowest elevation Sierra Nevada 
site. Overall, the minimum temperatures experienced while eggs were developing were fairly 
consistent within sites but distinct across sites, with warmer sites having lower egg viability, 
making it difficult to differentiate between site and temperature effects. The negative association 
we found between temperature and egg viability is likely due to a higher chance of desiccation at 
higher temperature. We frequently noted desiccation in eggs that did not hatch. 

 
Table 5.1-1. Model selection tables for analyses of the effects of temperature on egg viability and post-diapause 
(spring) larval survival. Parameter estimates from the top models that were used in the SEED models can be found 
in Table 4.2-5. 

Egg viability models DIC Delta DIC Weight 

Site + min temperature 2106.71 0 0.37 
Site  2106.86 0.15 0.34 
Min temperature  2107.46 0.75 0.25 
Intercept (female as random factor) 2111.30 4.59 0.04 
Larval survival models    
Site + max temperature 405 0 0.82 
Max temperature  409.05 4.05 0.11 
Site 409.74 4.74 0.08 
Intercept (female and cage as random) 415.25 10.25 0.005 
    

 
We found that overall egg predation rates during our trials were not influenced by 

temperature, but did vary across sites (Appendix 8.9). However, we did find an effect of 
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temperature on daily predation rates. Temperature and region affected daily egg predation rates 
(Cox proportional hazards model, P< 0.05). Namely, average daily mean temperature increased 
the hazard ratio (β = 0.38, z = 9.72, P <0.0001), resulting in a 46.4% increase in the daily 
predation rate per °C of warming. Based on our personal observations, we suspect that ants are 
significant egg predators at our sites. Ants are known to prey on butterfly eggs in other species 
(Prysby 2004), and ant foraging behavior is influenced by temperature (Hölldobler and Wilson 
1990). In the field, the average egg development time varied from about 16 to 27 days across 
sites and was strongly influenced by mean daily temperature (β = -1.81, P <0.001, R2 = 0.67). 
While the daily egg predation rate increased with temperature, egg development time shortened 
with warming, leading to reduced exposure to predation. This pattern may explain why we found 
little influence of temperature on overall predation rates in our trials, but an effect of temperature 
on daily predation rates. Because we ended our predation trials at least six days prior to eggs 
hatching, the expected predation rates at each site will actually be slightly higher than what we 
observed in our trials because of the additional exposure time. To more accurately estimate egg 
predation rates prior to hatching at each site we used a combination of survival analysis and the 
mean days to hatching at each site. We used survival analysis to estimate the proportion of eggs 
expected to survive (S) to the last survey date for each site (survival based on predation only and 
not egg viability). We then calculated the daily survival probability (Sdaily) by taking the nth root 
of the estimated proportion survived: √𝑆𝑆𝑛𝑛  , where n is the number of days until the last survey 
date at each site. We then used the daily survival probability (Sdaily) and the mean days to 
hatching (N) at each site to estimate the proportion of eggs expected to survive until hatching 
(Shatch = Sdaily

N). The predation rate prior to hatching (Phatch) is then 1 – Shatch. Estimated predation 
rates (from laying to hatching) using this method are listed in Table 4.2-6.  

Average overwinter larval survival was fairly consistent across sites (0.54 – 0.71), and 
none of the climate variables we tested influenced overwinter survival (Appendix 8.10). Higher 
temperatures increased larval survival post diapause, especially higher daily maximum 
temperatures (Table 5.1-1, Figure 5.1-1b). We present the results for models that included data 
from larvae reared in greenhouses that elevated the average maximum daily temperatures 
experienced by as much as 5 °C compared to any of our field sites. Adding in the greenhouse 
data to our analyses did not change model rankings and did not substantially change parameter 
estimates. The best performing model for larval survival included both temperature and site 
effects. Only one site showed any significant difference in baseline larval survival, and the 
parameter estimates for the effects of temperature were nearly the same regardless of whether 
site was included in the model or not (0.15 vs. 0.145). To simplify the hydaspe SEED model we 
used the results from the model without site specific larval survival.  

Average daily minimum temperature and total annual (water year) precipitation increased 
adult survival (Figure 5.1-1c, Appendix 8.11).  
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Figure 5.1-1. Predicted relationships between climate variables and demographic rates from the best performing 
models. Graphs a and b show the relationships we found between temperature and egg viability (a) or spring larval 
survival (b). Graph c depicts the relationship between average daily minimum temperature and the expected life 
span of adults based on daily survival estimates from mark recapture analyses (intercept represents the mean of all 
sites). The points represent the relationship when the annual precipitation total is equal to the mean across sites and 
years. The lines represent the relationship with different precipitation levels from the lowest to highest experienced 
at any site/year. Lines are spaced in 100 mm precipitation increments. 

Population growth and phenology: We found strong model support for both total precipitation 
and male population size in year t affecting continuous population growth rates (r) calculated 
from population size estimates (∆ AICc > 8 compared to next best model). Total precipitation 
increased r (β= 0.0007, P = 0.002), while population size decreased r, indicating negative density 
dependent population growth (Figure 5.1-2, Table 5.1-2). Together, precipitation and population 
size in year t explained about 89% of the variation in population grow rates. 

 
Figure 5.1-2. Effects of male population size and precipitation on continuous population growth rates. a) 
Relationship between the natural log of the male population size in year t (ln Nt) and growth rate (r). b) Relationship 
between total precipitation in year t and population growth after accounting for the effects of male population size 
(residuals of the relationship between ln Nt and r). 

 The timing of our study may be part of the reason why we saw such strong effects of 
precipitation and density dependence on population growth rates estimated from observed 
changes in abundance. Our study started during the tail end of the one of the worst droughts in 
California’s history (2012-2016), which ended in the 2016-2017 water year with the wettest year 
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on record in northern CA (CA Department of Water Resources). As the furthest south and 
warmest sites, our sites in the Sierra Nevada were hit hardest by the drought (NOAA 2015).  
During the first two years of our study, Sierra Nevada 1, the lowest elevation site, had male 
population size estimates of less than 35 and Sierra Nevada 2 had estimates of less than 55. In 
contrast the lowest estimate of male population size at any other site in 2016 and 2017 was 523. 
In 2018, a year after the wettest water year on record, male population size estimates increased 
more than 450% at Sierra Nevada 1 and 2, while they increased by 58-79% at the more northerly 
sites. 
 The best performing models for all of the phenology measures included GDD and all but 
flight period end also included snow melt date (Table 5.1-2). Region was never included in the 
top model for any measure of phenology. Higher GDD resulted in earlier flight period start, 
peak, and end dates (Figure 5.1-3). Melt date also helped explain some variation in flight period 
start date and peak date between sites and years, however it was in the opposite direction than 
you might expect; later snow melt dates were associated with earlier flight period starts and 
peaks. Flight period length was influenced by both GDD and melt date, with greater GDD and 
earlier snow melt dates leading to shorter flight periods (Figure 5.1-3). While later snow melt 
dates leading to earlier flight period starts and peaks may seem counterintuitive, early snow melt 
can have negative effects on plants both directly by leaving plants exposed to frost (Inyouye 
2008, Sherwood et al. 2017) and indirectly through freeze thaw cycles affecting soil microbial 
and fungal communities, and nutrient availability (Feng et al. 2007, Freppaz et al. 2007 ). 
Reduced host plant quality or abundance could delay larval development, leading to later flight 
periods. 
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Table 5.1-2. Results from generalized linear models testing the effects of climate on population growth rate and 
phenology measures. Only the best performing model for each phenology measure is presented. For each model the 
degrees of freedom, Akaike Information Criteria corrected for small (AICc), and difference in AICc between the top 
and the next best performing are presented. For each parameter in the top model the parameter estimate, standard 
error, t-value, and p-value are presented. Precipt = total precipitation in year t, ln Nt = natural log of the male 
population size in year t, GDD = growing degree days, melt date = ordinal day of the year when the last snow of the 
season had completely melted. 

Population level results Estimate Std. 
error t-value p-value DF AICc 

∆ AICc 
from 

next best 
model 

Population growth rate        
Model: Precipt + ln Nt     7 13.4 -8.13 
       Precipt 0.0007 0.0001 4.91 0.002    
       ln Nt -0.51 0.06 -8.54 <0.001    
Flight period start        
Model: GDD + melt date     12 100.3 -5.03 
       GDD -0.029 0.0078 -3.80 0.0032    
       Melt date -0.16 0.04 -3.86 0.0023    
Flight period peak        
Model: GDD + melt date     13 99.6 -9.01 
       GDD -0.053 0.0052 -10.15 <0.0001    
       Melt date -0.13 0.032 -4.033 0.0014    
Flight period end         
Model: GDD      14 103.7 -3.58 
       GDD -0.065 0.0060 -10.99 <0.0001    
Flight period length        
Model: GDD + melt date     12 112.7 -2.37 
       GDD -0.039 0.0098 -4.0 0.0018    
       Melt date 0.16 0.061 2.61 0.023    
 
 Senescence date of the primary nectar plant was most strongly influenced by GDD (β = -
0.06, t value = -6.64, P = <0.0001), with greater GDD being associated with earlier senescence 
(Figure 5.1-3h). Senescence date was also strongly correlated with the end of the flight period 
(R2 = 0.76), although GDD was a better predictor of the flight period end date (R2 = 0.86, Figure 
5.1-3d). However, we only surveyed nectar plant blooming progression every two weeks, and the 
date recorded as the end of the flight period and the date recorded for full senescence of the 
primary nectar plant only differed by more than a week on one occasion across all sites and 
years. This suggests that the effects of temperature on the timing of the end of the flight period 
may be mediated through the influence of temperature on nectar plant phenology. 
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Figure 5.1-3. Relationships between climate variables included in the best performing model and phenology 
measures (a-g) and between climate and nectar plant senescence date (h). Climate variables include growing degree 
days (GDD) (a-d,h) and snow melt date (e-g). Phenology measures included the length of the flight period (a,e), the 
ordinal date that flight period starts (b,f), the ordinal date of the peak (highest adult abundance) of the flight period 
(c,g), and the ordinal date that the flight period ends (d). Graphs for snow melt date show the relationship between 
melt date and phenology measure after accounting for the effects of GDD. Nectar plant senescence date is the 
ordinal date that the hydaspe fritillary’s primary nectar plant was fully senesced. Points are color coded by site and 
the legend for all graphs is in graph d. 

 

5.1.2 Appalachian brown Butterfly (Satyrodes appalachia) 
We found strong effects of temperature on most of the demographic rates that we tested 

in Appalachian brown butterflies. Only adult survival was unaffected by temperature. There was 
generally a negative effect of increasing temperatures on demographic rates, except for the 
proportion of caterpillars from the second generation undergoing direct development and 
contributing to a third generation within the same year. Many of the temperature-demographic 
rate relationships exhibited strong thresholds, where temperature increases below the threshold 
had little effect, but temperature increases above the threshold resulted in large reductions in the 
demographic rate. 
Demographic rates for SEED models: During the egg survival experiments, average arena 
temperatures were 18.4-24.3 ºC in the first generation, 24.9-28.8 ºC in the second, and 22.1-25.9 
ºC in the third. The highest ranked model included a marginally significant negative effect of 
maximum temperature on egg daily survival (Table 5.1-3). This model also included a fixed 
effect of generation (Table 5.1-3, Figure 5.1-4) and a random effect of plot nested within site.  
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Table 5.1-3. Highest ranked generalized linear mixed effect models for egg and larval survival (binomial) and daily 
fecundity (quasipoisson). Bolded values indicate p <0.05. 

Experiment Fixed Effect Χ2 DF p-value 
Egg Daily Survival Maximum Temperature 

Generation 
 

3.2308 
5.9118 

1 
2 

0.07227 
0.05203 

Larval Survival Maximum Temperature 
Generation 
 

26.468 
20.807 

1 
2 

<0.001 
<0.001 

Daily Fecundity Maximum Temperature 
Maximum Temperature ^2 

2.5856 
3.0760 

1 
1 

0.10784 
0.07946 

 
During the larval survival experiments, average arena temperatures were 23.4-24.9 ºC, 

24.3-26.7 ºC and 12.1-13.9 ºC during the first, second, and third annual generation respectively. 
The highest ranked model included a significant negative effect of maximum temperature (Table 
5.1-3, Figure 5.1-4). The model also included a significant effect of generation (Table 5.1-3, 
Figure 5.1-4) as well as a random effect of plot nested in site. Larval survival was lower in the 
third than in the first (p=0.001) or second generations (p<0.001). First and second generation 
larval survival did not significantly differ. 

  

 
Figure 5.1-4. Daily egg survival and total larval survival by average of daily maximum temperatures during each 
generation. Lines represent highest ranked model for each life stage. 
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During the summer generations (1st and 2nd), we increased average temperatures by up 
to 4 ºC in the arenas; during the winter generation (3rd), when sunlight was reduced, we 
increased average temperatures by 2 ºC. The lower value corresponds to predictions for 
temperature increases in the Southeastern United States under lower emissions scenarios over the 
21st Century (Girvetz et al. 2009).  

During the time period when we conducted adult mark-recapture studies, plot 
temperatures varied from 23.6 to 26.7 ºC on average. In the first round of model selection we 
tested for effects of temperature on dispersal. We found that distance was the most important 
covariate affecting probability of moving among patches and that other covariates including 
mean, maximum, and minimum temperature had little effect. In the second round of model 
selection, we evaluated two possible covariates of detection probability: plot and restoration 
(Cut) treatment. We found that restoration treatment was the most important covariate 
determining detection probability. In the third round of model selection, we used our highest 
ranked covariate for detection and transition probability from the first two rounds and then 
compared different covariates of adult survival. We found that adult survival remained constant 
across plots and time in the highest ranked model. The best performing model estimated a daily 
adult survival rate of 0.915, which translated to an average adult lifespan of 11.1 days. 

 In the fecundity experiment, average temperature ranged from 23.2-32.4 ºC. The highest 
ranked model included a quadratic effect of maximum temperature Table 5.1-3, Figure 5.1-5). At 
lower temperatures, increasing maximum temperatures increased eggs laid per day, but at higher 
temperatures this effect was reversed.  

 

 
Figure 5.1-5. Effect of average of daily maximum temperatures in oviposition chambers on number of eggs laid per 
day. Line represents a quasipoisson fit of the highest ranked model, which includes the additive effect of maximum 
temperature and its square. 

We tested for an effect of ordinal date on the probability of undergoing “direct 
development” (here, the probability of a larva developing into a third generation, rather than 
undergoing overwinter diapause) (Figure 5.1-6). The point at which 50% of individuals went into 
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diapause occurred at ordinal date 216, which we used as the critical photoperiod time point for 
further analyses.  

We recorded the timing of first emergence in the first flight period for 62 butterflies in 
experimental warming enclosures. We found that Appalachian brown butterflies emerged over a 
range of GDD from 412 to 913 with the average emergence occurring at 582 GDD. We 
considered 412 GDD to be the lowest thermal accumulation necessary for emergence, and we 
used this value to project future first emergence dates.  

 
Figure 5.1-6. Changing proportion of individuals developing directly into third flight period adults by ordinal date 
that eggs were laid. Points represent one or two clutches (always two clutches per date, so single points on one date 
represent two clutches). Curve represents binomial fit predicting that 50% of eggs are laid on the ordinal date of 216. 
The critical photoperiod by definition occurs on this date. 

Range boundary experiment. As with the Fort Bragg, NC populations, average daily maximum 
temperatures reduced egg and larval survival (Figure 5.1-7) in the South Carolina and Michigan 
populations. We found no evidence that site (SC vs. MI) influenced egg or larval survival and 
highest ranked models included only temperature.  

During the Michigan warming experiment we unexpectedly observed adult emergence in 
September rather than the following spring. This surprised us as S. appalachia in Michigan is 
considered univoltine (Opler 1994). We could not corroborate our finding with observations in 
the field during 2018 using data from the Michigan Butterfly Network (available at 
pollardbase.org). However, a second annual generation was also observed for another Satyrine 
butterfly species during captive rearing the same year (A. Colewick pers. comm. 2018), possibly 
due to high summer temperatures and/or ideal conditions in greenhouse environments.  
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Figure 5.1-7. Relationship between average daily maximum temperature and egg (a) or larval (b) survival. Circles 
represent data from Michigan and triangles represent data from South Carolina 

5.1.3 Western snowy plover (Charadrius nivosus nivosus) 
Western snowy plovers were negatively impacted by cold temperatures. Warmer winter 

temperatures were associated with both higher adult survival and higher fecundity (mediated 
through earlier starts to the breeding season). Prolonged periods of extreme cold had an 
additional impact on both adult survival and fecundity.  
Demographic rates for SEED models: Mark-recapture analysis results highlighted the positive 
and negative effects of warmer winters and extended cold snaps, respectively, on the western 
snowy plover’s annual survival (Figure 5.1-8). The median 𝑐̂𝑐 procedure detected slight over-
dispersion in the global model (𝑐̂𝑐 = 1.02), so we adjusted the model QAICc values accordingly.  
Four of the seven models considered were competitive, with ΔQAICc < 2 (Table 5.1-4); all these 
models included maximum daily temperature and duration amplified cold scores (DACS). Two 
of the top models included a positive trend in survival through time and two included a negative 
effect of precipitation, but the confidence interval for these parameter estimates overlapped zero 
in all cases. The magnitude of the effect of maximum daily temperature and DACS effects were 
similar for the top models. Parameter estimates on the logit scale ranged from 0.153 to 0.176 for 
maximum temperature, and from -0.033 to -0.046 for DACS. For the SEED model, we used 
parameter estimates from the second-ranked model including only temperature and DACS. The 
parameter estimates were 0.1759 (SE=0.0394) and -0.0038 (SE=0.0012), respectively, with an 
intercept of -1.955 (SE=0.6730). 
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Table 5.1-4. Top five CJS models for survival of western snowy plovers breeding in the Monterey Bay area, CA and 
wintering in Recovery Unit 4, which encompasses Monterey Bay. Terms in the models include a trend (T), mean 
maximum daily temperature for November-February (maxT), duration-amplified cold score (DACS), and 
precipitation (prec), see section 4.2.1.3 for explanation if variables.We estimated parameters separately for the 
sexes. Detection is time dependent. K is number of parameters, QDev is Quasi-Deviance.  QAICc for the top model 
is 5172.94. 

Model 
Delta 
AQICc 

QAICc 
Weight 

Model 
Likelihood K QDev -2log(L) 

φ(T, maxT, DACS) 0.00 0.329 1.000 29 959.90 5216.81 
φ (maxT, DACS, prec) 0.69 0.233 0.708 29 960.59 5217.52 
φ (maxT, DACS)  0.69 0.233 0.707 28 962.62 5219.59 
φ (T, maxT, DACS, prec) 1.14 0.186 0.566 30 959.0 5215.90 
φ (T, maxT, prec) 6.56 0.012 0.038 29 966.45 5223.50 

 

 
Figure 5.1-8. Cold winters correlated to low western snowy plover survival. a) Annual DACS. b) Annual mean 
maximum daily temperatures. c) Annual survival of western snowy plover females (dashed lines) and males (solid 
lines), indicating estimate and 95% CI of estimate. Years of high cold snap scores (DACS) in blue 

From 1984-2016, first nests of the year at Monterey Bay were initiated in the 39 days 
between 21 February and 31 March (mean=15 March); last nests were initiated between 10 and 
22 (mean=15) July, a 13 day range. The resulting total period of nest initiations each year was 
108-151 days (mean=121 days). In those same years, breeding onset (the first date on which at 
least three nests are initiated within a three-day period) occurred within 101-135 days (mean 
=112 days).   
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Best performing models for both first nest initiation date and breeding onset date 
identified only temperature variables significantly affecting the start of the breeding season, 
although key time periods varied between response variables. The single-factor first nest models 
identified February, late March, and all-March as key periods in which mean temperatures 
appeared to affect the season start, with marginally significant terms for early and mid-March. 
Single factor breeding onset date models identified significant temperature effects for all-March, 
as well as mid- and late month, and a marginally significant effect in early March (Table 5.1-5). 
Global models for first nests also identified DACS and November-February mean temperatures 
as significant factors in one or more of the March models, but the global breeding onset models 
did not identify additional time periods or variables as significant (Table 5.1-6). Where higher 
DACS were associated with lower annual survival, they were also associated with earlier nesting 
season starts and a positive effect on fecundity (see next section). Although single-factor 
breeding onset models performed as well or slightly better than first nest models, first nest global 
models consistently performed better than corresponding breeding onset models (Table 5.1-5 and 
Table 5.1-6). Therefore, for SEED model parameter estimates, we used the model predictions for 
the date of first nest initiation rather than the breeding season onset. Because the three 10-11 day 
periods of March did not identify a consistent set of significant mean temperature variables, we 
opted to use the all-March model estimates (First nest, All- March in Table 5.1-6). 
  
Table 5.1-5. Results of single factor temperature models for the start of the breeding season, with adjusted R2, 
parameter estimates (Par Est) and standard errors (SE), parameter significance (Par Sig), for November-January 
(NJ), February (Fb), March (Mr), 1-10 March (M1), 11-21 March (M2), and 22-31 March (M3) mean temperatures 
(Temp), and November-February duration-amplified cold score (DACS) 

                     First Nest Response Breeding Onset Response 
Model           Adj R2  Par Est (SE)  P-value Adj R2   Par Est (SE)   P-value 
NJ Temp       0.02                      >0.1  -0.01          >0.1 
Fb Temp        0.09 -2.01 (0.99)    0.05 -0.02          >0.1 
Mr Temp       0.14 -2.13 (0.86)    <0.05 0.23 -2.19 (0.68)    <0.05 
M1 Temp      0.06                      0.09 0.07          0.07 
M2 Temp      0.22                      0.07 0.22 -1.55 (0.50)    <0.05 
M3 Temp      0.16 -2.35 (0.89)    0.05 0.19 -2.08 (0.72)    <0.05 
DACS           0.03                      >0.1   -0.03  >0.1 

  
Both male age and clutch initiation date for the first nest of the season affected the 

number of young males fledged. One-year old (first-time) breeding males fledged fewer chicks 
than older males and males that started nesting earlier in the season fledged more young than 
males that started later (Table 5.1-7). Becasue the effect of initiation date was similar for the two 
age classes, we selected an additive model over the model with an interaction term to 
parameterize the SEED model. 
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Table 5.1-6.  Results of global model variants using temperature and precipitation data from four March time 
periods with similar data from November-January (NJ) and February, and the November-February duration-
amplified cold score (DACS). Significant (p≤0.05) parameters listed under each of the model variants. 
 

 
First nest response Breeding onset 

Global model & parameters Adj R2   Par Est (SE)   P-value Adj R2   Par Est (SE)   Par Est (SE)   
All of March 0.33 

  
0.2 

  Temp. 
 

1.99 (0.99) 0.05 
 

-2.95 (0.90) <0.05 
DACs 

 
-0.12 (0.04) <0.05 

   March 1st-10th 0.2 
  

0.04 
  Temp. 

    
-1.67 (0.77) <0.05 

DACs 
 

-0.09 (0.04) <0.05 
   March 11th-21st 0.33 

  
0.17 

  Temp. 
    

-1.74 (0.72) <0.05 

Nov-Jan temp. 
 

-3.22 (1.60) 0.05 
   DACs 

 
-0.12 (0.04) <0.05 

   March 22nd-31st 0.34 
  

0.12 
  Temp. 

 
-2.53 (1.02) <0.05 

 
-2.69 (0.98) <0.05 

DACs 
 

-0.11 (0.04) <0.05 
    

Table 5.1-7. Model selection for the effects of male age (first-time breeder versus older breeder) and date of first 
clutch initiation on the total number of young fledged in a breeding season. Estimates shown with standard errors 
(SE). CID1 is the initiation date of the first nest of the season 

Model                       AIC   Coefficient    Estimate (SE) p-value 
Initiation date             5705 CID1 -0.006 (0.002) 0.01 
Male age                               5703 Age 0.26 (0.09) 0.004 
Initiation date * male age        5703 CID1 -0.001 (0.01) 0.9 

 Age 0.36 (0.47) 0.44 

 Interaction -0.003 (0.01) 0.76 
Initiation + male age               5702 CID1 -0.004 (0.002) 0.05 

 Age 0.22 (0.09) 0.02 

5.1.4 Red-legged frog (Rana aurora and R. draytonii) 
We found climate effects on every demographic rate in which we tested for them, as well 

as independent effects of canopy cover and both native and nonnative predators/competitors. 
Climate effects on red-legged frog demographic rates were complex. The same climate variable 
had positive effects on some demographic rates and negative effects on others, and the influence 
of many climate variables— and non-climate variables— varied from site to site.  
Demographic rates for SEED models: We found that the best performing model for the effects of 
climate on fecundity (eggs per mass) included a positive effect of total precipitation (mm) from 
October through March of the previous year, and an accelerating positive relationship with 
female SVL (Figure 5.1-9). The model with SVL outperformed models that included 
precipitation and site or precipitation and species (R. aurora vs. R. draytonii; Table 5.1-8).  
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Table 5.1-8. Model selection table for fecundity (eggs/mass) analyses. Explanatory variables included: total 
precipitation from the prior breeding season (precip.), a quadratic relationship with average female snout vent length 
(SVL) by site, site, and species (R. aurora vs. R. draytonii). 

Model AICc ∆ AICc Weight 
Precip. + SVL + SVL^2 3831.7 0 0.664 
Precip. + SVL + SVL^2 + species 3833.6 1.9 0.257 
Precip. + site 3837.2 5.5 0.042 
SVL + SVL^2 + species 3838.6 6.9 0.021 
Precip. + species 3839.7 8 0.012 
Site 3842.7 11 0.003 
SVL + SVL^2  3846.9 15.2 0.000 
Species 3863.6 31.9 0.000 
Precip. 3886.8 55.1 0.000 
Intercept  3887.8 56.1 0.000 

 
 

 

 

 

 

 

 

 

 

 

 

Figure 5.1-9. Relationship between fecundity and total precipitation during the previous breeding season after 
accounting for the relationship between eggs/mass and SVL (residuals of the relationship shown). Parameter 
estimates used in the SEED model can be found in Table 4.2-8 

Warmer temperatures reduced egg viability, with stronger effects of air temperature 
(particularly average maximum daily air temperature) than water temperature. The best 
performing model for explaining egg viability included maximum air temperature and site, 
although there was weak support for models with temperature or site alone (Table 5.1-9; Figure 
5.1-10). Response to temperature did not differ between species (no significant interaction 
between species and temperature; P > 0.64). There was a weak effect of species (P = 0.04) in a 
model that also included temperature (no interaction), however it performed worse than the 
model with temperature and SVL (∆ DIC = 2.9), suggesting that any apparent species differences 
in fecundity can be explained by differences in body size. Temperature also influenced egg 
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development rates, with each one °C increase in maximum daily water temperatures reducing the 
time from egg deposition to hatching by 2.8 days (p = <0.001, R2 = 0.77).  
  
 Table 5.1-9. Model selection table for analyses of the effects of temperature on egg viability. Parameter estimates 
for the top model that were used in the SEED models can be found in Table 4.2-8. 

Egg viability models DIC ∆ DIC Weight 
Site + max temperature 3273.34 0 0.66 
Site  3276.01 2.67 0.17 
Max temperature  3276.82 3.48 0.12 
Intercept (female as random factor) 3278.56 5.22 0.05 

 

 
Figure 5.1-10. Predicted relationships between the average daily maximum air temperature and egg viability across 
all sites from our best performing model. Lines are color coded by site. 

Daily survival rates of tadpoles decreased with mean air temperature. However, warmer 
mean air temperatures were also associated with increased development rates, generally reducing 
the time spent as a tadpole prior to metamorphosis. Tadpole development rates increased 
throughout the season, but warmer temperatures had a smaller effect later in the season. These 
effects meant that faster development through one tadpole stage sometimes resulted in slower 
development through later stages. Consequently, there was only a weak relationship between 
temperature and time as a tadpole (Figure 5.1-11).  
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Figure 5.1-11. Average length of time for tadpoles (after reaching 35 mm) to froglet plotted against the average 
daily mean temperature from the global climate model used to simulate stage progressions at three representative 
northern red-legged frog breeding sites. 

 Froglet survival was influenced by temperature both directly and indirectly. Froglet 
survival increased with average maximum daily temperature and decreased with average 
minimum daily temperature. Warmer temperatures during tadpole development also produced 
larger froglets and froglet survival was positively correlated with size. Higher temperatures 
increased adult survival, but the benefit of additional warming was smaller at warmer 
temperatures (Figure 5.1-12). The parameter estimates corresponding to the top ranked statistical 
models for froglet and adult survival are presented in Table 4.2-8. 

 
Figure 5.1-12. Projected survival of red-legged frog adults plotted against quarterly mean minimum temperature. 

 
Captive rearing experiment: Shorter hydroperiods reduced survival to metamorphosis and there 
appeared to be a tipping point where the three shortest hydroperiods had zero tadpoles make it 
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through metamorphosis (Figure 5.1-13a). The best performing model explaining survival in the 
only the two longest hydroperiod treatments included food availability (high food treatment 
having higher survival), however it performed essentially the same as the intercept only model 
(Table 5.1-10). We found no effect of hydroperiod on froglet size. We did however find 
interactive effects of bullfrogs and food availability on froglet size. When food availability was 
high both bullfrog treatments (signal and direct) produced froglets that were similar in size to 
those that came from control tanks. However, when food availability was low, the froglets that 
came from either of the bullfrog treatments were significantly smaller than those in control tanks 
(Figure 5.1-13b). Interestingly, there did not appear to be any differences between the two 
bullfrog treatments (signal or direct) in their effects on froglet size, suggesting that the effects 
were likely driven by behavioral changes (e.g. reduced foraging) rather than direct competition 
for resources. 
 
Table 5.1-10. Model selection table for the effects of hydroperiod length, food availability, and bullfrog treatment on 
froglet survival when tanks with zero survivorship were excluded. 

Model QAICc Δ QAICc Weight 
Food 28.4 0 0.387 
Intercept 28.9 0.46 0.306 
Bullfrog 31 2.58 0.106 
Hydro. 31 2.6 0.105 
Food + hydro. 32.2 3.8 0.058 
Food + Bullfrog 33.5 5.08 0.031 
Bullfrog + hydro. 36.5 8.12 0.007 
Food + bullfrog +hydro. 43.3 14.93 0 

 
 These results show that shortened hydroperiods could have drastic consequences if pools 
dry completely before tadpoles can metamorphose (Gordon 2020). This suggests that certain 
climate conditions, like severe drought, could lead to a complete or nearly complete loss of 
annual reproductive effort for some populations, and that populations that breed in fully 
ephemeral ponds are more at risk. The interactive effects of bullfrog presence and food 
availability suggest that the negative impacts of invasive species may be context dependent, 
leading to the possibility of management actions to facilitate coexistence.  
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Figure 5.1-13. a) The proportion of tadpoles that completed metamorphosis for each of the five hydroperiod 
treatments. The three shortest hydroperiod treatments had no tadpoles complete metamorphosis. b) Variation of 
snout-to-vent lengths from froglets from the two longest hydroperiod lengths grouped by bullfrog and food level 
treatments in captive experiment. The bold line, triangle, box, whisker, and dots represent the median, mean, 25% 
and 75% quantiles, 95% confidence interval, and outliers. 

We increased the air temperature in tanks with warming lids by just over 3 °C on average 
over the course of the experiment. In the warming and control tanks, longer hydroperiods 
increased survival through metamorphosis. The results held regardless of whether all 
hydroperiods were included or only those hydroperiods that had some froglets survive were 
included in the model selection process (Figure 5.1-14, Table 5.1-11). There was also some 
support for the intercept only model (Table 5.1-11). When we excluded the die-off tanks the best 
performing model was the intercept only model. We found no evidence that temperature 
influenced froglet survival under experimental conditions even when we included the die-off 
tanks on our models. However, the die-offs occurred in tanks that had the lowest water level at 
the time of the heat wave, leading to larger increases in water temperature and likely more UV 
exposure. If we had used water instead of air temperature in our models, we might have detected 
an effect of maximum temperature experienced on survival. 

 
 

 

 

 

 

Figure 5.1-14. Variation in survival of froglets 
from the control and warming lid tanks grouped 
by hydroperiod treatment. The bold line, 
triangle, box, whisker, and dots represent the 
median, mean, 25% and 75% quantiles, 95% 
confidence interval, and outliers.   
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Table 5.1-11. Model selection table for analyses of the effects of hydroperiod (Hydro), average mean daily 
temperature (temp), and food availability (food) on froglet survival in the warming and control tanks. Model 
rankings were the same regardless of which temperature measure was included. 

Model AICc ∆ AICc Weight 

Hydro 11.9 0 0.44 
Intercept 13.4 1.5 0.206 
Hydro + food 14.6 2.7 0.116 
Hydro + temp 15.6 3.7 0.07 
Food 15.7 3.8 0.067 
Temp 15.8 3.9 0.064 
Food + temp 18.3 6.4 0.018 
Hydro + food + temp 19.3 7.4 0.011 
Hydro*temp 20.3 8.4 0.007 
Hydro*temp + Food 25.6 13.7 0.001 
  
         The best performing model for explaining differences in froglet SVL from the control 
and warming tanks included only a quadratic relationship with development time, such that the 
earliest and latest frogs to metamorphose were the largest, while those with intermediate 
development times were the smallest (Figure 5.1-15, Table 5.1-12). There was also weak support 
for models that include the quadratic relationship with development time as well as either GDD, 
food availability, or hydroperiod, however none of the variables other than development time 
were significant. The two GDD measures using the two different temperature thresholds were 
highly correlated (r = 0.99) and switching between them did not change the identity of the best 
performing model. 
         We found that froglets developed more quickly with shorter hydroperiods, higher food 
availability, and higher temperatures, although the effects of food and GDD were marginal 
(hydroperiod: β = 0.52, P = 0.001; low food: β = 3.8, P = 0.07; GDD: β = -0.0095, P = 0.11). 

 
 
 
 
 
 

 

 

 

 

Figure 5.1-15. Relationship 
between development time and 
size at metamorphosis for 
froglets reared in warming and 
control tanks.  
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 Table 5.1-12. Model selection table for analyses of the effects of development time (Days + days^2), hydroperiod 
(Hydro), growing degree days (GDD), and food availability (food) on froglet snout vent length (SVL) in the 
warming and control tank 

Model AIC ∆ AIC Weight 

Days + days^2 1221.34 0 0.3 
Days + days^2 + GDD 1222.57 1.23 0.16 
Days + days^2 + food 1222.74 1.4 0.15 
Days + days^2 + hydro 1223.17 1.84 0.12 
Days + days^2 + GDD + food 1223.63 2.29 0.1 
Days + days^2 + GDD + hydro 1224.31 2.97 0.07 
Days + days^2 + food + hydro 1224.61 3.27 0.06 
Days + days^2 + GDD+ food + hydro 1225.4 4.06 0.04 
Intercept (tank as random) 1270.54 49.2 0 
Food 1271.2 49.86 0 
Hydro 1271.96 50.62 0 
GDD 1272.47 51.13 0 
Food + hydro 1272.61 51.27 0 
GDD + food 1273.2 51.86 0 
GDD + hydro 1273.86 52.52 0 
GDD + food + hydro 1274.6 53.26 0 
 
Effects of canopy cover in the field: The best performing model for egg viability included an 
interaction between site and canopy cover. At our Coastal NRLF 2 site egg viability was lower in 
the closed canopy treatment (t-value = 2.5, P = 0.019). None of the other sites showed any 
effects of canopy cover on egg viability (P>0.35 for the other three sites). 
 The best performing model for tadpole daily survival also included an interaction 
between site and canopy treatment (Appendix 8.12). Daily tadpole survival rate in the closed 
canopy treatment was higher than in the open treatment at two sites but did not differ between 
canopy treatments at the other three sites (Figure 5.1-16). We found no effect of temperature on 
tadpole daily survival (Appendix 8.12). 
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Figure 5.1-16. Canopy cover effect on tadpole survival. Values and error bars are the log odds ratio of estimated 
tadpole daily survival in the closed mesocosms compared to open mesocosms and associated lower and upper 
confidence limits. Estimates are from the top performing tadpole survival model. 

Our two top performing models explaining tadpole stage duration, a site only effect 
model and a site plus treatment (closed vs. open canopy) additive effects model, had very similar 
AIC scores (ΔAIC = 0.33). However, the site and treatment additive model showed little 
evidence for a treatment effect (z = -1.291, P = 0.197). We therefore used the mean tadpole stage 
duration of all mesocosms producing froglets within each site in our population growth models.  

Despite the elasticity analysis indicating that population growth rates are 2.6 times more 
sensitive to changes in adult survival than early-stage demographic rates, we found that canopy 
cover effects on early life stage demographic rates were large enough at three sites to impact 
population growth rates. The impact of canopy cover on population growth rates mediated 
through tadpole survival was greater than the impact mediated through egg viability. At Coastal 
NRLF 2, presence of canopy cover was associated with a 0.22 point reduction in egg viability, 
leading to 6% decrease in projected population growth rate (λ = 1.11 and 1.04 in the open and 
closed treatments respectively). At Coastal NRLF 3 and Inland NRLF 3, a 0.07-0.09 point 
increase in daily survival rates corresponded to a 40-42% increase in projected population 
growth rates (λ of 0.69 in the open treatments for both sites; λ = 0.97 and 0.98 in the shaded 
treatments at Coastal NRLF 3 and Inland NRLF 3 respectively).  

This works shows that altering canopy cover can be a useful management tool for pool 
breeding amphibians and can have meaningful population level impacts. However, we caution 
that canopy alteration is not a one-size-fits-all approach. Our work demonstrates that the 
influence of canopy cover on early stage demographic rates can vary not only among species, as 
demonstrated in previous studies, but also across sites within species and can have contrasting 
effects on different life stages.  

 
 

84 



5.1.5 Alaskan douglasia (Douglasia alaskana) 
We found climate effects on every demographic rate in which we tested for them, other 

than variance in size after one year of growth. Most vital rates were dependent on both 
temperature and precipitation, with both aspects of climate having positive effects on some 
demographic rates and negative effects on others. 
Demographic rates for SEED models: Coldest month temperature and/or precipitation affected 
most demographic rates (probability of survival, probability of fruiting, and number of fruits 
given fruiting), and annual mean temperatures and precipitation affected mean size after one year 
of growth (Table 5.1-13). We found positive effects of temperature on survival and growth, and 
negative effects of temperature on reproductive demographic rates. Precipitation had both 
positive and negative effects on different demographic rates. Higher winter precipitation was 
associated with lower fruit production, while higher annual precipitation was associated with 
higher survivorship and growth. Interactions between climate variables and size, as well as 
effects of prior years’ climate were also present, leading to complex effects of some climate 
variables on some demographic rates (Figure 5.1-17). For example, for probability of survival, 
the positive interaction between size in the previous time step and the coldest month’s 
temperatures in the year prior suggests that larger plants are more able to capitalize on the 
positive impact of higher temperatures than are smaller plants (Table 5.1-13). Higher 
temperatures reduced the probability of fruiting, which then increased survival; these results 
suggest that it is quite advantageous for larger plants to forgo reproduction in response to high 
temperatures, but less advantageous for smaller plants. 
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Table 5.1-13. Coefficient estimates (first row) and standard error (second row) of coefficient estimates for each 
demographic rate used in this study. Coefficients significant at the 0.05 level are shown in bold; coefficients in 
italics are marginally significant (P< 0.06). We also show estimates of seedlings per fruit (recruitment) for each 
population. 
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p(survival) 
-1.870 -0.463     -0.007 0.076 0.005 0.036 0.003   
0.511 0.105     0.003 0.024 0.001 0.015 0.001   

mean size 1.188 0.727             0.000 0.293 
0.204 0.020             0.000 0.023 

variance in size -1.884 
0.102 

-0.118                 
0.049                 

p(fruiting) -2.629 2.067 -0.017 -0.251             
0.404 0.227 0.004 0.066             

# of fruits given fruiting 0.519 -0.218   -0.208            
0.166 0.072   0.023            

 Population C E1 E2 N S      
Estimated 
seedlings per fruit 0.193 0.333 0.160 0.097 0.196      
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Figure 5.1-17. Demographic rate functions for probability of survival (A), mean size after one year of growth (B), 
probability of fruiting (C), and number of fruits given fruiting (D) for a plant of median size. For A, we show how 
the impact of precipitation in the coldest month changes with coldest month conditions in the year prior. For 
example, if the coldest month in the year prior was warm and dry, then the probability of survival over a given year 
depends more strongly on precipitation in the coldest month of the current year. For B and C, we show how the 
impact of temperature varies with the associated precipitation during the same interval.  

5.1.6 Venus flytrap (Dionaea muscipula) 
Some aspect of both climate and fire frequency affected every demographic rate in which 

we tested for a climate effect. Both climate and fire had complex effects on Venus flytrap 
demographic rates. In many cases, relationships were nonlinear. In others, the same climate 
variable had opposing effects on different demographic rates. The magnitude of many observed 
climate effects on demographic rates both depended on time since fire and varied from site to 
site. 
Demographic rates for SEED models: Both local and regional climate variables were present in 
the best-supported models, with almost all demographic rates dependent on temperature and/or 
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precipitation, rather than integrated metrics of water stress (with the exception of probability of 
fruiting, which depended on water balance) (Table 5.1-14). Both annual climate and monthly 
extremes were present in the best performing models, with annual, as well as driest, coldest, 
wettest, and warmest month climate variables all affecting one or more demographic rates. 
Further, most demographic rates had multiple climate variables present in the top ranked model, 
and many had quadratic terms or interactions between temperature and precipitation (Table 
5.1-14), leading to complex relationships between climate variables and performance (Figure 
5.1-18).  
 
Table 5.1-14. Climate variables present in the best performing models for each demographic rate. We show a “1” if 
a linear term is present, a “2” if a quadratic term is present, “3” if a categorical term is present, and an “x” if an 
interaction with this term is present (note that we did not find any interactions between annual precipitation2 and 
temperature2). A “+” or a “-“ suffix indicates the sign of the effect. “NA” indicates that we did not test for the effect. 
For climate variables, plain text indicates a local climate variable and italics indicate a regional variable. Note that 
we were not able to look for an effect of climate on recruitment. 
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p(survival) 1+, 
2-       

1+, 
2-, 
x+ 

1-, 
x+   1- 1-         

Mean plant 
size after one 
year of growth 

1+ 1+     1-     1-, 
x- 

1-, 
x-   1-, 

2+ 
1-, 
2+   

Variance in 
plant size after 
one year of 
growth 

1+ 1- 1+     1-   1+ 1-   1+     

p(fruiting) 1-     1-, 
2+     1+     1+, 

2-     1+, 
2- 

Number of 
fruits 

1+, 
2-       1- 1+     1-   1+     

Recruitment 3- NA NA NA NA NA NA NA NA NA NA NA NA 

 
All demographic rates included terms for years since fire, and some demographic rates 

also included nonlinear effects of years since fire (Table 5.1-14, Figure 5.1-18). As the number 
of years since a fire increased, both mean growth and variance in growth were higher, meaning 
that on average plants grew larger, but there was more heterogeneity in plant growth (perhaps 
caused by increasing competition, Weiner and Thomas 1986, though see Einum et al. 2012). 
Similarly, survival and fruit number initially increased with years since fire, but longer intervals 
between fires reduced performance, leading to an optimum around 6-7 years (fruit number; 
Figure 5.1-18) or 5-11 years (survival). Finally, probability of fruiting was highest immediately 
after a fire, as was recruitment.    
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Figure 5.1-18. Examples of effects of climate and years since fire (A, B, C), and of experimental treatments (D) on 
demographic rates for a plant of mean size. Solid lines show the mean predicted demographic rates while holding all 
other climate variables or years since fire constant at the mean values. Dashed lines and error bars show 95% 
confidence intervals calculated across 500 bootstrap replicates. Panel A illustrates an interaction between 
precipitation and temperature in the warmest month; namely, we show how the effect of temperature in the warmest 
month differs with precipitation in that month (we show predictions for the 50th and 10th quantiles of driest month 
precipitation values from 2015-2018). B and C show demographic rate functions with intermediate optima (with the 
optima shown with grey vertical lines), and C illustrates how these optima differ with temperature in warmest month 
(we show predictions for the 10th and 90th quantiles of warmest-month temperature). D shows effects of 
experimental manipulations of fire effects at two populations, and effects of an unanticipated fire at our Coastal 
population. Note that fire did not occur at the inland population. 

Experimental tests of fire effects: Our experimental work showed impacts of all three key fire 
effects (neighbor removal, ash addition, and tissue damage) on Venus flytrap demographic rates 
and population growth rate. Experimental conditions affected survival, mean plant size after one 
year of growth, and probability of fruiting (Figure 5.1-18D, Appendix 8.4). Largely consistent 
with our observational work, all three manipulated conditions (neighbor removal, neighbor 
removal plus ash addition, and fire) reduced survival and growth relative to the control, but 
increased the probability of fruiting (although the impact of condition differed with population 
for survival and probability of fruiting; Figure 5.1-18D, Appendix 8.4). For example, the effect 
of the neighbor removal on probability of fruiting was minimal at the inland population, but 
stronger at the coastal population, but the opposite was true for neighbor removal + ash addition 
(Figure 5.1-18D). Our results suggest minimal negative impacts of tissue damage at the coastal 
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site. At our inland population, adding ash and removing neighbors significantly increased 
population growth rate, and removing neighbors resulted in only moderate increases in 
population growth rate (Figure 5.1-19); these effects are likely driven by reproduction, the only 
demographic rate consistent with this pattern (Appendix 8.4). Neither removing neighbors nor 
adding ash and removing neighbors had significant effects on population growth rate at our 
coastal population. However, we did see a significant positive effect of a fire (Figure 5.1-19), 
indicating that the positive impacts of ash addition and neighbor removal (at least for an actual 
fire, which may not have been fully mimicked by our treatments) were substantial enough to 
compensate for any negative impact of tissue damage. 
 

 
Figure 5.1-19. The effect on Venus flytrap population growth rate of experimental neighbor removal, neighbor 
removal plus ash addition, and of an accidental fire at the coastal population (which caused neighbor removal, ash 
addition, and tissue damage). We show the difference in population growth rate between the specified condition and 
an unmanipulated, unburned control for two separate populations, one inland and one coastal. Error bars indicate 
95% confidence intervals, where confidence intervals incorporate parameter uncertainty). A value of zero, indicated 
by the grey line, indicates no effect of a given condition on population growth. 

5.1.7 Red-cockaded woodpecker (Dryobates borealis) 
Red-cockaded woodpecker demographic rates were influenced by both climate variables 

and group social status in complex ways. Many demographic rates influenced by climate were 
sensitive to multiple climate variables. As we observed in other species, some climate variables 
had positive effects on some demographic rates while having negative effects on others.  
Demographic rates for SEED models: We found support for including non-climate variables as 
predictors of demographic rates, with the majority of demographic rates dependent on group 
characteristics, age, and social status. Reproductive performance usually increased with 
breeders’ age, but we found evidence for reproductive senescence: reproductive demographic 
rates increased and then decreased with both male and female adult age (indicated by negative 
quadratic terms for paternal and maternal age, Appendix 8.13). Unsurprisingly, more helpers at a 
given territory improved many reproductive rates (Appendix 8.13). For both adults and 
fledglings, males had higher survival rates than females. Breeders had the highest survival rates, 
followed by helpers, then floaters. Similar to reproductive rates, adult survival increased with 
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number of helpers, and older individuals had lower survival rates (see the negative quadratic 
term for age, Appendix 8.13).   

Climate also strongly influenced demographic rates: both survival rates depended on one 
or more climate signals, and three of nine reproductive rates were driven by one or more climate 
signals (all demographic rates controlled by climate signals are shown in Figure 5.1-20). All 
climate variables besides minimum temperature affected one or more demographic rates, and 
many different climate windows affected demographic rates. In particular, both short-lag and 
long-lag climate windows affected reproductive rates, and, similarly, survival rates were 
dependent on conditions throughout the year.   

Survival rates were affected by mean and maximum temperatures, precipitation, and 
windspeed. The effects of each of these depended on time of year (Figure 5.1-20). Specifically, 
higher September-March precipitation decreased adult survival (with independent negative 
effects of October precipitation; Figure 5.1-20). Higher mean temperature in an overlapping time 
period (November- December) also increased adult survival. The negative effect of wet 
conditions in the fall, winter, and spring was reduced by higher temperatures, as indicated by a 
positive mean temperature x precipitation interaction. Higher summer windspeed decreased adult 
survival, and this negative effect was exacerbated at higher late-summer-to-spring precipitation 
levels, as indicated by a negative windspeed x precipitation interaction. Post-fledging survival 
was dependent on quite different climate signals; higher August-October maximum temperature 
decreased post-fledging survival, but higher March-April windspeed increased post-fledging 
survival (Figure 5.1-20).  

Reproductive demographic rates were affected by maximum temperature, precipitation, 
and windspeed, with both short-lag climate effects, and, less commonly, long-lag effects (Figure 
5.1-20). Specifically, higher February-April maximum temperature increased the probability of 
initiating a first nest, whereas precipitation had disparate effects: higher February-April 
precipitation decreased this probability, and higher January precipitation increased this 
probability. Higher December-March windspeed decreased the probability of initiating a first 
nest, but this negative effect was reduced when temperatures were high (as indicated by the 
positive temperature x windspeed interaction). Higher November-April windspeed reduced 
clutch size. Finally, we found one long-lag climate signal for a reproductive demographic rate: 
probability of double brooding increased with precipitation during the September through 
November period before the breeding season in question (Figure 5.1-20).  
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Figure 5.1-20. Coefficients of climate signals in the best performing mixed model for each climate driven 
demographic rate. Bars indicate standard error (SE) of coefficients. Months include all days in that month. The wide 
SE in panel E is likely due to relatively few instances of this demographic rate (second and later nests are relatively 
rare compared to first nests). 

5.2 Projecting future population growth rates 
In this section, we present the results of SEED models for each of our seven study species. 

For species with a life history readily described by a few demographic rates, we first present the 
projected change over the next 20-40 years in the climate variables influencing those 
demographic rates, followed by the expected change in the demographic rates associated with 
projected changes in their climate drivers. For all seven species we present the population growth 
rates over the same time period. 

5.2.1 Hydaspe Fritillary Butterfly (Speyeria hydaspe) 
Both temperature and precipitation are projected to increase at all hydaspe fritillary 

butterfly study locations between the early 21st century and 2050 (Figure 5.2-1). The median 
projected increase in temperatures fell within the range of 1.5 ⁰C to 1.8 ⁰C. Late spring/summer 
daily maximum temperatures are projected to rise the most at the Cascades site, and least at the 
Coast Range sites. Summer daily minimum temperatures are projected to increase the most at the 
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two upper elevation Sierra Nevada sites. Median projections for annual precipitation gains are as 
little as 19.8 mm at the lowest Sierra Nevada site to as much as 64 mm at the Cascades site.  

 

 
Figure 5.2-1. Projected changes in climate variables impacting hydaspe fritillary butterflies at six sites. Values 
represent the difference in the median projected climate between 2041-2050 and 2006-2016 from 20 downscaled 
GCM data sets. 

These projected changes would have mixed effects on hydaspe fritillary butterfly 
demographic rates. Across demographic rates within each site, projected changes in climate 
would lead to decreased egg hatch rates but increased spring caterpillar survival and adult 
longevity (Figure 5.2-2). There were no qualitative differences in projected egg hatch rates or 
population growth rates between SEED models assuming a separate site effect or not. We report 
results with the site effects on hatch rates included. The magnitude of change in these 
demographic rates is expected to vary across sites for a variety of reasons. Much of the 
difference in how larval spring survival responds to warming climate is driven by baseline 
survival rates. Because survival exhibits a logistic-linear relationship to temperature, and because 
logistic curves are relatively flat near the boundaries, there is little change with temperature at 
the lower Sierra Nevada site, where measured present-day larval survival was near zero. Site to 
site differences in how adult survival is projected to change can be attributed to differences in 
projected increases in summer temperatures. Both differences in egg predation rates and in how 
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much summer temperatures are projected to rise cause differences among sites in how much egg 
hatch rates are projected to decrease. 

 
Figure 5.2-2. Projected changes in hydaspe fritillary butterfly demographic rates at six sites. Values represent the 
difference in the demographic rates between 2041-2050 and 2006-2016 given the mean climate data from 20 
downscaled GCM data sets at each site during each period. Two demographic rates, eggs per day and winter larval 
survival, are not expected to be affected by projected changes in climate conditions. 

Two of our study sites, the Cascades and low-elevation Sierra Nevada site, project to be 
sink populations under current climate conditions. The remaining sites project to be source 
populations potentially growing at least 50% per year in the absence of density dependence. The 
difference between source and sink populations was not climate related. One sink population 
inhabited the warmest, driest site, while the other inhabited the coolest site, which received an 
intermediate amount of rainfall. In contrast, the highest projected population growth potential 
under current climate conditions occurred at the two higher elevation Sierra Nevada sites, which 
were warmer and drier than the two Coast Range source populations.  
SEED model results: Our SEED models predicted that projected trends of warmer temperatures 
and increased annual precipitation at all sites lead to slight increases in hydaspe fritillary 
butterfly population growth rates across the board (Figure 5.2-3). There was a positive 
correlation between initial population growth rates and projected increases, with little change 
expected at the low elevation Sierra Nevada site and the largest gains expected at the two higher 
elevation Sierra Nevada sites. This widespread species is not likely to require conservation in the 
coming decades as a result of climate change.  
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Figure 5.2-3. SEED model projections for annual hydaspe fritillary butterfly population growth rates at six sites 
from 2007-2050. Dark solid lines show the median projected discrete annual growth rate (λ) from SEED model runs 
linked to projected climate data from 20 downscaled global climate models. Dashed light lines show the 5th (bottom) 
and 95th (top) percentile of projected annual growth rates. 

5.2.2 Appalachian brown Butterfly (Satyrodes appalachia) 
Summer temperatures at Fort Bragg, NC, are projected to rise about 1.4–1.8 ºC by mid-

century. This warming would reduce the values of demographic rates of all life stages, with each 
demographic rate being most sensitive during different times of the year (Figure 5.2-4). 
Fecundity will be most impacted during the first generation, egg hatch rates during the second 
generation, and larval survival during the third generation of the year. 
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Figure 5.2-4. Projected changes in Appalachian brown butterfly demographic rates. Values represent the difference 
in the demographic rates between 2051-2060 and 2016-2025 given the mean climate data from 20 downscaled GCM 
data sets at each site during each period. 

SEED model results: The median global climate model projects that annual growth rate for 
Appalachian brown butterflies will remain under one (shrinking) during the entire period, while 
the shift from growing to shrinking is projected to occur by the 2050’s at the 95th percentile 
across GCMs  (Figure 5.2-5). 
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Figure 5.2-5. Projected discrete annual population growth rate (λ)  for Appalachian brown butterflies over the years 
2016-2100. The solid line represents the median and the dashed lines represent the 5th to 95th percentile range from 
the output of 20 GCMs. 

Evaluating the mitigation potential of additional generations: Increasing the number of 
generations per year from two to three significantly increased projected growth rates under 
present day climate conditions (Figure 5.2-6). Fort Bragg would be a clear population sink if 
Appalachian brown butterflies had only two generations per year but would increase in size by 
almost 50% per year with three generations per year. However, the additional generation does 
not provide much of a buffer to climate change, with population growth rates dipping below one 
well before 2030 even if all larvae in the second generation contribute to the third.  
 

 
Figure 5.2-6. Projected discrete annual population growth rate (λ) for Appalachian brown butterfly over the years 
2016-2100 assuming all caterpillars from second generations undergo diapause (left panel) or direct development 
(right panel). Solid line shows median projected growth rate and grey shows the range between the 5th and 95th 
percentile from the output of 20 GCMs. 
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Projected changes in demographic rates in Michigan and South Carolina: Projected warming 
during egg and larval development is expected to be greater in Michigan than in South Carolina 
(Figure 5.2-7a and b). However, projected temperatures in Michigan remain cooler than in South 
Carolina over the 21st century, matching predictions in the literature (Hansen et al. 2006). Using 
the projected temperature data at each site and the relationships we found between temperature 
and egg and larval survival, we predict that both egg and larval survival will decrease under 
future climate conditions (Figure 5.2-7c and d). Both egg and larval survival are expected to be 
higher in the Michigan compared to South Carolina population under future climates. Sites 
differences are greatest for larval survival, particularly mid-century when projected temperature 
differences between Michigan and South Carolina span the steepest part of the larval survival 
curve (Figure 5.2-7b). Notably, larval survival in the South Carolina population approaches zero 
by the end of the century, while it drops to just under 25% in the Michigan population. This 
suggests that populations at the southern end of the range are more likely to extirpated under 
future climate conditions than populations near the northern range boundary.  
 

 
Figure 5.2-7. Projected temperatures for eggs (a) and larvae (b) with projected demographic rates respectively (c, d). 
Solid lines represent the median and shading represents the 5-95% range from 20 GCMs. Michigan projected egg 
and larval survival rates are truncated because temperatures ranges occurring before 2058 were not tested in our 
experiments. In Michigan, our greenhouse temperatures were higher than those recorded in the field during 2018. 
We only projected demographic rates over temperature ranges that matched our experimental greenhouse 
temperatures. For the egg survival rates, this began in the 2040s, and for the larval survival rates this began in the 
2050s (c and d). 

Warming temperatures are likely to make southern populations of this species more 
conservation reliant over the coming decades. Northern populations may be expected to be 
observed during more of the summer as warmer temperatures increase the number of flight 
periods (generations) each year. However, based on trends seen in egg hatch rate and larval 
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survival, continued warming is likely to cause populations as far north as Michigan to become 
conservation reliant by the end of the century. This might argue that it makes the most sense to 
focus conservation efforts on more northern populations that have a greater likelihood of 
persisting under future climate conditions. Because our results suggest that Appalachian brown 
adults are unaffected by temperature, one conservation approach would be to rear early life 
stages under controlled climate conditions and release adults to bolster populations. 

5.2.3 Western snowy plover (Charadrius nivosus nivosus) 
Winter and spring temperatures are expected to warm along the entire western snowy 

plover coastal range (Figure 5.2-8a). As a consequence, coastal western snowy plover wintering 
sites that currently experience periodic cold snaps are projected to experience fewer, less severe 
cold snaps in the coming decades (Figure 5.2-8c). While there was not a spatial pattern in overall 
winter warming trends (Figure 5.2-8a), there was generally a larger reduction in DACS scores in 
more northerly sites. 

 
Figure 5.2-8. Projected changes between 2010-2020 and 2051-2060 in climate variables influencing western snowy 
plover demographic rates. Climate variables include average daily maximum and minimum winter temperatures and 
average daily mean temperatures during March (a), and duration-amplified cold scores (DACS) (b). Sites are listed 
in order from south to north (right to left). 

Adult survival is projected to increase at all sites in response to warmer winters (Figure 
5.2-9). The projected increase is typically greater in more northerly populations, particularly 
north of Point Sur, where extended cold snaps also contribute to adult mortality. The projected 
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impact of climate change on fecundity was much more variable across sites (Figure 5.2-9b). In 
the absence of dispersal, there was a general pattern of diminishing benefits of warmer weather 
moving northward from Batiquitos Lagoon, near San Diego, CA to Point Reyes and increasingly 
negative impacts moving northward from the mouth of Eel River. However, including the effects 
of dispersal, which potentially alters local age structures, lead to a more complex spatial pattern 
of positive and negative changes in fecundity associated with changing climate conditions 
(Figure 5.2-9b). 

 
Figure 5.2-9. Projected changes in western snowy plover demographic rates at 24 sites considered in isolation (a) or 
accounting for dispersal (b). Values represent the difference in the demographic rates between 2051-2060 and 2010-
2020 given the mean climate data from 20 downscaled GCM data sets at each site during each period. 
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All breeding grounds were projected by our SEED models to support increasing western 
snowy plover populations under current climate conditions (Figure 5.2-10). It is important to 
note that all non-climate components of demographic rate functions were parameterized for 
Monterey Bay, which has been characterized by a robust predator control program for the vast 
majority of the study period. Predator control, at varying levels of effort and success, currently 
occurs at most major nesting areas from Monterey Bay south and in Oregon, but not in most 
locations with smaller populations (Eberhart-Phillips et al. 2015). Consequently, the wide 
variation among sites in predation pressure on eggs, juveniles, and adult western snowy plovers, 
and in both predator management effort and success, is not captured in our SEED models. Since 
these factors are widely recognized as important drivers of fecundity for this species, they are 
likely to have a strong influence on population growth rates.  
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Figure 5.2-10. SEED model projections for annual western snowy plover discrete population growth rates (λ) at four 
sites from 2010-2060 considered in isolation (left) or accounting for dispersal (right). Dark solid lines show the 
median projected annual growth rate from SEED model runs linked to projected climate data from 20 downscaled 
global climate models. Dashed light lines show the 5th (bottom) and 95th (top) percentile of projected annual growth 
rates. The populations represent the northernmost known breeding site (Midway Beach), our study site (Monterey 
Bay), and breeding sites on Department of Defense lands (Navy Base Coronado is represented by the Tijuana 
Estuary). 

Population growth rates were projected to remain stable or increase over the coming 
decades as warmer weather and reductions in the frequency and severity of winter cold snaps 
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resulted in increased adult survival. There were generally larger gains for more northerly 
populations, especially for populations north of Point Reyes compared to populations south of 
Monterey Bay (Moss Landing). The positive effects of warmer winters on western snowy plover 
population growth rates were amplified by dispersal. Projected average annual increases in 
population growth rates were always greater when SEED models included both migration and 
dispersal than when they included only migration. For connected northerly populations dispersal 
magnified the effect of climate change on western snowy plover populations by up to 450% 
(Figure 5.2-11).  

 

 
Figure 5.2-11. Projected changes between 2015-2024 and 2051-2060 in discrete annual population growth rates (λ). 
Bars show the difference in the 10 year average annual growth rate at each site projected from 20 runs of the western 
snowy plover SEED model, with each run linked to a different global climate model. Light blue bars show projected 
change when dispersal is not included, and dark blue bars show change with dispersal included in the model. 

Warming temperatures along the west coast of the United States will likely make snowy 
plovers less conservation reliant in the coming decades, particularly at the northern end of their 
range. However, this conclusion assumes that sea level rise associated with rising temperatures at 
a global scale does not significantly reduce habitat. Habitat loss due to sea level rise may need to 
be offset by habitat restoration or improvements. Maintaining high connectivity among northern 
populations will help mitigate some loss of breeding habitat. Continued prioritization of reducing 
mortality due to predators associated with human presence along coastal areas is recommended. 

5.2.4 Red-legged frog (Rana aurora and R. draytonii) 
Temperatures at all of our study sites are projected to increase over the next several 

decades (Figure 5.2-12). The three coastal sites occupied by northern red-legged frogs are 
projected to experience the smallest increases in temperatures, while the three sites occupied by 
California red-legged frogs are projected to experience the largest temperature increases. 
Precipitation during the breeding and tadpole seasons (October-June) is projected to increase at 
all of our study sites. In contrast to temperatures, the three California red-legged frog sites are 
expected to experience the smallest increase in precipitation (Figure 5.2-12). Summer 
precipitation is projected to change very little at our study sites over the next few decades (Figure 
5.2-12).   
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Figure 5.2-12. Projected change in climate drivers of red-legged frog demographic rates. Bars show the difference in 
the average projected values between 2010-2020 and 2040-2050 from 20 downscaled global climate models for the 
climate variables indicated on the x-axis. Each bar corresponds to a red-legged frog breeding site included in the 
study. Left to right position of each site corresponds to its north to south location. Blue bars are northern red-legged 
frog sites, purple bars are hybrid sites, and red bars are California red-legged frog sites. 

These projected changes would have mixed effects on red-legged frog demographic rates 
(Figure 5.2-13). Higher fall through spring precipitation is expected to increase fecundity. 
However, warmer winter and spring temperatures are expected to decrease egg viability and 
tadpole survival. There is little expected change in froglet survival, but relatively large expected 
increases in adult survival at most of our study sites. The two coastal California red-legged frog 
sites were projected to experience the smallest increases in adult survival and fecundity, while 
experiencing relatively large decreases in tadpole survival and, at one of the two sites, egg 
viability.  
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Figure 5.2-13. Projected changes in red-legged frog demographic rates between 2010-2020 and 2040-2050. Bars 
show the change associated in the average value for each demographic rate assuming the average projected climate 
conditions during each period from 20 global climate models. Each bar corresponds to a red-legged frog breeding 
site included in the study. Left to right position of each site corresponds to its north to south location. Blue bars are 
northern red-legged frog sites, purple bars are hybrid sites, and red bars are California red-legged frog sites 

Projected population trajectories were quite different between coastal and inland sites, but not 
between species (Figure 5.2-14). Coastal sites were projected to be source populations under 
current climate conditions. Population growth rates at these sites were projected to change very 
little or have a slightly negative trend in projected population growth rates associated with 
warming future climates. In contrast, inland sites projected to be sink populations under current 
conditions with population growth rates increasing relatively sharply with future warming. A 
surprising result from our SEED model runs was that our inland populations of both species were 
projected to have sharply declining populations under current climate conditions. This result was 
not consistent with our observations of robust populations in at least two of those sites. We 
considered three possible reasons for this discrepancy. First, the climate-demographic rate 
relationship was mischaracterized. We checked this by comparing annual survival estimates 
predicted by the top model to annual survival estimates predicted by a model assuming quarterly 
survival varied independently at each site and was unrelated to climate. Because several quarter 
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X site combinations were not sampled, the latter model was overparameterized and associated 
estimates were either imprecise (i.e., had very large confidence intervals) or invalid (i.e., either 
had no associated error or were equal to 0 or 1). We expected that if our top model did a good 
job of characterizing the influence of climate on adult survival, within each site years with cooler 
winters would have lower survival than years with warmer winters, which is what we found. 
Second, we considered that there might be local adaptation to cold winters at inland sites. If this 
were the case, we would expect a model including different relationships between temperature 
and survival at coastal compared to inland sites (i.e., a region X temperature interaction). We 
redid the analysis including these models, and found that the data were still best described by a 
model including only temperature.  
Finally, we considered that the "current climate conditions" from climate projection models did 
not reflect realized conditions. In particular, we had reason to suspect warmer temperatures in the 
years just prior to our study associated with a four-year drought that hit the western United States 
(Crockett et al. 2018) but not predicted by the global climate projection models we used in our 
SEED model. We suspected this might be the case because global projection models are 
designed to show climate patterns and not forecast specific weather events, like the 2011-2015 
drought. We checked this by comparing the adult survival estimates predicted for the observed 
and projected climate conditions at the two inland populations with the largest red-legged frog 
populations. In both cases, estimated adult survival corresponding to observed temperatures were 
significantly higher than projected adult survival corresponding to projected temperatures. This 
finding is consistent with warmer than projected winter temperatures leading to higher than 
projected population growth rates in recent years at inland breeding sites. It also highlights that, 
like global climate model projections, our SEED model projections are meant to elucidate 
general patterns of how frog populations will respond to climate change; they are not predictions 
about the future trajectories of specific populations.  

 
 

106 



 
Figure 5.2-14. SEED model projections for annual red-legged population growth rates at four sites from 2010-2050. 
Dark solid lines show the median projected discrete annual growth rate (λ) from SEED model runs linked to 
projected climate data from 20 downscaled global climate models. Dashed light lines show the 5th (bottom) and 95th 
(top) percentile of projected annual growth rates. The four sites were chosen to be representative of the patterns 
observed across inland vs. coastal sites for the two species. 

Southern coastal populations of California red-legged frogs are likely to become more 
conservation reliant in the coming decades, while populations in the Sierra Nevada foothills and 
northern red-legged frogs are not. There are a number of management actions, including bullfrog 
removal, increasing native emergent vegetation, and manipulating breeding site canopy cover, 
that are effective tools for conserving these species. 

5.2.5 Alaskan douglasia (Douglasia alaskana) 
For the Alaskan douglasia populations studied, we generally saw population growth rates 

that are below unity, indicating that these populations will decline in size (Figure 5.2-15). 
Interestingly, we saw somewhat different trends over time at our southern v. northern 
populations. Namely, annual population growth rate was almost always below one in our 
northern population, with no trend in population growth rate over time at this population. These 
predictions suggest that this northern population will almost certainly be extirpated in the future. 
By contrast, at our southern population, population growth rates were often below one, but 
increased over time such that annual growth rates after 2045 were often above one. Thus, it 
appears that if the southern population is able to avoid extirpation until 2045, it may well then 
experience high enough population growth rates that it will be buffered from extirpation. Most 
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populations in our study showed dynamics similar to our northern, rather than southern, 
population. 

 
Figure 5.2-15. Projected discrete annual population growth rates (λ) for Alaskan douglassia through 2070 for 
populations in the southern (a) and northern (b) portion of our study area. The solid line represents the median and 
the dashed lines represent the 5th to 95th percentile range from the output of 5 GCMs. 

5.2.6 Venus flytrap (Dionaea muscipula) 
For the Venus flytrap metapopulation at Fort Bragg, we simulated the impact of future 

climate superimposed on a three-year burn cycle (Figure 5.2-16). While there was obviously a 
strong effect of time since the most recent burn on the population growth rate, we saw no long-
term trend in population growth in response to the change in climate over the projection period.  
Populations grew rapidly (𝜆𝜆 ≈ 3) after a fire due to release from the competitive effects of over-
growing neighbors, but the population growth rate quickly fell to or slightly below 1 one or two 
years after a fire as neighbors regrew rapidly. While the results in Figure 5.2-16 do not show the 
effects of varying the fire return interval (FRI), the rapid decline in population growth after each 
fire indicates that a FRI much longer than 3 years (the current target of the Fort Bragg burn 
teams) could pose a much more significant threat to the long-term persistence of populations at 
Fort Bragg than is represented by climate change.  
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Figure 5.2-16. Projected discrete annual population growth rate (λ) for Venus flytraps through 2100 with a three-
year burn cycle. The solid line represents the median and the dashed lines represent the 5th to 95th percentile range 
from the output of 20 GCMs. 

5.2.7 Red-cockaded woodpecker (Dryobates borealis) 
For the red-cockaded woodpecker, we saw essentially no change in the annual population 

growth rate for any of the three DoD sites up to the year 2100, the end point of our projections 
(Figure 5.2-17). Moreover, population growth rates remained close to 1, indicating stable 
populations. The red-cockaded woodpecker SEED model incorporated density dependence by 
means of a limit on the number of territories (each containing cavity trees) available to each 
population (and this limit did not change over the course of each simulation). That growth rates 
remained near 1, indicates that the future climate over the remainder of this century is predicted 
to remain suitable enough that the rates of survival and reproduction will remain adequate to 
ensure that nearly all available territories remain occupied. Red-cockaded woodpecker 
populations include a large non-breeding adult class consisting of helpers and floaters that 
buffered breeding population size (territories in our model) against environmental stochasticity. 
Variation in survival and productivity was reflected in changes in the size of the non-breeding 
class rather than breeding population size. This likely contributed to the stability of red-cockaded 
woodpecker populations despite changing climate. Adverse effects of changing climate on red-
cockaded woodpecker population growth rates are likely to involve a tipping point or threshold 
rather than a linear response.   
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Figure 5.2-17. Projected discrete annual population growth rates (λ) for red-cockaded woodpecker through 2100 for 
populations in on Eglin Air Force Base (a), Camp Lejeune (b), and Fort Bragg (c). The solid line represents the 
median and the dashed lines represent the 5th to 95th percentile range from the output of 20 GCMs. 

An obvious feature of Figure 5.2-17 is that all three red-cockaded woodpecker focal 
populations showed fluctuations in the population growth rate in the early years of our 
projections, which dampened over time. We have not completely pinpointed the cause of these 
fluctuations. We suspect they arose because the initial social structure (i.e., the among-territory 
distribution of the number of male and female helpers and floaters of different ages) we used in 
our simulations is not the equilibrium structure, and as the structure approached an equilibrium, 
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the population growth rate stabilized. These initial fluctuations in population growth could likely 
be eliminated by starting our simulations a few decades before the present (using historical 
climate during the recent past to drive demographic rates). However, because these fluctuations 
dampened out in about two decades, they were unlikely to have any effect on our longer-term 
projections. Our results suggest that all three red-cockaded woodpecker populations should 
remain stable in the face of projected climate changes to the end of the current century.   

These findings fill an important knowledge gap in red-cockaded woodpecker 
conservation. The recovery of the red-cockaded woodpecker is a conservation success story. 
Once likely the most abundant woodpecker in the southeastern coastal plain, by the mid-1980s 
its numbers had declined two orders of magnitude (Conner et al. 2001; USFWS 2003). Once 
continuously distributed across the Southeast, it existed only in scattered, isolated populations, 
most of which were still declining, and none of which were increasing (Costa and Escano 1989). 
Thanks to the application of new forest and fire management of its habitat (USFWS 2020), and a 
new species management paradigm that focuses on the role their unique cavities play in their 
population dynamics (Walters 1991), the species has subsequently made a remarkable recovery. 
A recent status assessment found that over a twenty-year period (1996-2016), 76% of 79 
populations analyzed had increased and were continuing to increase, and five individual 
populations had been declared recovered (USFWS 2020). The species remains conservation-
reliant, and provided the critical management activities continue, its numbers are projected to 
continue to increase. However, the data available for the species status assessment were 
insufficient to determine whether or not climate change posed a threat to the otherwise positive 
outlook for the species (USWFW 2020). Our results suggest that it does not. 

5.3 Climate Contribution Index (CCI) 
Climate sensitivities of each of the three species for which we calculated CCI scores were 

greatest for demographic rates corresponding to either fecundity or to survival of pre-
reproductive life stages. For hydaspe fritillary butterflies, egg hatch rates showed the greatest 
climate sensitivity in three of our study populations and larval survival showed the greatest 
sensitivity at the other three (Figure 5.2-2). Appalachian brown butterfly fecundity during the 
first generation was the demographic rate most sensitive to climate change (Figure 5.2-4). 
Although this demographic rate includes adult survival, adult survival was not influenced by 
climate (section 5.1.2), and the climate sensitivity was driven by the influence of temperature on 
the egg laying rate. Fecundity, in terms of eggs per egg mass, was the red-legged frog 
demographic rate with the highest climate sensitivity (Section 5.3.4; Figure 5.2-10). 

All three species exhibited spatial variation in climate sensitivities. Hydaspe fritillary 
butterfly climate sensitivities for hatch rates varied by over four-fold among populations, and 
larval survival varied by 20 fold among populations (Figure 5.2-2). Appalachian brown 
butterflies exhibited 1.7 times higher climate sensitivity in egg survival and 11.3 times higher 
climate sensitivity in larval survival in South Carolina than in Fort Bragg, NC (Figure 5.2-4). 
Red-legged frog climate sensitivities also varied widely among populations, with nearly a five-
fold difference in hatch rate climate sensitivity and eight-fold difference in adult survival climate 
sensitivity among populations (Figure 5.2-13) 

Demographic rate sensitivities did not correspond to climate sensitivities for any of the 
three species. Hydaspe fritillary butterfly populations were most sensitive to changes in adult 
survival (Figure 5.3-1a). As with climate sensitivities, there were substantial differences among 
populations of hydaspe fritillary butterflies demographic rate sensitivities. Appalachian brown 
butterfly populations were most sensitive to changes in larval survival, especially in the first 
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generation of the year (Figure 5.3-1b). Red-legged frog populations were most sensitive to 
tadpole survival (Figure 5.3-1c). Note, this result differs from the result of the elasticity analysis 
reported in section 5.1.3, where we found that adult survival had the biggest influence on 
population growth rates. 

  

 
Figure 5.3-1. Demographic rate sensitivities for hydaspe fritillary butterflies (a), Appalachian brown butterflies (b), 
and red-legged frogs (c). Bars indicate the sensitivity of annual population growth rates to a small change in the 
demographic rate. 

The climate contribution index associated with a demographic rate was not predicted by its 
climate sensitivity nor by how sensitive population growth rate was to changes in the 
demographic rate alone. This means that neither how labile a demographic rate is in response to 
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climate variability nor how much it influences population growth rates can be used alone to 
predict how much the demographic rate influences population responses to climate change. For 
example, in Appalachian brown butterflies, fecundity in the second generation had the highest 
CCI score (i.e. contributed the most to future changes in population growth rates; Figure 5.3-2b) 
despite demographic rates during the first generation having greater climate sensitivity (Figure 
5.2-4), and despite population growth rates being relatively robust to changes in this 
demographic rate (Figure 5.3-1b). Moreover, we found that the demographic rate associated with 
the highest CCI was quite variable among taxa. For example, adult survival had the greatest 
influence on climate-change response for northern red-legged frogs (Figure 5.3-2c), but tadpole 
survival had the greatest influence on California red-legged frog population growth rates (Figure 
5.3-1c). The CCIs for hydaspe fritillary butterflies demonstrated that which demographic rates 
will have the greatest influence on future population growth rates may even vary among different 
populations. Spring larval survival had the highest CCI score in two populations, while egg hatch 
rates had the highest CCI score in three, and the CCI for these two demographic rates and adult 
survival were essentially equal in one population (Figure 5.3-2a).  
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Figure 5.3-2. Climate contribution indices for hydaspe fritillary butterflies (a), Appalachian brown butterflies (b), 
and red-legged frogs (c). 
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Several mechanisms underlie the differences in CCI rankings among populations. There 
was a strong negative correlation in the rank-order of which demographic rates were most 
sensitive to changes in climate conditions and which contributed the most to population growth. 
Genereally, fecundity was the most climate-sensitive demographic rate, but also had the lowest 
demographic rate sensitivity. The hydaspe fritillary butterfly was an exception. For this species, 
demographic rates that were little impacted by changes in climate conditions (eggs per day, 
larval winter survival) also had little influence on population growth rates and differences in 
projected climate change largely explain differences in CCI patterns among populations. The two 
Coastal Range populations are expected to see the smallest change in spring/early summer 
temperatures, and correspondingly, have relatively low CCI scores for spring/early summer 
larval survival compared to the two higher elevation Sierra Nevada sites. The Cascades 
population is projected to see the largest change in precipitation, leading to a relatively high 
influence of adult survival on how butterflies there respond to changing climate conditions. The 
apparently taxonomic difference in CCI scores for red-legged frogs corresponds to size-related 
differences in fecundity between the two species and projected climate change patterns among 
different sites. California red-legged frogs are larger and have egg masses with one and half to 
two times as many eggs. At the same time, the coastal California red-legged frog sites are 
projected to see a 20% greater increase in breeding season warming than the coastal northern 
red-legged frog sites, leading to a greater reduction in hatching success. In contrast, because 
northern red-legged frogs currently experience cooler year-round temperatures, they see a larger 
benefit in terms of increased adult survival, from projected warming than do California red-
legged frogs (Figure 5.2-12).  

5.4 Species Integration and Discussion 
Two major themes emerge from the studies included in this project. First, climate 

influenced populations in a wide variety of ways, and for any given species, the relationship 
between climate and population dynamics was often quite complex. This complexity included 
not only the impact of numerous different climate variables influencing numerous different 
demographic rates, but also the potential for strong nonlinearities in climate-demographic rate 
relationships. Additionally, there were sometimes interactions between different climate 
variables and between climate and recent life-history events. Nonetheless, some patterns did 
emerge. Namely, offspring production and younger life stage survival tended to be more 
vulnerable to projected changes in climate. The second theme is that most populations appeared 
to be robust to the direct effects of climate change. Populations most at risk tended to be those 
already at the warmest edge of a large latitudinal (or elevational) range. In contrast, populations 
at the coolest edge of their species distributions were most likely to see the greatest benefits from 
projected changes in climate conditions, while species with relatively narrow latitudinal and 
elevational distributions were generally unaffected by climate change.  

Most species were affected by multiple climate drivers, with strong nonlinear effects in 
some cases. Our study species with the most complex life histories had no fewer than nine 
different climate variables impacting demographic rates. Only Appalachian brown butterflies 
were influenced by a single climate variable (mean temperature during the life-stage), but there 
was a threshold effect in both egg hatch rates and larval survival. In fact, without experimentally 
elevating temperatures above those experienced at Fort Bragg during our study, we would not 
have detected these thresholds. As a consequence, we would not have been able to predict the 
reduction in egg or larval survival under the non-analogue climate conditions projected to be the 
new normal within the next decade. Another kind of nonlinear climate effect, interactions 
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between climate variables or between climate and recent life-history events, were also common 
in species with complex life histories.  

We found contrasting effects of climate across different life stages for most of our study 
species. Only for the Appalachian brown butterfly and the western snowy plover were the effects 
of climate on demographic rates all in the same direction. Opposing effects of climate across 
demographic rates could serve as a buffer, reducing the overall impacts of climate change on 
population growth rates (Doak and Morris 2010). This buffering effect likely contributed to the 
lack of projected effects of climate on population growth rates we observed for some of our 
study species. For example, in red-cockaded woodpeckers increasing temperatures decreased 
post-fledging survival but increased adult survival. Likewise, in Alaskan douglasia increasing 
temperatures negatively affected reproductive demographic rates while increasing survival and 
growth.  

Temperature-driven phenological shifts can also act to buffer the effects of climate 
change. For example, we found that warming temperatures advanced the timing of the flight 
periods of both butterfly species. For the Appalachian brown butterfly this shift led to an 
additional generation. Adding this generation into our SEED models improved population 
growth rates, although not enough to prevent future population declines. While we did not 
include phenology in the Hydaspe fritillary butterfly SEED model, the predicted shift to earlier 
flight periods under warmer conditions could buffer post-diapause larvae, adults, and eggs from 
experiencing the full extent of warming associated with climate change. However, reducing the 
amount of warming experienced would have mixed effects on different life stages, benefiting egg 
survival, but reducing larval and adult survival. Unlike the Appalachian Brown, hydaspe 
fritillaries are univoltine throughout their range and are less likely to increase voltinism with 
warming. Earlier flight periods have the potential to impact hydaspe larval survival by exposing 
newly hatched larvae to a longer period of hot and dry conditions before the cool temperatures 
and first rains in the fall, which exposes them to greater desiccation risk. In contrast, for multi-
voltine butterfly species, warming and the associated phenology shifts have been found to 
prolong flight periods and increase voltinism, potentially increasing population growth rates 
(Roy and Sparks 2000, Altermatt 2010, Wepprich 2017, Kerr et al. 2019). 

We found temperature to be a factor in almost every demographic rate that was sensitive 
to climate except for the clutch size of the first nest and probability of double brooding in red-
cockaded woodpeckers and fecundity in red-legged frogs. In general, we found more negative 
impacts of warming on early life stages. For example, with red-legged frogs and hydaspe 
fritillary butterflies the only negative effects of increasing temperature were on early life stages 
(egg viability for both species and tadpole survival for the frogs). Warming reduced post-
fledging survival in red-cockaded woodpeckers, and in Appalachian brown butterflies the only 
demographic rate not negatively impacted by temperature was adult survival. With the exception 
of Venus flytraps, survival of the reproductively mature life stage of all the species we studied 
either benefited or was unaffected by increased temperatures.  

We did not find a general pattern relating climate effects on any particular life stage to 
climate change effects on future population growth. For example, negative effects of warming 
temperatures on tadpole survival rates had a strong influence on the coastal California red-legged 
frog populations, contributing to future declines in projected population growth at these sites. In 
contrast, reduced tadpole survival in northern red-legged frogs is more than offset by gains in 
adult survival, leading to increasing projected population growth rates. The demographic rate 
contributing the most to a population’s response to climate change did not necessarily 
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correspond to the rate most heavily affected by climate nor to the rate with the greatest influence 
population growth rates. Instead, the demographic rates that tended to be the best predictors of 
population responses were those that were both relatively sensitive to climate conditions and had 
a relatively large influence on population dynamics. Identifying these demographic rates a priori 
is problematic, because there is an inherent tradeoff between the demographic rate variability and 
elasticity (Pfister 1998, Morris and Doak 2004). 

Most projected population growth rates were unaffected or positively influenced by 
future climate change. Of the 49 different populations we evaluated, only 3 (6.1%) are projected 
to have lower future population growth rates due to climate change. Positive effects of climate 
change on growth rates may seem unexpected, but this result is consistent with predictions for 
ectotherms in temperate regions, where species typically have broad thermal tolerances and often 
experience temperatures that are below their thermal optimum. Warming is generally expected to 
increase fitness of ectotherms living at higher latitudes, while for ectotherms living near their 
thermal optimum at lower latitudes, even moderate warming could have negative impacts on 
population growth as fitness typically drops steeply at temperatures above the thermal optimum 
(Deutsch et al. 2008, Angilletta 2009). This suggests that populations closer to the southern 
periphery of their range would be most at risk from warming temperatures, which is what we 
observed. All three populations projected to be adversely affected by climate change, 
Appalachian brown butterflies at Fort Bragg, NC and the two California red-legged frog 
populations at Vandenberg Air Force Base, are at the southern end of their species ranges. Even 
among the remaining populations, there was a general trend for populations at warmer locations 
to respond less favorably to projected warming conditions than populations at cooler locations. 
This pattern held true not only for the ectotherm animals in our study, but also for snowy 
plovers. It is not obvious for Alaskan douglasia whether the southern or northern population 
currently experiences warmer conditions, as the southern population is more coastal, potentially 
buffering it from temperature extremes. Our results are consistent with other work that has 
shown that populations at the southernmost or lowest elevation extent of their range are more 
likely to be negatively impacted by climate change (Parmesan 1996). 

Based on our SEED model results, two of our study species, Venus flytrap and red-
cockaded woodpecker, appear to be exceptions to this pattern, showing little difference in 
predictions for northern vs. southern populations. Both of these species occupy a smaller 
latitudinal range (spanning approximately 10° or less) than the butterflies, red-legged frogs, or 
snowy plover, each of which have species ranges spanning at least 15° of latitude. The narrow 
distribution of the Venus flytrap and red-cockaded woodpecker is clearly linked to specialized 
habitat requirements unrelated to climate. While our SEED models suggested little difference 
between the response of red-cockaded woodpeckers to climate change in the northern and 
southern portions of their range, previous work has found evidence that this species may be more 
susceptible to climate change at the southern end of its range. Garcia 2014 and DeMay and 
Walters 2019 found that red-cockaded woodpecker productivity was high and increasing in the 
northeastern portion of the range, but low and decreasing in the southwestern portion. Improving 
conditions, often accompanied by range expansion, at the northern edge of the range and 
deteriorating conditions accompanied by range contraction at the southern edge of the range is a 
widespread response to climate change in north temperate birds.  

Two of the red-cockaded woodpecker populations we analyzed for the SEED model are 
located at the northeastern edge of the species’ range (Lejeune, Sandhills), and one is located in 
the southwestern portion of the range (Eglin). Our modeling of the relationships between 
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demography and climate in red-cockaded woodpeckers was driven more by the large samples 
available from the two northern populations than the small samples from the southern one. 
Therefore, if climate in the southwestern portion of the range represents the most adverse limit of 
the range encountered by the species, we may have failed to fully capture climate effects on 
demography operating at that limit of current conditions. If true, this would cause us to 
underestimate future effects of climate on red-cockaded woodpecker populations. More study of 
climate effects in this portion of the range are needed to assess this possibility.  

We found evidence of indirect effects of climate mediated through interactions with other 
species. Temperature strongly influenced hydaspe fritillary butterfly egg survival by increasing 
daily egg predation rates by 46% per one ºC of warming. While we did not measure it directly, 
we suspect that the quality of both host and nectar plants could influence hydaspe fritillary 
demographic rates. Nectar availability has been linked to fecundity in related species (Boggs and 
Ross 1993), and host plant quality likely influences larval survival. Early snow melt can reduce 
floral resources (Inouye 2008), and violets, the hydaspe fritillary’s host plants, require moist 
conditions and thus are negatively impacted by droughts. We also found evidence to suggest that 
the effects of temperature on the timing of the end of the flight period may be mediated through 
the influence of temperature on nectar plant phenology. We found a tight correlation between 
temperature and both flight period end and senescence of the primary nectar plant used at each 
site. The date recorded as the end of the flight period and the date recorded for full senescence of 
the primary nectar plant differed by more than a week on only one occasion across all sites and 
years. Given that we only surveyed nectar plant blooming progression every two weeks, this 
suggests a tight association between preferred nectar resources disappearing and the end of the 
flight period.  
 Temperature driven changes in phenology and development rates also have the potential 
to impact population growth rates through interactions with other species or processes. For 
example, the increased development rates we found with warming for hydaspe fritillary and red-
legged frog eggs and larvae could reduce predation rates by reducing the amount of exposure. In 
hydaspe fritillaries this reduced exposure time could mitigate some of the effects of warmer 
temperatures increasing the daily egg predation rates. Red-legged frog breeding phenology and 
egg/larvae development rates might also interact with canopy cover to affect the amount of 
shading to which these early life stages are exposed.  

Many of these potential indirect effects of climate were not captured in our SEED models 
and could alter population trajectories. For example, while future annual precipitation is expected 
to increase slightly at all of our hydaspe fritillary butterfly sites, projected warmer temperatures 
could mean that more of the precipitation will fall in the form of rain rather than snow. Reduced 
snowpack and warmer temperatures could lead to both earlier snow melt and a higher likelihood 
of drought conditions during the late spring and summer. These conditions could strongly 
influence nectar and host plant availability and quality, which in turn could influence hydaspe 
fecundity and larval and adult survival. Indeed, at the beginning of our study hydaspe fritillary 
butterfly population sizes were extremely low at our Sierra Nevada sites, less than one 10th the 
size of any of our other populations. The Sierra Nevada sites were also hit the hardest of any of 
our sites by the severe drought in CA from 2012-2016 (NOAA 2015), just prior to our study. An 
exceptionally wet year in 2017 ended the drought and the Sierra Nevada hydaspe fritillary 
populations grew by more than 450% between 2017 and 2018, while the other sites grew by less 
than 80%. These patterns are reflected in our analysis of the effects of climate on observed 
population growth rates, where we saw clear evidence of density dependence and a strong 
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positive effect of precipitation, but no effects of temperature. For red-cockaded woodpeckers, 
hurricanes can lead to population declines by destroying all cavity trees within a territory. This 
suggests that extreme weather events can have pronounced impacts on population growth rates, 
and that those effects may be mediated through impacts on other species/resources (Dobkin et al. 
1987, Singer and Ehrlich 1979, Ehrlich et al. 1980, Singer and Thomas 1996, Parmesan et al. 
2000 Piessens et al. 2008). Predicting the effects of extreme weather events on population 
trajectories is challenging both because measuring the effects of extreme events on demography 
is challenging (we cannot control when extreme events will occur and the effects of extreme 
events are often indirect) and because accurately predicting extreme weather events at local 
scales is impractical (Fischer et al. 2013). 
 Another pattern that emerged when comparing results across species is the potential for 
managing non-climate drivers to benefit almost all species. For example, fire frequency strongly 
influenced Venus flytrap population growth rates. In the coastal plain and Sandhills of the 
Carolinas where Venus flytraps are found, the fire regime is typically managed through 
controlled burns, suggesting that management actions could have significant effects on Venus 
flytrap populations. Climate change could impact the frequency of non-controlled wildfires in 
the region, setting up another possible indirect effect of climate change. Fire frequency also 
affects the fecundity of red-cockaded woodpeckers, as does the availability of nest cavities, 
many of which are manmade. Controlled burning is a critical management tool used on DoD 
lands for red-cockaded woodpecker conservation. Canopy cover impacted red-legged frog 
tadpole survival at some sites and these impacts were strong enough to have meaningful impacts 
on population growth rates. Canopy cover management has also been proposed as a tool to 
benefit rare frogs in the Southeast (Thurgate and Pechmann 2007). We also saw interactive 
effects of invasive bullfrog presence and food availability on froglet body condition. Removal of 
bullfrogs and other nonnative predators from breeding ponds is a commonly used tool to help 
special status amphibians throughout the Western U.S. (e.g., Govindarajulu et al. 2005, Knapp et 
al. 2007). Predator management is also a critical part of western snowy plover conservation 
efforts (e.g., Peterson and Colwell 2014, Brinkman 2018). As with the effects of climate, the 
effects of non-climate drivers often varied across populations. Canopy cover influenced 
demographic rates at some red-legged frog sites but not others, and the outcomes of experimental 
tests of fire effects on Venus flytrap demography showed differed between the inland vs coastal 
populations. This highlights the need for population rather than species specific management 
plans for many special status species.  

6 Conclusions  
Given the numerous and often highly complex ways that climate influences populations, 

we find that predicting species' responses to climate change will require a holistic approach 
focusing on demographic processes. Tools that explicitly consider climate-demographic rate 
relationships, such as SEED models, provide a significant advantage over more commonly used 
occupancy based approaches for planning future conservation needs.  

The most common approach to measuring a species response to climate change is to use 
bioclimatic envelope models, also known as ecological niche or species distribution models, to 
use current and/or historic associations between climate and a species distribution to predict the 
persistence of populations and distribution shifts in the future (e.g. Araújo and Peterson 2012, 
Warren et al. 2014). These models have the advantage of being able to account for the integrated 
direct and indirect effects of climate on the species distribution and the data needed for these 
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models is relatively easy to obtain (not labor intensive nor expensive) compared to demographic 
studies. However, bioclimatic envelope models have been criticized for relying on faulty 
assumptions and being contradicted by empirical evidence, and there has been much debate 
about their usefulness (e.g. Hampe 2004, Akçakaya et al. 2006, Botkin et al. 2007, Dormann 
2007, Sinclair et al. 2010, Araújo and Peterson 2012, Ehrlén and Morris 2015).  

One reason bioclimatic envelope models may fail to make accurate predictions is that 
many species distributions are not limited by climate factors. For example, one study of 144 
plant species native to the US that occur outside their native range found that 86% of the species 
studied were found to occur in areas predicted to be climatically unsuitable based on the climate 
in their native range (Bocsi et al. 2016). There are several other factors that might limit species 
distributions besides climate, including species interactions (Case et al. 2005, Louthan et al. 
2015), resource availability (John et al. 2007, Endara and Jaramillo 2011), and dispersal 
limitation (Ozinga et al. 2005). The red-cockaded woodpecker is a habitat specialist dependent 
on mature (i.e., > 100 years old) pine trees for nesting. Because the pace of climate change is 
faster than the change in the distribution of such habitat, bioclimatic envelope models will not be 
able to predict changes in the distribution of red-cockaded woodpeckers. 

Another issue with bioclimatic envelope models is that climate factors may be obscured 
by source-sink population dynamics (Pulliam 2002). Areas that appear to be suitable climatically 
based on occupancy, might actually have climates that would lead to population declines without 
immigration. Similarly, individuals may be present in areas that are no longer suitable, as 
population declines may be lagged compared to changing conditions (i.e. “living dead” 
populations - Ehrlen and Morris 2015), complicating predictions based on current occupancy 
(Sinclair et al. 2010). Overall, occupancy data provides limited insight into how population 
growth rates vary annually in response to climate and non-climate factors. Since neither climate 
nor population growth rates are static, simply using occurrence data may miss important impacts 
of climate on population growth rates or lead to spurious correlations.  

Furthermore, predicting species responses to conditions that they have not yet 
experienced is non-trivial. For example, evolutionary adaptation and phenotypic plasticity may 
allow some species to persist under climate conditions outside the range that they currently 
experience (Bush et al. 2016). Phenological shifts might also serve to buffer species from 
experiencing the full extent of predicted warming (Cormont et. al 2012). Warming may also 
accelerate development rates, as seen in red-legged frog and hydaspe fritillary butterfly eggs and 
larvae in our study, which can reduce the length of time when vulnerable life stages are exposed 
to predators. For some species, behavioral changes provide another buffer against effects of 
climate change as well. For example, some butterfly larvae actively select microhabitats, 
switching to different host plants or levels of openness, to stay within a preferred temperature 
range (Aston et al. 2009). Bioclimatic envelope models provide little information about the 
underlying mechanisms driving the effects of climate on population dynamics. Understanding 
the underlying mechanisms may be critical for accurately predicting how populations will 
change in the future or for targeting management efforts to mitigate any negative impacts of 
climate change. 

Demographic models provide tools for overcoming most of these limitations provided 
that the model 1) includes environmental drivers for demographic rates, and 2) integrates across 
the life-cycle of the species being modeled. The main benefit of using demographic models is 
that individual demographic rates typically respond quickly to changes in environmental drivers. 
Consequently, year to year variation in climate conditions makes it easier to measure the effect 
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of climate on demographic rates rather than obscuring long-term population trends. It is also 
easier to link demographic rates, compared to population size or occupancy, to local conditions 
in well-connected populations, and thus to detect source-sink dynamics that might make niche 
model predictions unreliable.  

While measuring changes in single demographic rates in response to variable climate 
conditions represents a sensitive tool for detecting climate drivers, integrating across the full 
spectrum of climate drivers and demographic rates is critical for predicting population level 
impacts of climate trends for many reasons. First, climate generally influences population growth 
rates through many different mechanisms, with different climate variables acting on different life 
stages. A focus on only one climate variable or one demographic rate (or even a few) may reveal 
strong links that fail to translate into effects on population growth. This may be especially true 
when, as is often the case (e.g., Hydaspe fritillary butterfly, red-legged frog, red-cockaded 
woodpecker in this study; Doak and Morris 2010), demographic rates respond in opposing ways 
to changes in climate conditions. Furthermore, because there is a tradeoff between sensitivity of 
a demographic rate to environmental drivers and its contribution to population growth (Gaillard 
et al. 1998, Pfister 1998, Morris and Doak 2004), it is difficult to predict which climate-
demographic rate relationship will have the biggest role in shaping future population trajectories. 
Indeed, we find that the contribution of a demographic rate to future population trajectories is 
predicted by neither the sensitivity of a demographic rate to climate variability nor by the 
ranking of sensitivity of population growth alone.  

There are, of course, limitations to SEED models. Identifying and quantifying each of the 
climate-demographic rate relationships needed to parameterize a SEED model requires large 
amounts of data, which are expensive to collect compared to occupancy data. Because models 
are only as good as the data used to build them, careful consideration of what observational and 
experimental data to collect is important at the outset. Care must be taken to consider how non-
climate variables, such as local densities at the time of study, and habitat features that vary 
among populations might influence climate-demographic rate relationships in those populations. 
Accounting for these sources of spatial variation is especially important when interpreting space-
for-time studies. Likewise, temporally variable non-climate drivers, such as time since fire or 
predator management, must be accounted for when using time-series data to fit climate-
demographic rate relationships. Nonlinearities in demographic rate sensitivities to climate 
variables must also be kept in mind. We recommend measuring apparently climate-insensitive 
demographic rates under climate conditions experimentally forced outside of current conditions 
to detect thresholds whenever practical.  

While we did not explicitly account for simultaneous climate effects on interacting 
species, such effects are likely to influence population growth rates of managed species. Because 
there may be a lag between the change in climate and significant population change of an 
important prey, mutualist, competitor, or enemy species, the indirect effects of climate mediated 
through these types of species interactions will often lag behind observed changes in relevant 
climate variables and direct effects. However, individual species responses to changing 
environmental conditions can predict changes in ecological communities even when species 
interactions are not directly accounted for (Lytle et al. 2017). Moreover, multi-species SEED 
models can accommodate species interactions, albeit with even greater data requirements than 
single species SEED models. Indeed, accounting for climate-driven phenological mismatches 
between interacting species in multi-species SEED models may be a powerful tool for 
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identifying the impacts of phenological changes on the population growth of multiple species, 
and thus on the future composition of entire ecological communities. 
General Management Implications: SEED models and Contribution Index are useful tools for 
predicting whether expected changes in future climate conditions will exacerbate or mitigate 
threats to special status species managed on DoD lands. These predictions provide useful 
information for planning future management needs. For example, our study included two 
military bases, Fort Bragg, NC and Vandenberg Air Force Base, CA, with managed species 
predicted to have very different responses to projected climate change in the coming decades. On 
Fort Bragg, both red-cockaded woodpecker and Venus flytrap populations are expected to be 
buffered from changing climate conditions, whereas warming temperatures are expected to cause 
Appalachian brown butterfly populations there to switch from sources to sinks. At Vandenberg 
Air Force Base, snowy plover populations are predicted to benefit from warming spring 
temperatures and milder winters along the west coast, while California red-legged frogs are 
predicted to do worse. Looking ahead, this means that Fort Bragg may want to plan now for 
mitigation projects to reduce the impacts of expected warming on Appalachian brown butterflies. 
Such mitigation may come in the form of habitat restoration focused on providing greater shade 
coverage while continuing to support robust host-plant coverage, or ways to reduce predation on 
eggs and larvae to offset reduced survival during these stages associated with warmer 
temperatures. For Vandenberg Air Force Base, this means potentially devoting more resources to 
California red-legged frog protection (e.g., through bullfrog removal at breeding sites). In 
contrast, future budgeting needs for snowy plovers, or for red-cockaded woodpeckers and Venus 
flytraps, should be determined by mitigation requirements for non-climate threats. We note here 
that climate does play a role in critical management issues for all three species, fire frequency for 
red-cockaded woodpeckers and Venus flytraps and sea-level rise for snowy plovers.  

The populations of special status species most likely to be vulnerable to climate change in 
our study were wide-ranging species at the climatic edges of their ranges. We note that climatic 
edges are not necessarily the same as the geographic periphery of a species range, as is 
evidenced by multi-directional shifts both in avian species ranges in Britain (Gillings et al. 2015) 
and in presumed bioclimatic envelopes in the United States (Bateman et al. 2016). The mismatch 
between climatic edges and geographic periphery may be due to landforms influencing 
temperatures or precipitation patterns, differences in the latitudinal and longitudinal 
directionality of temperature and precipitation patterns, and spatial patterns of extreme climate 
events. Another important climatic edge may be where winter precipitation occurs primarily as 
snow versus rain. For example, even though red-legged frogs occupy habitats with and without 
significant snowfall, we found that the relationship between adult survival and temperatures 
observed in populations without snowfall was not consistent with sustainable populations in 
places with snowfall. Differences in the timing of breeding between inland and coastal sites 
likely reflect strategies for avoiding colder winter weather by inland populations; similar patterns 
have been observed for populations of marble and tiger salamanders breeding in Massachusetts 
vs North Carolina (Petranka 1989). The transition from winter snow to rain has been shown to 
increase thermal stress and even to lead to complete reproductive failure in some winter breeding 
birds (Wingfield et al. 2017, 2011; Shipley et al. 2019). Changes in the timing of snowmelt are 
also associated with different coping strategies in mammals (Sheriff et al. 2017) and flowering 
phenology of nectar plants, which can affect floral resources and the length of butterfly flight 
periods (Section 5.1.1).  
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We were surprised at the rarity of climate-related reductions in population growth rates 
predicted by our SEED models. Only three of the 49 populations we evaluated from seven 
different species included in our study were predicted to do worse because of projected changes 
in climate over the next few decades. In contrast, seven populations were projected sinks under 
current climate conditions, not including snowy plover populations without active predator 
management known to be populations sinks (Colwell 2017) but predicted by our SEED models 
to be sources given fecundity and survival rates associated with active predator management. We 
interpret this result to reflect that for temperate special status species, climate-related threats are 
probably less prevalent than non-climate related threats, such as habitat loss, degradation and 
fragmentation, altered disturbance regimes, or competition with and predation by invasive 
species. 
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8 Appendices 

8.1 Appendix 8.1. GCM projections used in this manuscript for future climate correlations, 
downscaled to a 4 km x 4 km grid using the MACA method.  

 
 GCM name 
1 bcc-csm1-1 
2 bcc-csm1-1-m 
3 BNU-ESM 
4 CanESM2 
5 CCSM4 
6 CNRM-CM5 
7 CSIRO-Mk3-6-0 
8 GFDL.ESM2M 
9 GFDL-ESM2G 
10 HadGEM2-CC365 
11 HadGEM2-ES365 
12 inmcm4 
13 IPSL-CM5A-LR 
14 IPSL-CM5A-MR 
15 IPSL-CM5B-LR 
16 MIROC-ESM 
17 MIROC-ESM-CHEM 
18 MIROC5 
19 MRI-CGCM3 
20 NorESM1-M 
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8.2 Appendix 8.2 Observed nectar plant usage by adult hydaspe fritillary butterflies during 
mark-recapture surveys at each site. Nectar plant species are listed in order of usage by 
site. 

 
Site and nectar plant species # of observations each year 

  Cascades 2016 2017 2018 Total % usage 

Subalpine Daisy (Erigeron peregrinus) 17 93 41 151 0.57 
Goldenrod (Solidago sp.) 4 23 0 27 0.1 
Bull Thistle (Cirsium vulgare) 0 23 0 23 0.09 
Pearly Everlasting (Anaphalis margaritacea) 6 4 8 18 0.07 
Cascade Aster (Aster ledophyllus) and other Aster spp. 8 6 3 17 0.06 
Gray's Licorice-root (Ligusticum grayi) 0 4 1 5 0.02 
Valerian (valeriana sp.) 0 3 2 5 0.02 
Cow Parsnip (Heracleum lanatum) 0 0 2 2 0.01 
Oxeye Daisy (Leucanthemum vulgare) 3 0 0 3 0.01 
Hawkbit (Leontodon sp.) 3 0 0 3 0.01 
Mountain Owl's-clover (Orthocarpus imbricatus) 0 0 3 3 0.01 
Tansy Ragwort (Senecio jacobaea) 2 0 0 2 0.01 
Arrowleaf Groundsel (Senecio triangularis) 0 0 1 1 0.004 
Few leaved thistle (Cirsium remotifolium) 1 0 0 1 0.004 
Lupine (Lupinus sp.) 0 0 1 1 0.004 
St. John's Wort (Hypericum perforatum) 1 0 0 1 0.004 

Coast Range 1 2016 2017 2018 Total % usage 

Douglas' Thistle (Cirsium douglasii) 83 334 114 531 0.79 
Angelica sp. 40 28 22 90 0.13 
Golden Chinquapin Tree (Chrysolepis chrysophylla) 6 18 11 35 0.05 
Naked Buckwheat (Eriogonum nudum) 0 3 1 4 0.01 
Monardella sp 0 3 2 5 0.01 
Huckleberry Oak (Quercus vacciniifolia) 0 3 0 3 0.004 
Western False Asphodel (Triantha occidentalis) 0 0 1 1 0.001 

Coast Range 2 2016 2017 2018 Total % usage 

Spreading Dogbane (Apocynum androsaemifolium) 32 75 11 118 0.66 
Canada Thistle  (Cirsium arvense) 8 18 0 26 0.15 
Bull Thistle (Cirsium vulgare) 4 7 2 13 0.07 
Common Yarrow (Achillea millefolium) 1 9 1 11 0.06 
Wild Teasel (Dipsacus fullonum) 4 0 0 4 0.02 
Golden Chinquapin Tree (Chrysolepis chrysophylla) 0 3 0 3 0.02 
Arrowleaf Groundsel (Senecio triangularis) 0 0 1 1 0.01 
Harsh Checker Mallow (Sidalcea asprella) 0 1 0 1 0.01 
Naked Buckwheat (Eriogonum nudum) 1 0 0 1 0.01 
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Sierra Nevada 1 2016 2017 2018 Total % usage 

Coyote Mint (Monardella villosa) 3 11 53 67 0.71 
Wallflower (Erysimum capitatum) 0 0 18 18 0.19 
Sanborn's Onion (Allium sanbornii) 0 0 4 4 0.04 
Bull Thistle (Cirsium vulgare) 0 3 0 3 0.03 
Naked Buckwheat (Eriogonum nudum) 0 0 1 1 0.01 
Blackberry (Rubus sp.) 0 0 1 1 0.01 
Yellow Star-thistle (Centaurea solstitialis) 0 1 0 1 0.01 

Sierra Nevada 2 2016 2017 2018 Total % usage 

Horsemint Giant Hyssop (Agastache urticifolia) 19 34 394 447 0.87 
Aster spp. 16 1 21 38 0.07 
Bull thistle (Cirsium vulgare) 0 0 10 10 0.02 
Goldenrod (Solidago sp.) 1 2 7 10 0.02 
Angelica sp. 0 1 1 2 0.004 
Cinquefoil (Potentilla sp.) 0 0 1 1 0.002 
Common Yarrow (Achillea millefolium) 0 1 1 2 0.004 
Milk Thistle (Silybum marianum) 2 0 0 2 0.004 

Sierra Nevada 1 2016 2017 2018 Total % usage 

Bull thistle (Cirsium vulgare) NA NA 269 269 0.98 
Coyote Mint (Monardella villosa) NA NA 2 2 0.01 
Harsh Checker Mallow (Sidalcea asprella) NA NA 1 1 0.004 
California harebell (Asyneuma prenanthoides) NA NA 1 1 0.004 
Goldenrod (Solidago sp.) NA NA 1 1 0.004 
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8.3 Appendix 8.3 Relationship between the metric of size used in our demographic rate 
functions and IPMs (length of longest leaf x number of leaves) v. total leaf area. Here, total 
leaf area is calculated using the measured length and width of each leaf and assuming it is 
elliptical. R2 is 0.8334, and the correlation between the variables is large (rho= 0.91) and 
significant (P = 2.2e-16).  
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8.4 Appendix 8.4 Parameter estimates (in first row) and standard error of parameter estimates 
(in second row) for best-fit models for each demographic rate from the Venus flytrap 
experimental tests of fire effects. Parameter estimates significant at the alpha =  0.05 level 
are shown in bold. The absence of a parameter estimate indicates the parameter was not 
present in the best-fit model for the demographic rate. The last column shows the results of 
an ANCOVA testing for overall effect of condition on each demographic rate, using plant 
size as a covariate; the first row is the chi-square value (for binomial models) or the F-
value (for linear models) for the condition effect, and the second row is the associated p-
value. Condition effects significant at the alpha =  0.05 level are shown in bold. For 
recruitment, we show the difference between observed values for the indicated condition 
and the value of the control condition. 
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survival 4.353 0.347 14.146 -0.684 -0.711 -13.93 -1.847 -15.63 0.671 2.469 
0.564 0.129 915.81 0.36 0.438 915.81 0.519 915.81 1383.2 0.481 

Mean size 
after one year 

of growth 

4.650 0.188   -0.209 -0.157 -0.183 -0.221     68.588 

0.057 0.023   0.066 0.075 0.063 0.059     0.000 

Variance in 
size after one 

year of 
growth 

-1.779           -0.393     2.715 

0.126           0.154     0.044 

p(fruit) 
-0.768 0.882 -2.196 0.031 0.780 1.161 -1.254 0.793 -0.953 47.270 
0.242 0.112 0.588 0.270 0.289 0.641 0.234 0.793 0.867 0.000 

No. fruit 
-2.801                 0.568 

0.068                 0.637 

Recruitment N/A N/A N/A 0.338 0.531 1.567 N/A N/A N/A N/A 
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8.5 Appendix 8.5 Generalized SEED model code  
Generalized Spatially Explicit Environmentally Driven (SEED) Model to Evaluate Potential Response 

to Climate Change by Species Managed on Department of Defense Properties. 
Prepared by: Brian Hudgens 

Institute for Wildlife Studies 
 
OVERVIEW: 
The primary tool we are using in this project to evaluate which species will become more, or 
less, conservation reliant because of a changing climate is the Spatially Explicit 
Environmentally Driven (SEED) population model. These models integrate functions describing the 
relationship between vital rates and variation in different climate variables over the life cycle 
of a species to project population growth given a set of climate conditions. By linking these 
models to climate projection models, we are able to make predictions about how population growth 
of a species at one or more specific locations is likely to change over the coming decades. The 
goal of this document is to provide a general outline for how SEED models are designed.  
Our original idea for the generalized SEED model was to provide R-code that served as the core 
code underlying the SEED models developed for the seven species studied as part of this project. 
We imagined that we would modify this code with relatively minor tweaks to account for 
differences in species life histories and how climate influenced population growth. However, our 
work to date has revealed that climate influences different species through vastly different 
mechanisms that often take very different approaches to describe within a simulation. These 
complications include climate-driven changes in phenology that interact with climate effects on 
vital rates or require that different time windows of climate data be used during different years 
of a simulation. We found that the SEED models that worked best for the species we studied shared 
only the most general framework.  
In order to provide a product that had greater potential to be useful to a broader range of 
Department of Defense managers and cooperators we decided to provide that general framework along 
with examples of functions or programming code used to address some of the scenarios we have 
encountered. The code is heavily commented with an eye towards guiding readers through the kinds 
of practical coding decisions that have to be made when developing a SEED model.  
The general framework corresponds to the broad steps assigned a Roman numeral. Alternative code 
snippets or functions are placed within that framework where they would appear in the SEED codes 
developed for the species included in this project; with comments provided to explain what 
conditions each alternative is meant to apply to. We also use comments within the code to 
describe assumptions about datasets read into the model, including variable names and order. 
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##################################### OUTLINE ################################################## 
# I. Read in landscape matrix                                                              # 
# II. Create distance and dispersal probability matrices 
# III.  Define tracking variables             # 
# IV.   Define life history functions                                                         # 
# V. Read in projected future climate conditions                                           # 
# VI. Loop through population dynamics for present day and future climates            # 
# VII. Output                                                                                # 
################################################################################################ 
 
###################################################################################### 
###########    I. Read in landscape matrix    ########### 
##################################################################################### 
Landscape=read.csv('Drive:/Directory/Sub_Directory/LandscapeFile.csv',header=T, sep=",")  
pop.count=length(Landscape$site.id)  #counts the number of populations in the landscape 
#File should be a data frame with the following columns:  
#site.id; UTM.Easting; UTM.Northing; Max.population.size; Demographic.Rate1-Demographic.RateX; 
N1-Nx 
#site.id is a unique identifier assigned to each site used to: 
# -link site to correct climate projections 
# -link site to site-specific vital rates and max population size 
# -properly assign dispersal probabilities 
# -if different links use different site names, additional columns should be included with  
#  alternative site names 
#UTM.Easting and UTM.Northing are location coordinates used to determine distance between sites 
# -These columns are not necessary if a previously calculated dispersal matrix is imported 
as well 
 
#Max.populaiton.size is the maximum number of adults that can live at the site 
# -used to restrict population growth to a finite number 
# -may not be needed, or replaced with other variable if better information is used to  
#  determine density dependence within a population 
 
#Demographic.Rate1,... Demographic.RateX are site specific parameters unrelated to climate 
variables 
#     Examples include: 
# -month when breeding typically begins at a site,  
# -site specific modifications to vital rates, 
# -site specific modifications to distance based dispersal rates 
#Initial population size N1-Nx correspond to the number of individuals in each stage in year 1 
# - For populations without stage structure only a single column for initial population 
size is required 
# - In most cases, there will not be columns corresponding to stages that last < 1 year 
# - Unoccupied sites are indicated by N1-Nx=0 
 
 
###################################################################################### 
###########  II. Create distance and dispersal probability matrices ########### 
##################################################################################### 
 
# Alternative 1: read in previously calculated dispersal matrix 
# This alternative is preferred under most circumstances 
 
disp.matrix=read.csv('Drive:/Directory/Sub_Directory/DispersalFile.csv',header=T, sep=",") 
 
# Alternative 2: calculate dispersal based on distance between site locations  
# This alternative is justified for landscapes with small patches  
# relative to distances between them and a uniform landscape between patches. 
# It may also be a useful approximation when there is little information about dispersal. 
 
#create empty matrices with rows and columns for each site in the landscape 
dist.matrix= disp.matrix=matrix(0,nrow=pop.count, ncol=pop.count) 
# creates the matrix variable: disp.matrix[from, to] 
 
#calculate Euclidean distances between sites and feed into dispersal formula 
for(i in 1:pop.count){ 
  for (ii in 1:pop.count){ 
    dist.matrix[i,ii]=sqrt((Landscape$UTME[i]-Landscape$UTME[ii])^2 + (Landscape$UTMN[i]-
Landscape$UTMN[ii])^2) 
}}   
 
#Translate distances into dispersal likelihood using exponential decay model  
# with decay parameter alpha 

disp.matrix=exp(-alpha*dist.matrix) 
# Divide dispersal formula results by sum to get destination probabilities. 
# This step results in the  home site being the most likely destination so that emigration 
rates 
# are determined implicitly depending on patch arrangement 
for(i in 1:pop.count){ 
disp.matrix[i,]=disp.matrix[i,]/sum(disp.matrix[i,])} 
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# Optional additional for loop if only emigrants considered  
for(i in 1:pop.count){ 
disp.matrix[i,i]=0 
disp.matrix[i,]=disp.matrix[i,]/sum(disp.matrix[i,])} 
# Replace NaN that may arise for extremely isolated sites do not send migrants to other patches 
disp.matrix[disp.matrix=="NaN"]=0   
 
# Create cumulative probability matrix to facilitate random draw 
c.disp.matrix=disp.matrix 
for(i in 2:pop.count){ 
 c.disp.matrix[,i]=c.disp.matrix[,i-1]+c.disp.matrix[,i] 
} # end for(i) 
# Migration rates to different nonbreeding sites may be estimated using the same techniques. 
Because 
# nonbreeding sites will typically be different than breeding sites it may be easier to calculate  
# migration rates outside of the SEED model and read in a migration matrix using the read.csv 
function. 
######################################################################################### 
#############    III. Define tracking variables     ############# 
######################################################################################### 
# Create data frame with 4 columns corresponding to gcm index, year, site.id, and population N. 
If multiple 
# stages are being censused then the fourth column would be the number of individuals in the 
first tracked stage 
# and additional columns will be needed corresponding to the additional stages N2-Nx.  
gcm.count=20    #of gcm models included 
yr.count=45    #of years projected to get to 2050  
pop.count=length(Landscape$site.id)  #counts the number of populations in the landscape 
GCM=rep(1:gcm.count, each=yr.count*pop.count)  

YR=rep(2006: 2006+yr.count-1,each=pop.count)    
POP=rep(Landscape$site.id, gcm.count*yr.count) 
SEED.OUTPUT=data.frame(GCM,YR, POP) 
SEED.OUTPUT$N=0   #This would be N1 and repeated for N1-Nx if multiple stages 
tracked 
# Record initial population size (by stage if appropriate) in the tracking data frame 
for(i in 1:pop.count){ 
 SEED.OUTPUT$N[SEED.OUTPUT$YR==2006 & SEED.OUTPUT$POP==Landscape$site.id[i]]=Landscape$N[i] 
# repeat this line as necessary if multiple stages are to be tracked 
} # end for(i) 
  
######################################################################################### 
#############      IV. Define life history functions      ############# 
######################################################################################### 
#This section will look different for each species, depending on the species life history, 
# how it responds to variation in climate variables, social structure, density dependence etc. 
# The section comprises several functions that calculate those vital rates that are climate- 
dependent 
# or that change from year to year or site to site for non-climate reasons (e.g., density 
dependence). 
#Generalized examples follow, assuming each vital rate is a linear function of: 
# - 2 site-specific parameters: ncvar1, ncvar2 
# - 2 climate variables:clim.var1, clim.var2 (e.g., annual rainfall, mean temperature 
during relevant time) 
# - one general climate relationship where the climate variable is multiplied by alpha 
# - one site-specific relationship where the climate variable is multiplied by ncvar2 
#The lines of each function are: 
# -Function name and input variables ending in opening bracket { 
# -Linear equation using the input variables 
# -(Optional) Multi-step functions 
# -(Optional) Inverse transformation yielding real vital rate  
# -Closing bracket } 
###### Fecundity (seeds/plant; eggs/female; young/litter) 
fecundity.function=function(ncvar1, ncvar2, clim.var1, clim.var2){ 
   fecundity=ncvar1+alpha*clim.var1+ncvar2*clim.var2 
} 
#Alternative fecundity function for stage-based fecundity 
# This function first calculates the fecundity for each stage class as a linear function  
# of the climate variable clim.var1 with stage-specific link parameters class.var.vector. 
# The stage specific fecundity values are then weighted by the proportion of the population 
# in each class (p_class_vector), and the weights are summed to yield a weighted average 
fecundity for  
#       the population. 
fecundity.function=function(p.class.vector, ncvar1, class.var.vector, clim.var1){ 
   fec.vector=rep(0,length(class.var.vector)) 
   for(i in 1:length(class.var.vector)){ 
     fec.vector[i]=ncvar1+class.var.vector*clim.var1 
   } #end for(i) 
   weight.vector=fec.vector*p.class.vector 
   fecundity=sum(weight.vector) 
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} 
 
#Imposes logistic-like reduction in fecundity with increasing population size 
fecundity.density.dependence=function(fecundity, N, K){ 
   fecundity=fecundity*(max(0,1-N/K)) 
}  
###### Survival of first stage (e.g., seed germination rates, egg hatch rates)  
stage1.surv.function=function(ncvar1, ncvar2, clim.var1, clim.var2){ 
   stage1.surv= ncvar1+ alpha*clim.var1+ncvar2*clim.var2 
   stage1.surv=exp(stage1.surv)/(1+exp(stage1.surv)) #inverse logistic transformation for 
survival rates 
} 
 
###### Survival of time-dependent second stage (e.g., caterpillar or tadpole survival)  
#Part 1: Climate-dependent timing (e.g., temperature dependent development rate) 
# In this example, the day of year that an event occurs is modeled as a linear function of 
some climate 
# climate variable, with a site-specific baseline (baseline.day + ncvar1).  
phenol.function=function(ncvar1, climate.var.1) 
   phenology.var=baseline.day+ncvar1+alpha*climate.var.1 
} 
#Part2: Vital rate function of climate and phenology. 
# In this example, we assume the phenology variable is the stage length in days for which 
survival is  
# calculated 
stage2.surv.function=function(ncvar1, phenology.var, clim.var1){ 
   daily.surv= ncvar1+alpha*clim.var1 
   daily.surv=exp(daily.surv)/(1+exp(daily.surv)) #inverse logistic transformation for survival 
rates 
   stage2.surv=daily.surv^phenology.var 
} 
###### In this example we assume that the phenology variable determines the week of the year in 
which a stage  
# starts and that climate variables clim.var1, clim.var2 etc. are weekly values of the 

relevant climate 
# variable 
stage3.surv.function=function(ncvar1, phenology.var, clim.var1, clim.var2, clim.var3, clim.var4, 
clim.var5, clim.var6){ 
climate.vector=c(clim.var1, clim.var2, clim.var3, clim.var4, clim.var5, clim.var6) 
start.week=base.week+floor(phenology.var/7)  
run.s=1 
for(i in start.week:6){ 
  week.surv=ncvar+alpha*climate.vector[i] 
  week.surv=exp(week.surv)/(1+exp(week.surv)) 
  run.s=run.s*week.surv 
} #end for(i) 
stage3.surv=run.s 
} 
###### In this example we assume that the phenology.var.1 determines the week of the year in 
which a stage     
# starts and that phenology.var.2 determines the week of the year in which a stage ends. 
Both variables  
# are assumed to already be in units of one week. As above, climate variables clim.var1, 
clim.var2 etc. # are weekly values of the relevant climate variable. 
stage3.surv.function=function(ncvar1, phenology.var.1, phenology.var.2, clim.var1, clim.var2, 
clim.var3, clim.var4, clim.var5, clim.var6){ 
climate.vector=c(clim.var1, clim.var2, clim.var3, clim.var4, clim.var5, clim.var6) 
start.week=base.week+phenology.var.1 
end.week=start.week+phenlogy.var.2 
run.s=1 
for(i in start.week:end.week){ 
  week.surv=ncvar1, alpha*climate.vector[i] 
  week.surv=exp(week.surv)/(1+exp(week.surv)) 
  run.s=run.s*week.surv 
} #end for(i) 
stage3.surv=run.s 
} 
###### Survival of adults 
# Here we assume only a single adult stage. For species with multiple adult stages (e.g., 
size classes),  
# the appropriate alternative(s) may be repeated using stage-specific parameters. 
#Alternative 1: Survival estimated on annual scale 
 adult.surv.function=function(ncvar1, ncvar2, clim.var1, clim.var2){ 
   adult.surv= ncvar1+ alpha*clim.var1+ncvar2*clim.var2 
   adult.surv=exp(adult.surv)/(1+exp(adult.surv)) #inverse logistic transformation for survival 
rates 
} 
  
#Alternative 2: Survival estimated on quarterly scale  
adult.surv.function=function(ncvar1, clim.var.q1, clim.var.q2, clim.var.q3, clim.var.q4){ 
climate.vector=c(clim.var.q1, clim.var.q2, clim.var.q3, clim.var.q4) 
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run.s=1 
for(i in 1:4) 
   quarterly.s=ncvar1+alpha*climate.vector[i] 
   quarterly.s=exp(quarterly.s)/(1+exp(quarterly.s)) 
   run.s=run.s*quarterly.s 
} #end for(i) 
adult.surv=run.s 
} 
#Alternative 3: Survival of (partially) migratory species 
# -In this alternative we assume that some proportion of animals spend part of the year 
#  at other, known, locations, and that the climate at these locations affects their 
survival. 
#  As in previous functions, ncvar1 relates to site-specific nonclimate 
#  influences on survival and clim.var1 is a climate variable at the breeding site. The  
#  ncvar2.vector and clim.var2.vector variables are assumed to be vectors with each entry 
corresponding 
#  to site specific nonclimate and climate related influences on survival at each potential 
nonbreeding 
#  site and the variable p.migrate.vector is the proportion of animals from the breeding 
site being  
#  evaluated when the function is called that spends the nonbreeding season at the 
corresponding  
#  nonbreeding site. The population level adult survival during the nonbreeding season is 
taken as the 
#  weighted average of the nonbreeding season survival at each nonbreeding site, weighted 
by the  
#  proportion migrating to each nonbreeding site. 
adult.surv.function=function(ncvar1, ncvar2.vector, clim.var1, clim.var2.vector, 
p.migrate.vector){ 
   breeding.s=ncvar1+alpha1*clim.var1 
   breeding.s=exp(breeding.s)/(1+exp(breeding.s)) 
   nonbreeding.s.vector=ncvar2.vector+alpha2*clim.var2.vector 
   nonbreeding.s.vector=exp(nonbreeding.s.vector)/(1+exp(nonbreeding.s.vector))    
   nonbreeding.s.vector=p.migrate.vector*nonbreeding.s.vector 
   nonbreeding.s=sum(nonbreeding.s) 
   adult.s=breeding.s*nonbreeding.s 
}  
 
#Stage transitions (e.g., plant growth) 
# -This example assumes that individuals only move up stage-classes (e.g., they grow but 
don't shrink) 
#  with the probability of growing 0, 1,...K classes described by a negative exponential 
distribution. 
#  The probability distribution for growth from each stage to larger stages is calculated 
in a separate 
#  function, prob.function, called by the main growth.function. An alternative strategy 
would be to use 
#  a multinomial probability distribution with transition rates calculated outside of the 
SEED model. The 
#  vector p.class.vector contains the proportion of the population in each stage at the 
start of the year.  
#  The vectors ncvar1.vector and alpha.vector are used to calculate the stage-specific 
transition rates  
#  given the projected value of the single climate variable, clim1.var. The return variable 
contains the 
#  proportion of the population in each class after growth. New individuals entering the 
smallest class  
  should be accounted for after the growth function is called.  
 
prob.function=function(alpha, ncvar1, clim.var1, start.class, max.class){ 
   like=rep(0,max.class) 
   for(i in start.class:max.class){ 
     like[i]=exp(-(ncvar1+alpha*clim.var1)*(i-start.class))} 
   prob.vect=like/sum(like) 
   } #end for(i) 
} 
   
growth.function=function(p.class.vector, ncvar1.vector, alpha.vector, clim1.var) 
   new.p.class.vector=rep(0,length(p.class.vector)) 
   for(i in 1:length(p.class.vector){ 
     prob.vect=prob.function(alpha1[i],ncvar.vector[i], clim1.var, i, length(p.class.vector)) 
     for(ii in 1:length(p.class.vector){ 
       new.p.class.vector[ii]=new.p.class.vector[ii]+p.class.vector[i]*prob.vect[ii] 
     } #end for(ii) 
   } #end for(i) 
   new.p.class.vector= new.p.class.vector/sum(new.p.class.vector)   #ensures new proportions sum 
to 1 
} 
################################################################################################# 
####   V.   Read in projected future climate conditions      ###########     
################################################################################################# 
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# Use a separate .csv file for each climate variable used. In the examples below, we assume that 
each  
# pre-adult life stage is modeled as a function of two climate variables at the breeding site and 
that adult  
# survival is modeled as a function of two climate variables at the breeding site and one at the 
nonbreeding  
# site. Each file should contain the following columns: site.id, year, (optional) 
quarter/month/week, climate  
# data. There should be as many climate data columns as gcm projections used. Time labels are 
assumed here to  
# correspond to the period being predicted. That is, climate values for 2050 are used to 
calculate vital rates  
# that determine the population in 2050. 
fecundity.clim.var1.data=read.csv('Drive:/Directory/Sub_Directory/Fecund.Climate.File1.csv',heade
r=T, sep=",") 
fecundity.clim.var2.data=read.csv('Drive:/Directory/Sub_Directory/Fecund.Climate.File2.csv',heade
r=T, sep=",") 
stage1.clim.var1.data= read.csv('Drive:/Directory/Sub_Directory/S1.Clim.var1.data.csv',header=T, 
sep=",") 
stage1.clim.var2.data= read.csv('Drive:/Directory/Sub_Directory/S1.Clim.var2.data.csv',header=T, 
sep=",") 
stage2.clim.var1.data= read.csv('Drive:/Directory/Sub_Directory/S2.Clim.var1.data.csv',header=T, 
sep=",") 
stage2.phenol.clim.var1.data= 
read.csv('Drive:/Directory/Sub_Directory/S2.Clim.var2.data.csv',header=T, sep=",") 
stage3.clim.var1.data= read.csv('Drive:/Directory/Sub_Directory/S3.Clim.var1.data.csv',header=T, 
sep=",") 
stage3.clim.var2.data= read.csv('Drive:/Directory/Sub_Directory/S3.Clim.var2.data.csv',header=T, 
sep=",") 
adult.breed.clim.var1.data= 
read.csv('Drive:/Directory/Sub_Directory/AdBr.Clim.var1.data.csv',header=T, sep=",") 
adult.breed.clim.var2.data= 
read.csv('Drive:/Directory/Sub_Directory/AdBr.Clim.var2.data.csv',header=T, sep=",") 
adult.nonbreed.clmate.data1= 
read.csv('Drive:/Directory/Sub_Directory/AdNB.Climate.data.csv',header=T, sep=",") 
 
################################################################################################# 
#IV.    Loop through 45 years of population dynamics for present day and future climates   ######    
################################################################################################# 
#Intitiate loops to cycle through projections, years and populations 
for(gcm.i in 1:20){     #Start climate projection loop 
for(time in 1:44) {      #Start time loop with time=1 corresponding to 2007 
Ad1.vector=rep(0,pop.count) #Initialize or clear vector of young adults each year 
for(pop in 1:pop.count){  #Start population (site) loop 
# The inner loop runs through each population and updates population size from year to year. 
There are a  
# few decisions that have to be made here based on the life history of the species being modeled: 
# - What life stage(s) are counted? Often the youngest life stages are not included in 
population  
#   counts because they are hard to census (often true for seeds), exhibit the greatest 
variability 
#   from year to year due to high sensitivity of fecundity and juvenile survival to climate 
and other  
#   factors that tend to vary from year to year making it difficult to track population 
trends or changes 
#   in long term population growth trajectories, and/or have little reproductive value.  
# - When do population counts occur relative to breeding, migration, and dispersal? This 
question is  
#   related to the previous question as the timing of a population census may preclude the 
inclusion 
#   of the youngest life stage(s). SEED model output for specific populations will be most 
useful to  
#   managers if counts coincide with the most practical time to conduct population surveys 
in the field, 
#   but other factors need to be considered as well, such as which life stages are 
influenced by  
#   density dependence. 
# - When do life history events such as reproduction, dispersal, migration, and mortality 
take place 
#   relative to each other? This determines the order in which the life history functions 
are called 
#   and from which locations climate projections need to cover for each life stage. 
# 
# The example that follows corresponds to a long-lived species with two pre-adult life stages 
occurring in  
# the first year. Population censuses occur just prior to breeding. Dispersal happens after the 
second 
# stage, and individuals do not breed until they are second year of life. Consequently two adult 
stages are  
# tracked, one year olds, which do not breed, and >1 year old adults which breed. The example is 
a single-sex  
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# model, which assumes that individuals of one sex (typically males) are capable of mating with 
multiple members  
# of the other sex to such a degree that their numbers never limit population-level reproduction. 
Single-sex  
# models also apply to self-pollinating plants and organisms that reproduce asexually.  
 
# Calculate new individuals entering population due to reproduction as per-capita birth-rates*N2 
adults 
# Pull out site-specific variables ncvar1, ncvar2 from Landscape data frame, and site/year/gcm 
specific 
# climate variables clim.var1, clim.var2 from fecundity.clim.var1.data and 
fecundity.clim.var2.data,  
# respectively. In this example, we assume that the two climate variables have a single value for 
each  
# year (e.g., January precipitation, or the mean daily temperature averaged from June through 
August) 
# so that the columns of the corresponding data frames are: site.id, year, gcm1, gcm2... gcm.20.  
ncvar1=Landscape$fec.ncvar1[pop] 
ncvar2=Landacape$fec.ncvar2[pop] 
clim.var1= fecundity.clim.var1.data[fecundity.clim.var1$site.id==Landscape$site.id[pop] & 
fecundity.clim.var1$year==(time+2006), gcm.i+2] 
clim.var2= fecundity.clim.var1.data[fecundity.clim.var2$site.id==Landscape$site.id[pop] & 
fecundity.clim.var2$year==(time+2006), gcm.i+2] 
Fecundity=fecundity.function(ncvar1, ncvar2, clim.var1, clim.var2) 
S1=Fecundity*SEED.OUTPUT$N2[SEED.OUTPUT$GCM==gcm.i & SEED.OUPUT$POP==Landscape$site.id[pop] & 
SEED.OUPUT$YR==(time+2005)] 
# Calculate stage 1 survival, pulling the site-specific variables and climate variables as 
described for  
# fecundity. 
ncvar1=Landscape$S1.ncvar1[pop] 
ncvar2=Landacape$S1.ncvar2[pop] 
clim.var1= stage1.clim.var1.data[stage1.clim.var1$site.id==Landscape$site.id[pop] & 
stage1.clim.var1$year==(time+2006), gcm.i+2] 
clim.var2= stage1.clim.var1.data[stage1.clim.var2$site.id==Landscape$site.id[pop] & 
stage1.clim.var2$year==(time+2006), gcm.i+2] 
S1.surv= stage1.surv.function(ncvar1, ncvar2, clim.var1, clim.var2) 
S2=S1*S1.surv 
 
# Calculate stage 2 phenology, pulling the site-specific variables and climate variables  
# as described for fecundity. 
ncvar1=Landscape$S2.phenol.ncvar1[pop] 
clim.var1= stage2.phenol.clim.var1.data[stage1.clim.var1$site.id==Landscape$site.id[pop] & 
stage2.phenol clim.var1$year==(time+2006), gcm.i+2] 
stage.length=phenol.function(ncvar1, clim.var1) 
 
# Calculate stage 2 survival, pulling the site-specific variables and climate variables  
# as described for fecundity. 
ncvar1=Landscape$S2.ncvar1[pop] 
clim.var1= stage2.clim.var1.data[stage1.clim.var1$site.id==Landscape$site.id[pop] & 
stage2.clim.var1$year==(time+2006), gcm.i+2] 
S2.surv=stage2.surv.function(ncvar1, stage.length, clim.var1) 
Ad1=S2*S2.surv 
# Calculate adult survival, pulling the site-specific variables and climate variables  
# as described for fecundity except that survival is tracked quarterly, so there the  
# climate variables have a value for each quarter, and the projected values for the first 
# gcm are in the fourth column (the third column indicating the corresponding quarter). This call 
matches 
# Alternative 2 for the adult survival functions. 
# Create vector of adults in each stage from recorded population size in SEED.OUT in previous 
time step 
adults.start=(SEED.OUTPUT$N1[SEED.OUTPUT$GCM==gcm.i & SEED.OUPUT$POP==Landscape$site.id[pop] & 
SEED.OUPUT$YR==(time+2005)], SEED.OUTPUT$N2[SEED.OUTPUT$GCM==gcm.i & 
SEED.OUPUT$POP==Landscape$site.id[pop] & SEED.OUPUT$YR==(time+2005)]) 
ncvar1=Landscape$Ad.ncvar1[pop] 
clim.var.q1=adult.breed.clim.var1.data[adult.breed.clim.var1$site.id==Landscape$site.id[pop] & 
adult.breed.clim.var1$year==(time+2006) & adult.breed.clim.var1$quarter==1, gcm.i+3] 
clim.var.q2=adult.breed.clim.var1.data[adult.breed.clim.var1$site.id==Landscape$site.id[pop] & 
adult.breed.clim.var1$year==(time+2006) & adult.breed.clim.var1$quarter==2, gcm.i+3] 
clim.var.q3=adult.breed.clim.var1.data[adult.breed.clim.var1$site.id==Landscape$site.id[pop] & 
adult.breed.clim.var1$year==(time+2006) & adult.breed.clim.var1$quarter==3, gcm.i+3] 
clim.var.q4=adult.breed.clim.var1.data[adult.breed.clim.var1$site.id==Landscape$site.id[pop] & 
adult.breed.clim.var1$year==(time+2006) & adult.breed.clim.var1$quarter==4, gcm.i+3] 
adult.surv=adult.surv.function(ncvar1, clim.var.q1, clim.var.q2, clim.var.q3, clim.var.q4) 
adults=adults.start*adult.surv 
# Number of >1 yr old adults is set to number adults in both stages that survive rounded to 
nearest integer 
# and recorded in appropriate entry of SEED.OUTPUT 
SEED.OUTPUT$N2[SEED.OUTPUT$GCM==gcm.i & SEED.OUPUT$POP==Landscape$site.id[pop] & 
SEED.OUPUT$YR==(time+2005)]=round(sum(adults)) 
# Number of 1 yr old adults depends on dispersal, so the next step is to record the number of Ad1 
adults  
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# for each population.  
Ad1.vector[pop]=Ad1 
} #end for(pop) 
# Track dispersal. In this example we assume dispersal Alternative 1. 
Disp.matrix=Ad1*disp.matrix 
# Sum over each source population the number of immigrants (or remaining 1 yr old adults) to get 
the  
# total 1 yr old adults for each population and record in the appropriate entry of SEED.OUTPUT 
for(i in 1:pop.count){ 
   tot.ad1=round(sum(Disp.matrix)) 
   SEED.OUTPUT$N2[SEED.OUTPUT$GCM==gcm.i & SEED.OUPUT$POP==Landscape$site.id[pop] & 
SEED.OUPUT$YR==(time+2005)]=tot.ad1 
} #end for(i) 
} #end for(time) 
} #end for(gcm) 
 
#write output to file 
write.csv(SEED.OUTPUT, "C:/directory/sub-directory/filename.csv") 
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8.6 Appendix 8.6 Snowy plover migration table. Values are the expected proportion of 
individuals migrating from a given site to each potential overwinter site. Site abbreviations 
listed below table.  

 
From 
\to TE BL CP BC SRI ML DB VS PB MBB SS PS ML HMB WS PR MB ER CB HL B CoB SRS MiB 

TE 0.837 0.019 0.018 0.015 0.014 0.014 0.012 0.011 0.010 0.009 0.008 0.006 0.006 0.004 0.004 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 

BL 0.016 0.837 0.018 0.016 0.014 0.014 0.012 0.011 0.010 0.009 0.008 0.007 0.006 0.004 0.004 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 

CP 0.014 0.017 0.837 0.016 0.015 0.014 0.013 0.012 0.010 0.009 0.008 0.007 0.006 0.005 0.005 0.004 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.000 

BC 0.012 0.014 0.015 0.837 0.015 0.015 0.013 0.012 0.011 0.010 0.009 0.007 0.006 0.005 0.005 0.004 0.003 0.002 0.001 0.001 0.001 0.001 0.001 0.000 

SRI 0.010 0.012 0.013 0.015 0.837 0.016 0.014 0.013 0.012 0.010 0.009 0.008 0.007 0.005 0.005 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 

ML 0.010 0.012 0.012 0.014 0.016 0.837 0.015 0.013 0.012 0.011 0.010 0.008 0.007 0.005 0.005 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.001 0.000 

DB 0.009 0.010 0.011 0.013 0.014 0.014 0.837 0.015 0.013 0.012 0.010 0.008 0.007 0.006 0.006 0.005 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.000 

VS 0.008 0.009 0.010 0.011 0.013 0.013 0.014 0.837 0.014 0.013 0.011 0.009 0.008 0.006 0.006 0.005 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.000 

PB 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.837 0.014 0.013 0.010 0.009 0.007 0.007 0.006 0.004 0.002 0.002 0.002 0.001 0.001 0.001 0.000 

MBB 0.006 0.008 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.837 0.014 0.011 0.010 0.008 0.008 0.006 0.004 0.003 0.002 0.002 0.001 0.001 0.001 0.000 

SS 0.006 0.007 0.007 0.008 0.009 0.010 0.011 0.012 0.013 0.014 0.837 0.013 0.011 0.009 0.009 0.007 0.005 0.003 0.003 0.003 0.001 0.001 0.001 0.000 

PS 0.005 0.006 0.006 0.007 0.008 0.008 0.009 0.010 0.011 0.012 0.014 0.837 0.015 0.011 0.011 0.009 0.006 0.004 0.003 0.003 0.002 0.002 0.001 0.001 

ML 0.004 0.005 0.006 0.006 0.007 0.007 0.008 0.009 0.010 0.011 0.012 0.015 0.837 0.013 0.013 0.011 0.007 0.005 0.004 0.004 0.002 0.002 0.002 0.001 

HMB 0.004 0.004 0.004 0.005 0.006 0.006 0.006 0.007 0.008 0.009 0.010 0.012 0.014 0.837 0.018 0.015 0.010 0.006 0.005 0.005 0.003 0.002 0.002 0.001 

WS 0.004 0.004 0.004 0.005 0.006 0.006 0.006 0.007 0.008 0.009 0.010 0.012 0.014 0.018 0.837 0.015 0.010 0.006 0.005 0.005 0.003 0.002 0.002 0.001 

PR 0.003 0.004 0.004 0.005 0.005 0.005 0.006 0.006 0.007 0.008 0.009 0.011 0.012 0.016 0.016 0.837 0.013 0.008 0.007 0.007 0.004 0.003 0.003 0.001 

MB 0.002 0.003 0.003 0.003 0.004 0.004 0.004 0.005 0.005 0.006 0.007 0.008 0.009 0.012 0.012 0.015 0.837 0.015 0.013 0.012 0.007 0.006 0.005 0.002 

ER 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.004 0.004 0.005 0.006 0.007 0.009 0.009 0.011 0.016 0.837 0.021 0.020 0.011 0.010 0.008 0.003 

CB 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.005 0.006 0.008 0.008 0.009 0.014 0.022 0.837 0.024 0.013 0.011 0.010 0.004 

HL 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.004 0.004 0.005 0.006 0.007 0.007 0.009 0.014 0.021 0.024 0.837 0.014 0.012 0.011 0.004 

B 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.005 0.005 0.006 0.009 0.014 0.017 0.018 0.837 0.028 0.024 0.009 

CoB 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.005 0.005 0.006 0.009 0.013 0.015 0.016 0.030 0.837 0.029 0.011 

SRS 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.005 0.008 0.013 0.015 0.015 0.028 0.032 0.837 0.014 

MiB 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.004 0.005 0.007 0.011 0.013 0.014 0.025 0.028 0.033 0.837 
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Abrev. Site  
TE Tijuana Estuary 
BL Batiquitos Lagoon 
CP Camp Pendleton 
BC Bolsa Chica 
SRI Santa Rosa Island 
ML Mugu Lagoon 
DB Devereaux Beach 
VS Vandenberg South 
PB Pismo Beach 
MBB Morro Bay Beach 
SS San Simeon 
PS Point Sur 
ML Moss Landing 
HMB Half Moon Bay 
WS Warm Springs 
PR Point Reyes 
MB MacKerricher Beach 
ER Eel River Gravel Bars 
CB Clam Beach 
HL Humboldt Lagoons 
B Bandon 
CoB Coos Bay 
SRS Siltcoos River Spit 
MiB Midway Beach 
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8.7 Appendix 8.7 Tadpole stage lengths (days from hatching to metamorphosis) predicted at 
each site each year for the 20 climate projection models (see Appendix 8.1). Site labels are 
abbreviated as follows, first letter: C = coastal, I = inland; second letter; C = CRLF, H = 
Hybrid, N = NRLF. 

 
  Climate Models                 
sites year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
CN3 2006 93.5 93.5 90.6 91.8 92.9 92.0 93.5 91.1 92.8 93.6 93.7 95.3 90.4 94.1 92.9 94.0 96.2 94.9 94.5 94.0 
CN3 2007 90.9 95.6 91.0 93.4 93.8 94.2 93.1 94.8 95.9 95.3 95.1 94.4 93.4 91.6 94.2 94.7 93.8 94.8 94.4 93.5 
CN3 2008 94.0 95.2 93.0 94.4 96.4 93.8 93.5 94.5 93.8 96.2 92.6 95.4 94.7 95.9 95.5 94.5 94.4 95.4 94.4 93.3 
CN3 2009 92.0 91.1 91.4 92.8 93.7 92.6 93.8 94.1 94.7 92.6 93.2 94.8 93.1 95.5 94.2 92.2 93.1 94.7 94.9 93.2 
CN3 2010 94.7 94.2 93.3 91.4 92.4 92.6 95.0 94.8 94.9 93.9 92.9 94.8 92.5 94.6 94.1 94.0 93.4 95.2 94.2 93.5 
CN3 2011 95.0 93.0 93.7 91.7 94.3 93.1 94.7 93.2 96.3 94.3 93.8 94.8 94.1 95.2 94.2 95.5 95.0 94.2 94.2 93.3 
CN3 2012 89.4 93.9 92.2 92.5 94.8 93.0 93.6 94.2 94.0 92.2 92.4 94.4 95.2 95.1 94.2 92.6 94.6 95.3 95.6 93.3 
CN3 2013 95.3 92.1 93.0 93.7 94.5 93.9 93.5 93.5 92.5 90.3 94.5 93.6 93.6 93.9 94.0 93.9 91.9 93.7 93.2 94.1 
CN3 2014 91.3 94.3 93.1 94.2 91.4 90.9 93.2 92.5 93.6 92.9 94.1 94.0 95.0 93.8 92.8 94.9 95.9 94.2 95.1 94.4 
CN3 2015 95.3 94.4 91.0 92.4 89.4 95.6 94.3 92.6 92.8 91.4 93.8 95.3 94.9 92.5 94.2 96.6 94.7 96.2 94.3 93.1 
CN3 2016 91.7 93.2 91.8 94.3 93.8 94.4 93.1 95.6 93.8 92.6 94.7 95.1 93.1 92.5 95.4 95.3 93.2 93.9 92.8 93.5 
CN3 2017 92.2 92.8 92.5 93.5 90.9 92.4 95.9 94.5 93.7 95.2 92.2 93.6 92.8 93.3 92.7 93.9 91.1 93.4 93.7 95.0 
CN3 2018 93.0 93.6 91.5 92.2 93.6 94.6 92.8 95.1 93.9 95.5 92.9 92.9 92.4 94.2 95.1 93.4 94.0 93.0 95.5 93.6 
CN3 2019 93.8 93.5 95.0 92.1 91.3 94.4 93.2 94.1 95.6 94.0 94.5 94.3 92.2 94.3 94.4 92.3 95.3 92.6 94.6 94.9 
CN3 2020 92.3 93.3 92.3 93.4 95.1 93.5 92.3 94.0 93.4 94.7 93.0 94.4 93.9 92.1 95.0 91.5 93.7 95.2 94.1 92.3 
CN3 2021 94.0 95.4 90.2 92.1 95.1 95.7 93.7 92.7 94.5 93.5 96.1 92.7 92.4 93.8 92.9 93.8 94.2 93.5 95.7 92.9 
CN3 2022 95.2 91.6 91.9 93.1 92.6 94.2 93.3 93.3 92.9 94.6 91.7 93.9 94.3 93.3 94.2 94.0 93.5 93.5 94.4 94.0 
CN3 2023 92.4 92.3 91.5 92.6 92.4 92.2 93.7 92.7 93.1 91.6 91.9 92.0 93.1 93.3 93.0 95.7 91.1 93.9 94.9 95.3 
CN3 2024 95.2 94.1 90.4 90.9 96.0 93.4 94.0 93.6 95.5 94.0 91.0 94.5 92.8 93.7 93.0 94.4 95.6 94.6 92.2 93.1 
CN3 2025 92.2 93.9 90.8 92.4 92.5 91.1 92.4 92.6 94.0 92.4 93.7 93.9 94.1 91.7 94.2 94.5 94.1 89.8 94.3 94.0 
CN3 2026 92.1 93.7 93.3 93.2 92.8 93.3 94.3 94.6 94.5 93.7 92.6 95.3 92.3 92.9 91.6 94.9 94.3 91.8 93.9 91.3 
CN3 2027 93.0 93.1 91.9 93.7 95.9 93.2 93.8 95.2 93.5 93.4 91.5 93.7 93.5 92.3 93.9 94.9 94.3 92.4 94.5 93.8 
CN3 2028 93.5 92.5 92.3 93.4 95.2 94.6 93.7 94.0 92.6 94.7 93.8 94.8 92.2 89.8 94.7 92.2 90.7 93.0 95.4 92.9 
CN3 2029 91.9 91.1 93.8 93.1 91.8 92.0 93.7 94.5 94.3 95.6 94.5 93.7 91.7 92.3 95.0 93.9 93.2 92.4 92.5 94.0 
CN3 2030 93.0 94.7 93.2 91.3 92.7 93.0 94.4 90.8 92.7 94.4 93.7 94.6 93.1 92.5 96.1 94.5 92.4 93.7 95.2 93.5 
CN3 2031 93.0 92.3 93.7 91.3 95.1 93.0 94.3 93.4 93.1 93.3 95.8 93.9 93.6 92.2 95.0 94.6 92.7 92.3 91.9 92.3 
CN3 2032 94.6 96.5 91.7 93.5 93.7 94.2 95.9 94.3 93.3 93.4 90.3 93.3 91.5 92.8 91.4 94.8 95.2 92.3 94.3 92.4 
CN3 2033 93.8 94.0 95.5 92.2 92.5 94.0 95.3 97.0 93.0 92.8 93.6 93.7 91.0 93.0 94.6 93.6 92.9 94.1 93.9 94.5 
CN3 2034 91.2 90.8 90.4 92.6 95.5 92.2 94.2 92.9 94.2 94.2 91.2 94.0 93.5 93.1 91.3 93.2 92.2 92.6 95.2 94.9 
CN3 2035 92.3 92.2 90.9 94.3 94.0 93.5 94.0 91.5 94.7 93.0 91.4 93.8 92.5 92.6 93.1 93.9 93.5 93.4 94.5 91.7 
CN3 2036 93.2 90.2 89.0 93.7 93.0 92.6 93.2 95.7 90.5 93.9 91.9 94.6 95.6 91.5 93.1 93.5 93.8 94.1 94.0 91.6 
CN3 2037 93.2 94.7 92.7 91.3 91.9 91.8 92.8 94.3 92.9 94.2 92.8 93.4 92.3 93.2 94.9 93.6 91.4 91.8 91.4 93.6 
CN3 2038 93.1 93.8 91.6 93.3 94.1 93.1 92.9 94.1 94.2 91.8 91.9 94.5 93.3 90.5 92.4 92.3 92.7 95.1 93.1 92.1 
CN3 2039 91.8 96.0 92.1 93.0 93.6 93.1 93.8 94.1 96.6 91.3 92.3 93.7 93.7 93.5 93.4 94.1 89.9 93.3 93.9 93.6 
CN3 2040 93.7 93.1 92.0 92.7 91.8 93.8 93.4 94.0 91.4 92.2 92.2 94.4 93.1 92.8 91.9 92.8 90.9 92.0 95.8 93.8 
CN3 2041 92.7 92.3 93.7 91.2 93.9 93.0 93.2 95.1 92.8 90.2 93.1 94.1 93.5 91.7 92.9 93.6 92.1 90.9 94.5 94.2 
CN3 2042 92.8 92.1 90.0 91.4 91.7 93.6 91.7 93.3 93.6 92.7 95.2 93.6 94.9 90.6 92.9 93.0 92.6 91.1 93.6 94.4 
CN3 2043 93.4 91.6 90.4 93.1 92.9 95.2 92.0 92.2 93.0 90.6 93.0 94.2 92.1 92.1 93.4 92.7 92.3 93.2 94.8 94.0 
CN3 2044 92.6 92.8 93.8 93.8 91.5 94.4 94.4 92.0 91.4 94.3 94.2 93.7 91.4 93.0 93.8 92.3 93.0 93.0 94.1 93.9 
CN3 2045 91.7 93.8 93.9 92.2 92.7 92.0 91.1 91.0 92.0 92.2 93.7 92.9 92.2 92.3 92.2 93.0 92.5 92.9 94.7 91.8 
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CN3 2046 92.6 91.1 92.5 91.1 93.1 92.4 92.2 92.1 92.6 93.5 91.9 94.0 91.4 92.2 92.7 93.4 91.9 93.8 94.2 93.7 
CN3 2047 91.4 91.7 90.8 90.7 92.9 92.3 89.8 95.1 92.6 92.4 92.3 93.1 91.3 92.0 93.9 91.8 92.1 92.5 92.9 94.5 
CN3 2048 92.8 93.0 91.0 91.7 90.6 94.0 92.4 91.8 92.7 93.2 91.7 93.0 92.0 93.2 92.4 92.9 93.4 92.9 93.9 94.5 
CN3 2049 90.4 93.6 92.3 91.3 93.5 92.3 94.9 91.6 92.0 93.7 91.8 93.6 90.8 92.5 91.8 93.4 90.8 92.4 93.7 92.9 
CN3 2050 94.8 93.3 91.7 92.0 91.5 94.5 93.4 93.5 92.7 92.9 92.4 93.0 90.6 92.5 92.6 93.7 92.9 93.4 95.0 93.2 
IN2 2006 125.0 123.6 124.7 124.9 125.0 124.7 125.8 125.4 122.9 124.5 124.7 123.5 123.8 125.2 123.8 124.1 124.2 122.8 126.3 124.7 
IN2 2007 124.1 122.5 122.6 124.5 125.7 124.2 123.6 122.7 123.9 124.8 126.1 123.1 125.2 123.1 124.2 125.1 126.5 124.4 123.2 123.6 
IN2 2008 123.7 123.6 124.3 124.2 124.0 124.4 125.2 123.9 125.3 122.7 124.2 124.2 124.1 124.1 124.7 122.5 124.4 123.8 123.6 123.0 
IN2 2009 124.1 124.9 126.6 123.9 124.6 124.6 125.3 122.7 123.0 123.8 123.8 124.4 123.3 123.1 126.0 123.8 122.9 124.9 124.1 122.4 
IN2 2010 124.6 125.0 125.2 123.8 124.7 125.8 123.6 125.5 123.4 122.9 124.8 123.5 123.4 123.6 123.3 123.9 124.3 124.5 122.5 123.2 
IN2 2011 125.3 123.1 124.6 123.9 124.8 124.3 122.2 123.2 122.2 124.8 123.0 125.0 123.9 123.5 123.4 124.2 123.5 123.3 122.6 122.9 
IN2 2012 125.6 124.2 127.1 122.9 125.9 123.3 122.9 124.4 124.4 126.0 123.4 123.3 124.3 125.7 124.3 122.4 124.5 122.6 125.8 123.9 
IN2 2013 124.0 124.8 123.2 124.1 125.5 123.9 124.3 123.4 123.7 125.7 124.8 125.1 124.6 122.9 125.7 124.9 122.5 123.9 124.2 125.1 
IN2 2014 122.2 123.9 124.6 124.6 123.5 123.7 123.9 123.0 123.6 123.1 125.9 124.0 123.5 127.8 122.2 123.5 125.3 123.5 123.7 122.9 
IN2 2015 123.3 123.5 125.0 123.6 124.5 124.0 123.0 124.5 123.4 124.7 123.1 123.4 126.1 125.8 124.7 125.5 122.6 124.1 122.4 123.8 
IN2 2016 122.7 123.1 121.8 123.6 123.7 123.4 123.0 122.4 125.2 124.2 123.5 124.7 123.6 126.4 126.0 123.5 125.1 126.1 123.9 124.1 
IN2 2017 124.6 124.1 123.8 122.7 124.0 124.4 123.7 122.6 125.5 124.7 124.1 124.0 125.7 123.8 124.3 126.2 124.5 126.0 124.7 123.5 
IN2 2018 124.2 124.1 123.5 125.2 124.9 124.8 122.2 124.0 125.1 123.4 126.7 122.4 122.8 124.0 124.4 125.0 123.7 125.8 122.5 125.2 
IN2 2019 126.7 123.2 125.1 124.1 123.7 125.3 126.6 123.3 123.3 122.2 125.7 123.9 124.9 125.1 123.0 123.4 124.4 124.7 125.1 123.5 
IN2 2020 124.2 123.7 124.9 125.9 124.9 126.2 123.4 122.8 124.2 122.4 124.8 123.4 123.4 124.1 122.9 124.3 125.8 126.2 124.4 122.8 
IN2 2021 125.0 121.7 124.5 124.4 123.7 123.6 125.1 125.3 124.1 123.7 125.4 123.5 124.3 123.7 124.3 123.1 124.7 126.1 123.5 125.5 
IN2 2022 122.5 124.7 122.0 123.5 124.3 123.8 125.8 123.8 126.6 123.7 123.7 122.0 124.6 122.5 125.6 123.0 123.4 124.7 122.4 124.5 
IN2 2023 124.4 124.5 128.9 125.2 125.8 124.9 123.3 124.0 125.8 125.0 124.6 123.2 124.3 126.8 125.4 124.9 124.3 126.4 123.3 124.3 
IN2 2024 124.2 123.1 124.0 124.7 126.4 124.6 124.3 124.9 125.6 126.1 123.2 125.4 125.0 123.1 123.1 125.4 124.0 122.6 123.4 123.0 
IN2 2025 122.7 126.6 123.9 123.8 124.1 123.6 124.3 123.4 123.5 123.9 126.7 123.9 126.2 122.1 125.1 124.5 123.0 124.7 122.5 123.1 
IN2 2026 124.1 122.6 125.1 125.7 124.5 124.6 125.1 123.6 124.0 124.4 127.0 124.8 125.8 123.2 123.6 124.5 125.4 125.9 123.7 123.0 
IN2 2027 123.8 124.2 126.6 124.3 126.3 124.1 124.4 124.9 124.1 122.3 123.5 124.4 123.5 122.8 123.8 123.8 126.0 124.8 123.8 124.8 
IN2 2028 124.7 124.9 124.4 124.1 124.6 123.2 123.8 123.5 124.6 122.6 125.7 124.6 122.9 122.3 124.1 124.3 124.6 122.2 124.1 124.3 
IN2 2029 127.6 123.9 128.8 125.5 126.8 124.6 126.0 123.6 123.1 124.0 124.0 123.8 126.6 125.4 124.1 123.2 125.3 123.9 123.2 123.8 
IN2 2030 122.7 124.1 124.8 124.9 121.9 125.0 125.4 122.7 126.2 126.0 122.8 125.9 123.9 125.8 124.1 123.6 125.2 124.4 124.1 123.6 
IN2 2031 123.3 123.7 123.9 125.0 123.2 125.6 124.1 123.6 122.4 123.3 123.7 123.8 126.2 125.8 123.1 123.3 125.9 124.5 124.1 123.9 
IN2 2032 123.9 125.6 123.2 125.5 127.4 123.9 122.4 125.1 124.2 123.4 122.4 123.7 124.1 125.1 124.0 124.5 125.1 123.8 126.5 123.3 
IN2 2033 123.5 122.5 125.7 122.6 122.7 126.0 122.6 122.5 125.7 125.9 123.9 123.2 123.8 126.6 123.8 123.8 124.8 126.2 123.5 123.5 
IN2 2034 124.6 123.2 125.2 125.2 123.3 123.3 123.0 124.3 127.0 126.0 124.4 122.8 125.2 125.4 123.5 124.2 127.3 124.4 124.4 125.8 
IN2 2035 124.2 124.7 125.4 122.7 125.3 127.4 124.6 123.1 123.9 124.3 123.9 124.4 123.2 125.4 124.7 124.9 124.7 124.0 123.7 125.1 
IN2 2036 125.9 124.5 122.2 125.8 124.5 128.3 126.6 123.2 121.4 123.5 124.4 122.8 127.2 123.7 122.7 125.4 124.7 124.2 124.4 124.5 
IN2 2037 127.1 123.5 125.6 123.4 124.1 125.5 124.3 123.8 123.8 123.4 123.7 123.5 126.0 124.7 124.0 122.9 124.4 123.4 125.6 124.6 
IN2 2038 124.4 125.3 126.1 123.8 124.4 125.4 123.9 126.9 125.2 126.7 124.6 122.4 124.1 123.6 124.8 126.5 129.5 124.4 124.0 123.8 
IN2 2039 124.4 123.8 125.2 125.6 125.7 125.8 125.2 124.1 126.2 124.7 124.6 122.8 124.8 124.1 126.4 126.1 124.4 122.9 124.5 124.5 
IN2 2040 125.2 123.6 123.9 124.6 124.6 124.2 124.6 124.0 123.6 124.6 123.3 125.5 126.9 126.6 125.9 125.3 123.3 125.0 124.8 125.8 
IN2 2041 125.1 124.5 124.9 123.7 124.3 123.7 126.1 121.7 125.8 127.3 124.7 123.7 124.5 123.1 123.7 123.6 124.4 126.7 123.6 124.9 
IN2 2042 125.2 124.4 122.5 123.7 126.1 125.5 125.1 123.5 124.5 125.7 124.3 124.6 125.0 126.6 125.3 125.5 128.4 124.2 122.9 123.3 
IN2 2043 124.8 124.4 124.2 124.5 125.1 125.3 124.8 122.9 123.9 122.8 125.8 124.6 124.1 123.9 125.8 124.9 125.3 126.0 125.0 124.3 
IN2 2044 124.4 123.3 124.9 124.4 124.2 124.5 124.6 125.0 125.2 126.0 123.6 123.5 126.3 127.5 124.9 123.5 125.1 124.1 123.9 125.1 
IN2 2045 124.5 126.6 125.3 123.3 124.8 124.6 126.8 125.3 123.6 127.8 127.9 122.6 123.7 123.6 126.1 122.8 124.4 126.5 124.7 124.9 
IN2 2046 124.4 123.7 124.2 126.1 126.7 125.0 125.9 124.4 124.0 124.5 123.0 124.3 124.3 125.0 126.2 126.7 125.1 125.3 124.7 125.8 
IN2 2047 123.4 124.8 126.1 124.4 124.2 126.7 124.9 126.0 125.5 125.3 124.3 123.1 126.3 124.6 126.8 123.6 123.1 126.4 124.1 123.8 
IN2 2048 127.9 124.4 128.2 125.1 124.1 124.7 125.5 125.9 124.9 123.5 124.8 124.4 124.8 125.1 122.7 125.5 125.9 124.7 124.6 123.9 
IN2 2049 123.2 125.3 126.6 124.7 124.7 122.8 126.7 122.5 126.4 125.2 125.2 123.2 125.4 125.3 125.0 125.3 126.4 125.1 125.1 124.8 
IN2 2050 124.5 126.2 127.9 124.7 123.7 125.7 123.8 126.2 123.7 125.6 124.4 123.2 124.9 129.1 121.0 125.2 126.5 123.5 123.3 122.2 
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IN1 2006 126.9 125.5 126.6 127.6 126.6 126.7 128.5 126.9 124.5 126.6 126.1 125.8 126.1 127.4 125.5 126.6 126.1 125.4 127.9 126.3 
IN1 2007 124.8 124.5 124.9 127.1 127.3 126.5 125.0 125.0 126.6 126.6 128.0 125.2 126.7 124.9 126.4 126.9 127.7 126.4 125.7 125.0 
IN1 2008 124.8 125.3 126.3 126.0 124.9 126.1 127.3 125.4 127.6 125.0 126.2 125.8 125.4 125.5 126.4 124.0 126.2 125.7 125.4 125.3 
IN1 2009 126.5 128.4 129.8 125.9 126.6 125.9 127.4 124.2 123.9 125.5 125.6 126.3 125.7 124.3 127.6 125.7 125.1 126.3 125.9 124.1 
IN1 2010 126.3 126.9 127.2 125.5 125.9 128.0 125.8 127.2 124.9 124.6 126.2 126.2 125.2 125.5 125.3 125.6 126.4 126.2 124.5 125.1 
IN1 2011 126.9 124.6 126.3 126.0 127.3 126.6 124.7 125.3 123.3 127.1 125.0 127.2 125.9 124.2 125.7 125.4 125.7 125.2 124.5 125.2 
IN1 2012 127.6 126.8 128.9 124.1 128.0 124.7 124.9 126.4 126.4 128.0 124.5 125.2 126.2 128.9 127.0 124.4 126.1 124.5 128.9 127.2 
IN1 2013 125.4 126.5 125.7 125.8 127.8 125.3 126.0 125.2 126.5 128.1 126.5 125.8 126.3 125.0 128.0 126.6 123.7 126.4 125.3 126.9 
IN1 2014 124.5 125.9 127.0 126.0 125.3 125.6 126.3 124.8 126.2 125.0 128.1 125.0 124.4 129.9 124.0 126.0 126.9 125.2 125.3 123.9 
IN1 2015 124.4 124.5 127.0 125.3 126.9 125.6 124.7 127.3 125.3 126.6 123.6 125.4 128.4 127.4 127.4 127.0 124.3 125.0 124.6 126.2 
IN1 2016 124.4 125.4 124.1 125.7 125.9 126.0 124.7 124.6 127.8 126.8 125.1 125.7 126.2 128.7 127.6 124.7 127.6 128.5 126.2 125.6 
IN1 2017 127.0 126.0 126.3 124.9 125.7 127.7 125.6 125.1 127.8 127.0 126.6 125.2 128.0 125.6 126.5 128.2 126.8 128.4 126.6 125.5 
IN1 2018 126.7 125.6 125.4 127.6 127.1 127.1 124.6 125.5 126.6 125.7 129.1 125.6 124.3 125.7 126.4 127.9 125.5 128.8 124.4 127.1 
IN1 2019 128.2 125.7 126.8 126.8 124.9 127.6 128.5 125.2 124.9 123.6 127.9 126.0 127.0 127.8 124.4 125.9 126.1 127.0 127.9 125.6 
IN1 2020 126.3 125.7 126.9 129.0 126.4 128.3 125.4 124.3 126.7 124.1 126.5 125.5 124.8 126.0 124.4 126.9 128.4 127.3 126.4 125.0 
IN1 2021 127.5 123.7 126.5 126.5 125.8 125.9 126.6 127.7 126.0 125.3 127.7 125.6 126.6 126.3 126.3 124.6 126.6 128.7 124.4 127.5 
IN1 2022 124.5 126.8 124.0 126.3 126.2 125.6 128.0 125.5 129.1 126.1 125.5 123.2 126.0 123.6 127.8 124.3 125.8 127.0 124.2 126.8 
IN1 2023 126.5 127.2 131.5 125.4 127.3 127.3 126.5 126.5 127.4 127.7 126.9 124.2 126.6 130.1 127.3 127.1 125.7 129.5 125.8 126.3 
IN1 2024 126.0 124.8 127.2 127.6 128.8 127.1 125.8 126.0 127.0 128.3 126.0 127.2 127.1 125.5 124.6 126.9 125.9 124.5 125.8 124.9 
IN1 2025 124.7 128.5 126.9 126.2 127.3 126.1 127.4 125.3 125.3 126.3 128.7 125.3 128.1 124.3 127.1 127.3 125.4 126.8 123.9 124.5 
IN1 2026 126.9 124.0 126.8 128.1 125.8 126.0 126.5 125.6 125.7 126.3 128.5 127.1 128.5 125.4 125.9 126.5 127.3 128.2 124.4 125.3 
IN1 2027 126.1 127.2 130.1 127.1 128.4 126.3 126.2 126.5 125.9 123.9 124.9 127.0 126.0 124.5 126.1 125.8 128.1 127.1 125.0 127.6 
IN1 2028 126.1 126.7 126.6 125.9 126.9 125.5 126.2 125.5 127.0 124.1 127.7 126.8 124.8 124.2 125.5 126.3 127.0 124.5 126.5 126.0 
IN1 2029 132.5 125.9 131.5 127.1 128.7 126.3 127.6 125.8 125.1 125.8 125.9 125.1 128.8 127.8 126.6 125.3 127.7 126.5 125.1 124.9 
IN1 2030 124.4 125.9 126.7 127.2 124.2 127.0 127.8 125.5 127.9 128.2 125.0 127.5 126.6 128.0 126.4 126.4 127.2 126.1 125.5 125.7 
IN1 2031 125.1 125.8 125.7 126.7 124.9 127.4 126.0 125.6 124.5 125.1 125.1 125.1 128.1 128.5 124.7 124.6 128.2 126.4 126.2 126.7 
IN1 2032 126.4 127.1 125.6 128.2 128.7 125.5 123.6 126.7 126.3 125.9 125.4 125.4 126.9 127.2 125.8 126.2 127.3 126.1 129.3 125.0 
IN1 2033 124.9 123.5 127.1 124.4 125.0 127.4 124.5 123.8 128.1 126.9 125.8 124.6 125.6 128.3 126.5 125.5 125.9 128.2 125.9 126.5 
IN1 2034 127.0 125.9 126.5 128.0 125.7 124.8 125.4 126.4 127.8 127.7 127.8 124.9 128.1 127.8 125.2 126.5 130.1 127.3 126.8 127.2 
IN1 2035 127.0 126.8 127.3 125.0 127.2 129.7 125.7 125.2 125.2 126.1 125.5 126.5 125.6 127.5 127.1 126.5 125.9 125.8 125.9 127.1 
IN1 2036 128.1 127.0 124.8 128.0 126.1 130.4 128.7 125.0 123.3 125.9 126.7 125.1 129.5 126.0 124.8 127.6 126.6 126.6 126.2 126.4 
IN1 2037 129.2 125.3 127.3 125.4 126.4 127.0 126.8 125.5 125.9 125.4 125.8 124.4 128.5 126.4 125.6 125.1 126.3 124.6 127.7 126.0 
IN1 2038 125.6 127.4 128.8 125.3 126.5 127.7 125.9 129.3 126.5 129.3 127.1 124.9 126.7 126.0 127.3 129.2 131.3 126.7 125.4 125.7 
IN1 2039 126.2 125.6 127.3 127.3 127.8 127.6 126.9 126.0 128.5 126.5 127.0 123.9 126.5 126.5 127.5 127.4 127.0 124.6 125.6 126.1 
IN1 2040 126.8 126.0 126.3 126.9 126.7 125.9 125.8 126.0 125.7 126.4 125.6 127.3 128.7 128.7 127.8 128.2 124.9 127.3 126.4 127.2 
IN1 2041 126.7 127.4 127.4 126.3 125.7 124.9 128.4 123.3 127.5 130.1 126.3 125.9 125.9 126.0 126.5 124.8 125.9 128.6 125.4 126.7 
IN1 2042 128.3 126.4 124.1 126.3 127.8 128.7 126.6 124.7 125.8 128.7 125.3 127.3 127.4 129.1 127.0 127.4 131.6 126.3 125.1 124.8 
IN1 2043 126.2 126.8 126.6 126.3 126.8 127.0 127.7 124.7 126.0 124.1 128.7 126.4 126.0 126.1 127.8 125.9 128.0 127.7 126.3 126.2 
IN1 2044 126.8 125.3 126.2 126.2 125.4 126.0 126.8 127.7 126.8 127.9 125.6 125.1 129.4 129.5 126.9 125.8 126.9 125.6 125.9 127.2 
IN1 2045 126.4 128.9 128.3 124.9 127.6 125.7 129.2 128.0 126.2 128.5 129.1 123.9 127.1 125.2 127.9 124.7 127.2 129.8 127.2 127.7 
IN1 2046 126.3 125.5 126.4 128.4 128.7 127.1 129.4 126.1 125.8 126.9 125.9 125.6 126.6 126.6 127.6 127.7 128.3 127.2 127.5 127.4 
IN1 2047 125.2 127.5 129.8 126.2 126.6 128.9 126.7 128.5 129.2 127.7 126.3 125.5 129.1 126.2 129.1 124.7 125.3 128.7 126.3 126.3 
IN1 2048 130.1 125.8 131.0 127.9 125.7 127.2 127.4 129.0 127.1 125.1 127.8 127.3 126.8 127.4 124.4 127.5 128.4 126.5 127.4 125.7 
IN1 2049 125.8 127.1 128.5 126.6 126.5 125.0 130.3 124.4 128.6 127.7 127.0 125.1 127.7 126.7 127.5 127.0 128.6 128.4 127.4 127.7 
IN1 2050 126.0 127.9 129.5 127.2 126.1 126.9 124.8 128.6 125.7 128.5 126.9 125.5 126.8 131.7 123.1 127.5 128.9 125.0 125.4 124.2 
IN3 2006 108.0 108.4 106.7 108.2 107.9 108.1 108.1 107.4 108.2 108.0 109.1 108.8 107.2 108.4 108.6 108.7 109.3 109.3 109.4 109.2 
IN3 2007 107.5 108.1 105.8 107.9 109.5 109.1 109.0 108.4 110.1 109.9 108.7 108.2 108.8 106.3 108.1 108.9 109.6 108.6 108.7 107.9 
IN3 2008 108.4 107.6 107.9 108.4 110.1 109.6 108.6 109.0 109.2 109.2 108.9 108.8 109.1 108.9 109.7 108.6 108.5 109.6 108.7 108.1 
IN3 2009 107.4 107.3 107.4 107.9 109.6 107.9 109.3 108.1 108.9 107.6 107.2 109.1 108.1 108.4 110.0 106.5 108.0 109.9 109.1 108.3 
IN3 2010 108.7 108.4 108.3 107.4 107.6 107.9 109.1 109.7 109.4 108.1 108.4 109.4 107.1 109.2 108.4 109.1 108.6 109.2 109.1 107.7 
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IN3 2011 109.7 107.9 108.8 107.3 108.6 108.4 108.8 108.6 109.5 109.0 108.4 109.0 108.5 109.3 108.8 110.0 109.0 109.1 108.9 108.1 
IN3 2012 107.3 108.9 108.2 107.7 109.1 108.0 109.0 109.8 109.1 106.4 108.3 109.0 109.6 109.2 109.0 107.1 108.7 109.4 110.4 108.6 
IN3 2013 109.1 107.5 108.4 108.6 108.6 108.4 108.5 108.1 108.0 106.0 108.8 108.2 108.0 108.2 108.5 108.7 107.7 108.6 108.2 108.5 
IN3 2014 107.6 108.5 108.6 108.5 107.1 107.0 108.1 108.1 109.1 108.9 108.4 108.9 109.5 110.1 108.5 108.8 110.1 108.3 109.3 109.0 
IN3 2015 109.1 107.6 107.4 107.8 107.6 109.6 108.3 108.2 107.7 107.8 107.5 109.4 110.2 108.6 109.1 110.5 108.9 110.7 108.4 107.8 
IN3 2016 106.7 109.6 107.5 109.1 108.4 108.7 108.6 109.3 108.6 108.0 108.9 109.4 107.6 108.6 110.0 109.6 108.9 108.7 107.6 107.4 
IN3 2017 107.2 108.4 107.5 107.8 107.3 107.7 108.4 108.1 109.0 109.4 107.4 108.5 107.7 108.7 108.1 108.3 107.5 108.7 108.8 108.8 
IN3 2018 108.2 108.9 107.4 107.7 108.9 110.0 108.4 109.2 108.5 109.1 109.2 108.3 107.7 108.7 109.0 108.9 108.3 108.9 109.4 109.4 
IN3 2019 108.7 109.2 109.7 107.4 107.8 110.0 109.6 108.9 109.2 107.9 109.1 108.4 107.9 108.8 108.9 106.9 109.4 108.9 109.2 109.1 
IN3 2020 108.4 108.0 107.7 109.1 109.5 109.0 108.2 109.0 107.5 107.7 107.2 108.8 108.1 108.6 108.2 107.6 109.2 109.4 107.4 107.2 
IN3 2021 108.8 108.2 106.9 108.0 108.3 109.0 108.3 108.2 109.1 108.4 110.3 107.6 108.2 108.4 107.7 108.7 108.9 109.4 109.6 107.8 
IN3 2022 108.9 108.0 106.9 108.1 107.5 108.4 108.5 107.5 108.3 108.1 107.6 107.7 108.8 107.8 108.0 108.2 108.8 109.2 108.3 108.9 
IN3 2023 109.7 108.7 109.0 107.6 109.6 108.5 108.3 108.2 108.1 108.5 107.5 108.0 107.9 109.3 108.1 109.2 106.3 110.0 108.7 109.3 
IN3 2024 108.5 108.4 107.1 106.7 110.5 108.1 108.3 109.1 109.4 108.0 105.6 109.4 108.4 108.6 107.8 108.5 109.6 109.1 107.7 108.1 
IN3 2025 107.6 108.7 107.1 107.5 108.4 106.6 108.4 107.9 108.1 108.4 109.6 108.1 108.9 107.4 109.2 109.2 108.4 105.6 108.9 108.0 
IN3 2026 107.9 108.2 108.8 109.7 109.0 108.5 109.5 109.0 109.4 108.8 108.6 109.2 108.6 108.2 107.7 109.5 109.3 108.2 108.4 107.7 
IN3 2027 108.2 108.4 108.4 108.1 110.7 108.3 108.4 110.2 108.5 108.8 107.2 108.4 108.6 107.3 108.3 109.3 109.6 108.9 108.4 108.7 
IN3 2028 107.9 108.8 107.4 107.9 109.1 108.0 108.3 108.3 107.5 108.6 108.6 109.0 107.8 106.7 109.3 108.0 105.8 106.9 109.3 107.7 
IN3 2029 107.8 108.1 110.6 109.0 108.9 108.1 109.2 108.7 109.3 108.7 108.3 107.9 107.8 108.4 108.9 107.9 107.4 108.7 107.9 109.1 
IN3 2030 107.9 109.2 107.7 107.2 107.7 108.4 109.1 107.6 107.4 109.8 107.7 109.8 107.6 108.3 109.3 109.1 107.6 108.3 109.3 108.6 
IN3 2031 108.0 108.6 108.5 107.0 109.4 107.8 108.3 108.9 108.6 108.1 109.9 108.9 109.0 108.1 109.3 108.7 108.0 108.5 107.6 109.4 
IN3 2032 109.0 109.6 106.4 108.1 110.0 108.5 109.1 108.2 108.1 108.3 106.7 108.1 107.1 108.8 106.3 109.4 110.4 106.9 109.4 108.1 
IN3 2033 107.6 107.8 110.1 106.8 107.8 108.4 108.5 109.8 109.3 108.4 108.2 108.3 107.3 109.5 108.8 108.2 108.6 108.8 108.8 108.8 
IN3 2034 107.0 106.1 106.7 108.2 108.8 107.8 107.8 108.9 108.9 109.3 107.4 108.2 108.7 109.0 108.0 107.3 108.5 108.2 109.7 109.9 
IN3 2035 107.3 109.0 107.0 108.7 108.0 108.9 108.6 107.1 109.4 107.8 108.1 109.3 106.9 108.6 107.3 109.5 109.2 108.1 109.0 107.5 
IN3 2036 108.7 106.9 106.5 109.1 108.0 107.7 108.5 109.2 106.5 108.4 108.2 109.1 109.5 107.2 107.6 109.5 108.3 108.9 108.1 107.1 
IN3 2037 109.7 107.8 108.4 107.8 107.7 106.7 108.1 108.4 107.3 108.8 108.9 107.8 108.1 109.1 109.3 108.6 107.2 105.9 106.5 109.1 
IN3 2038 108.7 108.8 108.5 108.5 109.8 108.4 108.6 109.2 109.2 107.9 108.0 108.1 107.9 107.9 107.7 107.8 108.7 109.7 107.4 108.2 
IN3 2039 107.8 109.3 108.3 108.3 109.4 107.6 109.6 108.4 110.6 106.6 108.0 108.1 109.6 109.8 108.4 108.0 107.4 107.6 108.5 108.1 
IN3 2040 109.2 108.1 107.2 108.5 108.4 108.9 108.4 109.4 106.3 108.7 108.1 109.3 108.8 108.7 108.1 108.9 108.6 108.7 110.0 109.4 
IN3 2041 108.6 107.3 108.3 106.6 108.7 106.7 109.3 108.8 108.1 107.9 108.3 107.7 108.4 107.0 108.5 108.2 107.7 106.9 108.4 109.5 
IN3 2042 108.6 108.7 105.6 107.1 108.3 108.5 108.4 108.2 109.1 108.1 108.5 108.4 109.6 107.4 109.2 109.3 108.7 106.5 108.3 108.9 
IN3 2043 108.9 107.3 106.3 108.1 109.0 109.3 106.4 107.6 107.7 106.7 107.9 109.4 108.4 107.8 107.8 108.3 108.1 109.0 108.6 109.4 
IN3 2044 108.1 108.9 108.9 108.2 106.6 109.4 108.8 108.1 107.1 109.3 109.0 107.7 106.6 108.5 108.8 108.8 109.4 107.7 109.0 109.2 
IN3 2045 107.8 109.6 109.1 108.0 108.0 108.2 107.9 107.2 107.6 109.9 110.4 108.1 107.3 108.6 108.7 107.3 107.9 109.1 109.5 107.9 
IN3 2046 108.2 107.0 109.2 107.9 108.6 107.6 109.4 107.6 107.1 108.6 107.3 108.8 106.4 107.2 108.1 109.0 107.3 109.6 108.9 109.1 
IN3 2047 108.0 108.4 107.8 106.7 108.0 108.8 108.0 109.5 107.8 108.7 107.4 107.9 107.4 107.7 108.2 107.5 107.7 108.5 107.1 108.7 
IN3 2048 109.1 108.2 108.6 107.3 107.1 109.4 108.8 107.7 107.5 107.7 108.3 108.4 107.3 109.8 108.0 108.4 109.8 108.8 108.9 108.4 
IN3 2049 106.6 109.2 108.9 108.9 109.0 108.3 108.6 107.1 107.7 109.3 109.1 108.7 106.6 109.2 107.2 109.8 107.1 108.0 109.0 108.8 
IN3 2050 109.6 109.2 109.3 107.3 106.9 110.0 108.6 109.2 107.8 109.0 107.6 108.3 107.2 108.9 107.4 108.3 109.3 108.5 108.7 107.6 
CH2 2006 125.2 123.4 123.8 123.7 123.9 124.5 126.5 123.7 122.6 124.8 124.7 123.4 125.1 124.1 123.3 124.6 124.2 124.5 124.7 124.0 
CH2 2007 122.1 123.1 123.9 125.0 124.1 124.4 123.8 123.3 124.0 123.9 125.0 123.1 124.4 122.9 124.0 125.0 125.5 123.4 123.3 124.4 
CH2 2008 123.2 123.5 122.7 124.2 124.3 123.7 125.4 124.4 125.0 124.0 124.2 123.7 123.0 123.7 125.1 123.3 123.5 123.8 123.8 124.3 
CH2 2009 123.1 125.0 124.5 123.6 124.1 124.5 124.1 122.6 122.5 124.3 123.3 123.8 122.9 123.1 123.7 123.9 122.6 123.6 123.9 122.0 
CH2 2010 124.2 124.1 124.4 124.6 125.2 124.1 123.8 124.9 123.1 124.0 123.7 123.5 124.2 123.5 123.2 122.5 123.8 124.0 121.9 122.9 
CH2 2011 125.4 123.2 125.3 125.3 123.7 124.7 123.4 123.5 122.6 125.1 123.6 123.7 124.6 123.7 123.9 122.8 122.8 124.3 122.9 123.6 
CH2 2012 125.4 124.5 126.9 123.0 123.6 123.4 123.8 123.8 123.2 124.4 124.0 123.4 122.8 125.5 123.7 123.1 124.9 123.1 124.7 124.3 
CH2 2013 124.5 123.2 123.3 125.6 125.2 124.6 123.1 122.8 123.1 125.2 124.9 124.9 124.6 123.1 124.1 124.6 121.9 124.3 123.1 124.3 
CH2 2014 122.9 123.3 125.3 123.7 122.8 123.3 123.5 122.7 125.1 122.5 125.1 123.4 123.1 125.5 121.9 123.7 124.5 121.4 122.7 123.3 
CH2 2015 122.4 123.1 125.2 124.3 124.9 124.3 123.0 123.7 123.5 123.5 122.4 124.3 124.6 123.8 124.0 125.0 122.2 123.5 122.4 123.7 
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CH2 2016 123.5 123.7 122.6 124.0 123.1 123.1 122.9 123.1 124.5 123.6 123.4 125.3 123.2 124.8 124.1 123.2 124.1 124.2 124.0 124.2 
CH2 2017 125.3 124.5 124.3 123.6 123.5 124.7 123.7 123.9 127.0 122.9 124.9 123.5 124.9 123.6 123.9 126.4 123.3 124.9 125.1 125.4 
CH2 2018 124.6 124.8 123.5 125.6 124.5 124.4 122.3 124.0 124.7 124.0 125.3 123.6 124.2 123.7 124.1 125.5 123.9 124.7 121.9 126.1 
CH2 2019 126.4 123.5 125.6 124.4 123.1 124.5 125.0 124.6 124.2 122.2 124.5 123.4 124.4 125.0 122.8 123.3 124.3 123.9 125.0 123.5 
CH2 2020 125.1 123.6 125.7 126.0 124.3 124.9 123.5 124.2 123.3 122.8 124.7 124.2 123.7 124.8 122.7 125.4 124.9 124.4 123.5 123.2 
CH2 2021 124.5 122.1 123.6 124.0 126.0 124.4 124.8 123.7 123.8 123.5 124.2 124.0 123.8 124.2 122.8 122.7 123.9 124.7 124.6 124.3 
CH2 2022 122.5 126.1 122.1 123.4 124.1 123.3 125.8 123.9 124.9 123.4 124.0 122.5 123.6 123.3 124.1 123.1 123.6 123.9 124.0 125.8 
CH2 2023 124.5 123.5 126.1 124.7 124.0 124.5 123.4 125.1 124.8 125.4 125.6 122.8 124.3 125.3 124.0 124.4 124.0 125.8 123.3 124.9 
CH2 2024 124.5 123.7 125.6 124.9 125.6 123.9 124.2 124.4 125.1 126.2 123.8 124.5 125.8 122.9 123.5 124.2 123.8 122.6 123.5 122.9 
CH2 2025 122.5 126.1 124.3 124.2 123.5 123.2 123.2 123.9 124.3 125.3 126.6 124.1 125.6 123.1 125.6 124.5 122.9 124.8 123.3 124.0 
CH2 2026 124.9 123.3 125.0 126.1 123.6 123.9 124.8 124.6 124.8 122.9 125.1 124.3 126.3 124.8 124.5 124.0 124.3 124.4 123.6 124.3 
CH2 2027 123.5 125.4 127.4 124.0 125.4 123.5 123.6 125.3 124.9 122.2 123.3 124.3 123.2 122.3 122.7 124.0 125.2 124.7 123.6 124.7 
CH2 2028 125.1 125.4 123.4 124.5 124.1 123.6 124.1 124.3 123.4 122.7 125.4 123.7 122.6 122.1 122.5 124.7 124.2 123.4 123.8 124.2 
CH2 2029 127.1 123.2 126.1 125.5 126.1 123.3 125.3 124.6 123.6 123.3 125.0 123.5 125.0 125.4 125.3 123.6 124.3 123.6 124.2 123.3 
CH2 2030 122.2 123.6 124.8 124.9 122.9 123.3 125.8 123.3 126.2 124.4 124.1 124.8 123.7 124.4 124.9 125.0 124.8 125.1 123.3 124.7 
CH2 2031 123.6 124.8 123.0 123.3 123.6 125.0 123.9 123.7 123.2 124.6 122.8 123.9 124.9 124.5 123.3 122.4 125.0 124.3 122.8 124.5 
CH2 2032 125.5 124.2 123.7 124.9 127.1 123.2 123.3 124.7 123.4 123.6 123.5 122.8 124.4 124.9 124.7 123.6 125.7 125.3 125.3 123.4 
CH2 2033 122.5 122.9 123.8 122.4 122.9 125.1 123.3 123.0 125.9 124.0 123.9 122.6 123.1 126.2 124.5 123.9 122.8 125.8 123.7 123.5 
CH2 2034 123.8 126.0 123.4 124.7 124.6 122.2 124.8 124.4 125.8 124.6 125.3 123.1 124.8 126.5 122.9 124.4 126.0 124.8 124.7 125.9 
CH2 2035 124.9 124.4 124.0 124.3 125.1 126.7 124.0 123.8 124.1 124.4 125.0 125.7 123.8 126.1 124.2 124.5 124.1 124.7 123.6 124.4 
CH2 2036 127.8 124.0 122.6 125.2 123.3 125.6 125.4 123.2 122.5 123.0 122.8 123.4 126.8 124.8 124.8 125.2 124.9 125.1 123.5 122.9 
CH2 2037 127.0 124.4 125.2 123.5 123.8 123.7 123.4 124.0 122.2 123.9 123.9 123.6 126.8 125.5 122.7 123.1 123.2 122.4 124.4 123.9 
CH2 2038 124.6 125.5 125.2 123.3 125.8 124.3 123.3 124.8 125.4 124.7 125.0 122.6 125.0 123.6 124.7 125.4 126.7 124.6 123.2 124.0 
CH2 2039 124.1 123.0 125.2 125.6 124.3 124.3 124.6 122.9 127.7 124.7 125.6 123.7 124.4 124.0 124.7 125.1 123.0 122.9 123.6 125.0 
CH2 2040 126.3 123.7 123.8 125.7 124.8 124.9 124.2 124.0 124.6 124.0 124.0 124.4 126.6 125.2 124.4 125.4 124.2 125.3 124.5 125.3 
CH2 2041 123.8 124.4 125.5 124.6 123.6 122.8 126.7 122.3 126.8 125.5 125.6 124.1 126.2 123.1 124.4 123.5 123.7 125.4 123.9 125.6 
CH2 2042 124.5 124.3 123.8 123.6 125.8 125.0 124.9 124.4 124.6 126.1 122.9 123.9 125.0 125.8 124.5 124.9 126.6 123.3 123.7 123.6 
CH2 2043 123.7 126.4 124.0 124.3 124.2 126.0 124.5 123.5 123.3 123.5 127.0 126.0 123.4 124.7 124.9 125.9 124.6 124.7 125.5 124.0 
CH2 2044 125.0 123.2 122.8 123.7 123.8 123.9 124.5 123.8 124.1 126.2 123.3 123.1 124.5 125.9 124.2 124.0 126.1 124.6 124.1 125.2 
CH2 2045 124.5 127.2 125.3 123.6 125.5 123.7 126.5 124.3 124.2 125.1 125.9 123.2 123.6 123.8 127.7 123.6 124.5 127.3 125.7 127.1 
CH2 2046 124.6 124.8 124.0 126.2 125.9 122.9 126.7 125.4 125.1 124.9 123.4 123.6 123.9 124.1 124.4 126.2 124.8 124.4 125.6 124.0 
CH2 2047 123.4 124.3 124.6 124.1 126.2 125.8 124.9 127.3 125.3 124.3 125.0 124.0 125.1 124.7 124.3 123.8 123.0 127.1 124.1 124.2 
CH2 2048 126.5 123.8 125.7 125.4 124.2 123.9 124.5 123.5 127.3 124.0 126.7 123.5 124.3 125.7 122.7 124.8 124.3 123.8 124.8 124.0 
CH2 2049 124.1 125.5 126.1 123.9 125.0 123.5 126.6 122.4 124.9 124.2 125.2 124.2 124.9 126.4 124.1 124.3 125.0 124.7 124.3 123.9 
CH2 2050 123.3 124.9 128.1 124.3 124.1 124.2 122.5 126.2 123.5 126.0 123.6 123.2 124.6 128.0 122.3 126.1 127.6 124.4 123.6 122.7 
CH1 2006 102.2 102.1 99.8 101.4 101.2 101.8 102.6 100.0 101.7 102.3 102.2 103.5 99.7 102.8 101.8 102.6 104.2 103.5 103.4 102.5 
CH1 2007 99.5 103.7 99.5 101.8 103.6 103.3 101.8 103.3 104.1 104.1 103.7 103.6 102.8 100.0 101.6 103.6 103.6 102.9 103.3 102.6 
CH1 2008 103.1 103.6 101.6 103.5 104.6 102.2 101.9 103.1 102.8 104.8 101.4 103.2 103.6 103.9 104.1 103.1 103.4 104.2 102.8 102.5 
CH1 2009 100.4 99.7 100.6 101.4 103.0 101.6 103.3 102.0 103.3 101.4 102.4 104.2 102.4 103.4 103.6 101.8 102.0 103.4 103.1 102.4 
CH1 2010 103.2 102.8 101.7 101.2 100.5 101.8 102.9 103.8 103.5 102.9 102.5 103.3 102.8 103.1 102.0 102.6 101.7 103.4 102.9 102.3 
CH1 2011 103.7 101.4 102.9 101.0 102.9 102.9 103.4 102.0 104.4 103.2 102.7 103.3 103.0 104.1 103.1 104.2 103.9 103.7 102.9 102.1 
CH1 2012 99.4 102.3 100.6 101.4 103.9 101.9 103.3 103.5 103.2 100.2 101.8 102.6 104.6 103.7 102.9 102.6 103.3 103.7 104.4 102.0 
CH1 2013 103.5 101.3 103.1 102.7 102.6 102.5 103.3 102.6 101.2 99.8 103.1 102.2 102.4 101.8 102.3 102.1 100.9 102.6 101.5 102.8 
CH1 2014 101.1 103.0 102.3 103.2 100.0 100.0 101.9 101.3 102.8 102.8 102.9 102.7 104.1 103.5 102.0 103.7 103.9 102.8 104.1 103.4 
CH1 2015 104.3 102.6 99.4 101.0 99.0 104.0 102.6 101.8 101.1 101.0 102.3 103.8 103.0 101.5 102.7 104.9 103.4 105.1 102.8 101.4 
CH1 2016 100.4 102.8 101.6 103.4 102.5 102.9 102.1 104.1 102.4 101.3 103.2 104.3 102.4 101.8 103.9 103.9 101.7 102.6 102.3 102.1 
CH1 2017 100.7 101.8 101.8 102.5 100.7 101.1 104.1 103.5 103.0 103.9 101.9 102.3 102.2 102.8 101.2 102.9 99.7 102.6 103.1 103.8 
CH1 2018 102.8 102.5 99.9 101.3 102.5 103.0 101.8 102.9 102.6 103.7 102.1 101.1 102.0 103.0 103.1 102.9 103.3 101.9 104.2 102.9 
CH1 2019 103.0 103.1 104.0 101.3 100.2 103.4 102.1 102.9 104.3 102.0 104.1 102.6 101.2 103.0 103.2 101.4 104.1 102.0 104.1 103.0 
CH1 2020 101.2 101.7 101.4 103.2 104.0 102.7 102.0 101.8 102.5 102.9 100.9 102.9 102.5 101.3 103.1 100.1 103.0 103.7 101.9 101.4 
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CH1 2021 102.2 103.7 99.4 101.4 103.5 103.8 102.6 101.9 103.5 102.8 104.6 101.3 101.4 102.7 100.9 102.3 103.3 102.7 103.4 101.4 
CH1 2022 104.3 102.2 100.5 102.3 100.7 102.6 101.2 101.9 101.9 103.6 101.0 102.4 102.5 102.4 103.1 102.4 102.1 102.8 102.3 103.0 
CH1 2023 102.7 101.8 101.9 102.1 101.4 101.3 102.1 101.6 102.5 102.1 101.2 101.1 101.9 103.5 101.6 104.0 99.8 103.4 103.0 104.4 
CH1 2024 103.5 103.2 100.1 99.4 104.5 101.6 102.7 102.1 104.1 102.3 100.3 103.5 102.7 101.9 102.1 102.6 104.0 104.1 100.9 102.7 
CH1 2025 101.0 103.6 100.5 100.7 102.1 100.4 101.7 101.4 102.8 102.1 103.1 103.2 102.3 101.4 102.9 102.8 102.6 99.1 102.8 103.0 
CH1 2026 101.6 103.0 103.1 103.0 102.3 102.5 102.8 103.4 103.1 102.8 101.2 103.5 101.0 102.1 101.3 103.2 103.2 101.1 102.9 100.5 
CH1 2027 101.9 102.6 101.8 102.7 103.8 102.7 102.4 104.1 102.7 102.5 100.4 102.9 102.7 101.5 103.1 102.9 103.3 101.8 104.0 102.6 
CH1 2028 102.5 101.8 100.9 102.1 103.7 102.6 103.1 102.8 101.8 103.4 101.7 103.2 100.2 99.8 103.1 101.2 100.6 101.4 104.1 102.1 
CH1 2029 101.6 100.8 102.9 102.8 100.9 100.8 102.9 103.3 103.1 104.1 102.8 102.1 100.3 102.3 104.1 103.5 101.7 102.1 101.6 102.5 
CH1 2030 102.0 103.6 102.0 100.4 100.1 102.0 103.9 99.1 101.1 103.3 102.2 103.2 101.9 102.6 104.4 103.0 101.8 102.1 103.3 102.3 
CH1 2031 102.2 101.8 103.3 100.8 103.8 101.2 103.3 103.0 101.9 102.7 104.5 103.0 102.5 101.5 103.8 103.4 101.5 101.4 100.9 101.1 
CH1 2032 103.2 104.5 100.7 102.5 103.1 102.9 104.0 102.5 102.5 101.9 98.1 102.1 100.6 101.7 99.8 103.9 104.3 101.2 103.1 101.7 
CH1 2033 102.4 103.4 104.3 101.3 101.0 103.0 103.5 105.1 101.9 102.4 102.6 102.8 100.1 102.7 102.9 102.9 101.6 103.1 103.1 102.9 
CH1 2034 100.3 99.1 100.4 101.1 104.5 100.6 103.2 102.1 103.0 103.4 100.1 103.2 102.1 102.5 100.0 102.7 102.2 101.9 103.8 103.6 
CH1 2035 101.6 101.1 99.8 103.7 102.7 102.8 103.2 100.6 103.0 101.7 100.6 103.2 101.1 102.0 100.7 103.2 103.2 102.6 102.8 100.8 
CH1 2036 102.8 99.0 97.6 102.7 101.7 101.7 101.9 104.3 99.0 103.5 102.2 103.3 103.9 100.7 101.9 102.3 102.7 102.6 102.7 100.7 
CH1 2037 103.1 102.9 101.7 101.2 100.3 100.2 102.5 103.1 102.1 102.7 102.1 102.7 101.1 102.6 103.2 102.8 100.0 100.1 100.2 102.3 
CH1 2038 101.3 103.1 101.3 102.0 102.8 102.3 101.0 102.9 103.0 100.8 101.5 102.8 102.3 100.4 101.4 100.6 102.4 103.5 101.1 101.0 
CH1 2039 101.2 104.3 101.9 102.9 103.1 102.4 103.0 102.8 105.0 100.2 101.2 102.2 102.5 102.9 102.4 102.9 99.4 101.8 103.1 102.7 
CH1 2040 102.7 102.3 101.7 102.7 100.7 102.4 102.5 103.4 100.8 102.8 101.2 103.5 101.5 101.7 100.6 102.1 100.6 102.1 104.6 103.1 
CH1 2041 101.3 101.7 102.3 100.1 103.5 102.4 102.7 103.5 101.8 99.9 103.0 103.0 102.0 100.9 102.2 102.5 101.3 100.3 103.0 103.3 
CH1 2042 101.5 100.3 99.3 101.1 100.9 102.9 101.8 102.8 102.7 102.3 103.6 102.5 103.7 99.7 102.3 102.3 101.8 100.6 102.4 102.5 
CH1 2043 102.9 100.6 98.8 102.1 102.6 103.9 100.3 101.1 101.9 99.5 101.8 103.3 101.0 102.0 101.8 101.9 101.4 102.4 103.8 102.9 
CH1 2044 101.8 101.8 103.0 102.6 100.7 103.1 103.4 101.5 99.9 103.1 103.6 101.8 101.6 102.8 102.6 101.5 101.9 102.1 103.6 102.8 
CH1 2045 100.6 102.6 103.5 100.9 101.6 101.7 100.2 100.6 101.0 102.0 103.8 102.2 101.2 101.8 100.7 101.7 101.9 102.2 104.2 101.5 
CH1 2046 101.5 100.2 102.0 101.0 101.5 101.3 100.9 101.5 101.3 103.0 101.4 102.9 100.2 101.6 101.5 102.9 100.6 102.7 102.8 103.2 
CH1 2047 100.2 101.7 100.9 99.6 102.2 101.4 99.5 104.0 101.3 101.7 101.9 101.8 101.0 101.2 102.6 100.1 101.2 101.6 101.3 103.0 
CH1 2048 102.7 101.9 101.1 101.1 98.6 103.2 100.6 101.8 101.4 102.3 102.3 101.9 101.9 103.5 101.5 101.8 102.7 102.0 103.0 102.5 
CH1 2049 99.5 102.9 102.0 101.6 102.6 102.0 103.8 100.2 101.6 103.6 101.4 102.6 100.5 101.7 100.5 101.8 99.2 101.5 102.9 102.3 
CH1 2050 103.9 102.5 101.6 100.4 100.5 103.1 102.0 102.3 102.0 102.5 102.2 101.4 100.5 101.9 101.3 102.4 101.9 102.3 103.6 102.3 
CN2 2006 88.6 89.0 86.3 87.6 88.8 87.0 88.8 87.5 89.3 88.6 89.6 90.5 85.9 90.2 89.4 90.2 92.2 91.1 90.3 89.6 
CN2 2007 86.8 91.1 86.4 88.3 89.9 91.3 89.5 90.1 92.0 91.2 89.9 90.0 89.6 85.8 88.8 91.0 90.0 90.3 90.3 89.5 
CN2 2008 90.4 91.0 87.9 90.8 92.7 89.7 89.4 91.0 89.7 92.6 89.0 90.9 91.6 91.8 91.9 90.1 90.8 91.5 90.5 89.1 
CN2 2009 88.6 87.2 86.7 88.9 89.8 88.6 90.3 89.8 89.9 88.4 88.9 90.3 88.7 91.3 91.2 88.2 89.7 90.2 91.0 89.8 
CN2 2010 90.5 90.1 87.7 87.3 87.2 87.7 90.8 90.4 91.8 89.9 88.8 90.9 89.1 90.1 89.5 89.5 88.8 90.7 91.1 88.8 
CN2 2011 90.9 88.5 89.0 86.7 89.9 88.7 89.8 89.6 92.4 89.9 88.9 90.4 90.5 90.8 90.2 92.0 91.4 90.3 90.1 87.8 
CN2 2012 84.9 88.4 87.8 88.4 91.1 88.3 90.3 90.1 89.3 87.3 88.6 90.4 91.9 90.5 90.4 88.7 91.6 90.3 92.2 89.5 
CN2 2013 91.7 88.0 89.0 90.3 89.4 89.4 89.7 88.8 88.2 84.6 90.8 89.4 89.4 89.4 89.5 89.2 88.2 89.1 89.0 90.7 
CN2 2014 87.6 90.2 89.4 89.7 86.1 86.4 88.8 87.6 90.1 89.1 89.1 90.1 91.0 89.3 89.0 90.9 91.7 90.3 90.9 90.7 
CN2 2015 90.4 90.2 86.6 87.0 86.3 91.3 90.3 88.4 88.7 85.2 89.3 91.4 90.0 88.9 89.9 93.7 91.0 92.7 90.7 88.5 
CN2 2016 87.2 89.6 87.1 90.2 89.1 91.2 88.0 92.1 89.7 88.8 89.7 91.0 89.4 87.9 92.2 92.4 89.3 89.7 88.2 88.5 
CN2 2017 86.8 88.8 88.0 88.9 86.6 87.6 91.5 90.4 90.4 91.2 88.1 89.7 88.0 89.8 88.6 89.8 86.1 89.2 89.0 91.6 
CN2 2018 88.0 89.1 87.3 87.7 89.8 90.3 88.8 90.9 90.6 90.5 88.6 88.8 88.2 90.1 90.8 89.9 90.0 89.0 92.1 89.9 
CN2 2019 89.6 89.9 91.9 87.9 87.4 91.5 89.0 90.8 91.9 89.3 90.1 90.4 87.9 90.2 90.4 88.4 92.0 88.2 90.1 90.6 
CN2 2020 87.2 88.2 87.7 89.8 92.2 88.8 88.6 89.3 88.3 90.3 87.8 90.3 89.4 89.0 91.1 86.8 89.3 91.6 89.3 87.0 
CN2 2021 89.8 90.6 86.1 87.7 90.6 91.9 89.8 87.8 91.0 89.7 92.3 88.8 88.6 89.6 88.5 90.2 90.4 89.3 91.4 88.0 
CN2 2022 91.9 87.1 87.1 88.6 88.3 89.8 88.6 89.1 88.8 90.7 86.3 90.0 89.9 89.3 90.3 90.2 89.2 89.5 90.3 89.5 
CN2 2023 88.6 88.9 87.4 88.4 89.2 87.9 89.0 89.9 89.4 87.4 87.2 88.8 88.4 90.0 88.9 91.1 86.0 90.1 90.3 91.8 
CN2 2024 91.0 90.0 85.6 85.9 92.6 88.3 89.2 89.5 91.5 89.1 85.8 90.3 89.1 89.8 88.7 89.9 92.3 91.2 87.4 89.4 
CN2 2025 87.9 90.3 86.7 87.8 88.2 86.2 89.8 87.8 89.5 88.6 90.0 89.6 89.6 87.3 90.4 90.3 90.4 85.4 89.7 90.0 
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CN2 2026 87.3 89.9 88.5 89.4 89.4 88.0 90.3 91.0 90.5 89.6 87.1 91.3 88.6 88.5 87.4 91.1 90.1 87.4 89.9 86.9 
CN2 2027 87.8 89.5 86.9 88.5 92.5 88.7 89.6 90.9 88.8 89.6 87.6 89.3 89.7 88.7 90.5 91.1 90.5 87.7 91.0 89.5 
CN2 2028 89.4 87.6 88.1 89.0 91.0 89.3 89.5 89.6 88.1 90.1 89.1 90.5 88.0 85.7 90.7 88.1 85.6 88.1 91.4 88.6 
CN2 2029 87.8 86.7 88.8 88.6 88.3 87.1 90.0 89.4 90.8 91.3 89.8 89.5 87.5 87.7 90.9 90.0 89.2 88.3 88.5 90.2 
CN2 2030 88.7 90.9 88.2 86.6 88.6 89.5 90.9 87.0 87.4 89.4 89.3 91.0 88.6 89.0 92.4 90.2 87.5 88.6 90.8 89.9 
CN2 2031 89.1 88.4 89.6 87.0 91.5 88.6 90.1 90.5 88.9 89.1 91.3 89.8 89.6 87.3 91.5 90.5 88.0 88.2 87.2 87.4 
CN2 2032 90.2 92.1 87.0 88.8 89.3 89.9 91.6 90.5 88.5 88.6 85.7 89.2 86.5 88.1 86.4 90.4 91.7 87.5 89.6 87.9 
CN2 2033 89.5 89.7 91.9 88.2 88.3 89.4 90.9 94.1 88.5 89.1 88.7 89.7 86.3 89.1 90.7 89.1 87.5 89.4 90.4 89.7 
CN2 2034 86.6 86.3 84.5 88.5 92.0 88.3 89.9 88.5 89.8 89.5 86.7 90.6 89.6 89.0 86.4 88.7 87.9 88.0 91.2 91.2 
CN2 2035 87.1 87.4 85.4 90.5 89.7 89.5 89.6 87.7 90.2 88.2 87.7 90.1 87.8 88.1 89.2 90.1 90.0 89.0 89.7 87.3 
CN2 2036 89.7 85.9 84.4 89.2 89.0 87.6 88.6 91.8 86.0 89.6 88.0 90.0 91.3 86.8 88.5 89.7 89.0 90.1 89.8 87.0 
CN2 2037 89.7 90.2 88.8 86.4 87.0 86.6 88.3 90.0 89.2 89.3 88.0 89.5 87.6 90.0 90.6 89.6 87.4 86.5 87.7 88.8 
CN2 2038 88.6 89.6 86.8 89.0 89.7 88.7 88.5 89.3 89.6 87.8 87.2 90.6 89.3 85.9 88.0 87.5 88.8 90.8 89.2 88.5 
CN2 2039 86.8 92.1 87.9 88.3 89.5 88.3 89.0 89.8 93.4 87.3 87.1 89.1 89.8 90.1 89.3 89.3 84.7 88.4 89.6 89.7 
CN2 2040 89.5 89.2 87.1 89.4 88.2 89.9 89.1 90.4 86.6 88.4 88.1 90.2 89.0 88.6 87.6 89.4 87.3 88.2 91.6 89.0 
CN2 2041 88.5 87.9 89.4 86.3 90.5 87.8 88.8 90.9 88.3 85.7 88.6 89.4 89.0 87.5 88.7 90.2 88.3 86.3 90.3 90.0 
CN2 2042 88.2 86.9 85.2 86.5 87.8 89.5 87.8 88.5 89.4 88.6 91.2 89.4 91.4 86.7 89.4 88.4 88.5 86.2 89.8 89.7 
CN2 2043 89.5 87.6 85.9 88.8 88.7 92.1 86.8 87.4 88.4 85.8 88.3 90.4 87.9 87.9 88.8 89.0 88.3 88.1 89.2 89.9 
CN2 2044 88.1 88.6 89.3 88.7 87.6 89.9 89.9 87.4 86.4 89.6 90.0 89.5 86.9 89.4 89.6 87.8 88.6 89.1 90.6 90.5 
CN2 2045 87.2 89.9 90.1 87.0 88.3 88.1 87.3 86.8 88.1 86.8 89.8 88.3 88.3 87.8 87.9 89.2 88.5 89.7 91.0 87.3 
CN2 2046 88.5 86.9 88.0 87.1 88.5 88.1 87.1 87.0 88.6 89.9 87.1 90.0 87.6 87.0 89.1 89.3 87.0 89.5 90.5 89.2 
CN2 2047 86.9 87.8 86.7 85.9 88.7 87.1 86.4 91.9 88.7 87.2 87.5 88.9 87.5 86.4 89.5 88.1 87.2 87.4 88.3 90.2 
CN2 2048 88.4 88.8 85.4 87.0 87.4 90.3 87.6 87.1 88.4 88.4 87.3 88.6 88.2 89.7 88.5 88.6 89.6 89.4 90.2 90.1 
CN2 2049 85.5 88.8 88.1 86.1 88.8 87.4 91.0 87.4 87.3 88.9 88.3 89.5 86.4 87.5 88.0 89.1 85.7 87.6 90.2 89.1 
CN2 2050 90.9 88.6 86.5 87.1 87.2 90.8 88.7 89.6 88.4 88.8 87.3 88.7 86.0 88.4 87.6 89.2 89.0 89.8 90.4 89.4 
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8.8 Appendix 8.8 Model selections table for the analyses of the effects of climate on hydaspe 
fritillary butterfly egg laying rate. Climate variables include average maximum daily 
temperature while females were in the oviposition containers and snow melt date at each 
site/year. Other measures of temperature (daily mean and minimum) were correlated with 
maximum temperature and performed similarly. Neither climate variable was significant in 
a model that included site.  

 
Model AICc Delta AICc Weight 
Site  805.6072 0 0.319534 
Site + max temp.  805.6667 0.0595 0.310168 
Site + max temp. + melt date 806.13 0.5228 0.246033 
Site + melt date 807.7765 2.1693 0.108009 
Intercept  811.5641 5.9569 0.016255 
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8.9 Appendix 8.9 Model selection table for the analyses of the effects of climate on hydaspe 
fritillary butterfly egg predation rate over the entire course of the predation trials. All 
models included female as random effect. While all models performed similarly, maximum 
temperature was never significant in any model (P>0.3). 

 
Model DIC Delta DIC Weight 
Site  555.0612 0 0.29820315 
Site + max temperature 555.2816 0.22047 0.267078235 
intercept 555.5097 0.448533 0.238294737 
Max temperature  555.8962 0.835000 0.196423878 
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8.10 Appendix 8.10 Model selection table for analyses of the effects of climate variables and 
site differences on hydaspe fritillary overwinter larval survival. The climate variables 
tested include: average daily minimum, maximum, and mean temperature recorded in 
larval cups between larvae being placed in the duff and first snow fall, the coldest winter 
temperature recorded in the cups, and snow melt date in the spring. All climate measures 
were correlated (|r|>0.5) and each site included only a single value for each climate 
measure, so we only included one variable at a time in the models. While many of the 
temperature measures performed similarly or even very slightly better than the intercept 
only model, the p-values for temperature were always greater than 0.1.  

 
Model DIC Delta DIC Weight 
Mean temp. prior to snow  574.8113 0 0.179035401 
Min temp. prior to snow  574.8827 0.071367 0.17275946 
Min temp. experienced 574.8877 0.076433 0.172322357 
Intercept (female and cup as random) 575.4067 0.5954 0.132938093 
Snow melt date  575.4116 0.600333 0.132610583 
Max temp. prior to snow  575.5754 0.7641 0.122184666 
Site 576.2284 1.4171 0.08814944 
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8.11 Appendix 8.11 Model selection table for analyses of the effects of climate variables and 
site differences on hydaspe fritillary adult survival. The climate variables tested include: 
average daily minimum, maximum, and mean temperature recorded between sample 
occasions, and total annual (water year) precipitation.  

 
Model  AIC Δ AIC Weight 
Minimum temp. + precipitation 5353.62 0.00 0.806 
Site + mean temp. + precipitation 5358.80 5.18 0.060 
Minimum temp. 5358.90 5.29 0.057 
Site + precipitation 5359.99 6.37 0.033 
Site + maximum temp. 5360.57 6.95 0.025 
Site 5362.65 9.03 0.009 
Site + minimum temp. 5363.48 9.87 0.006 
Precipitation 5364.51 10.89 0.003 
Intercept 5375.91 22.29 0.000 
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8.12 Appendix 8.12 Table showing model results from tadpole survival analysis in the canopy 
cover experiment. 

 
Model N(k) AICc ΔAICc weight Deviance 

S(site * treatment) 30 3869.73 0.000 9.81E-01 694.715 

S(site + treatment) 26 3877.84 9.105 1.03E-02 712.005 

S(site + treatment * temp) 28 3878.96 10.226 5.90E-03 709.037 

S(site) 25 3882.22 13.485 1.15E-03 718.427 

S(temp) 22 3883.97 15.239 4.81E-04 726.297 

S(site + temp) 26 3884.14 15.407 4.42E-04 718.307 

S(treatment + temp) 23 3885.09 16.358 2.75E-04 725.379 

S(treatment + temp + temp2) 24 3886.27 17.535 1.52E-04 724.517 

S(treatment * temp) 24 3887.11 18.379 1.00E-04 725.361 

S(.) 21 3888.33 19.601 5.43E-05 732.695 

S(treatment) 22 3889.69 20.961 2.75E-05 732.019 
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8.13 Appendix 8.13 Non-climate drivers of demographic rates. For fixed effect categorical 
variables, we indicate the coefficient for each categorical variable (note that the missing 
categorical variable’s coefficient is estimated at zero), and for fixed effect numeric 
variables, we indicate the magnitude of the coefficient. For random effects, we show the 
standard deviation of the random effect. All numeric predictor variables are scaled, such 
that the magnitudes of the coefficients are comparable.   

   

Survival rates Fixed effects 
Random 
effects 

 Intercept Sex Status 
No. 

helpers Age Age^2 Site 

post-fledging survival -0.5140 
0.5347 
(male)         0.1282 

adult survival 0.983 
0.5389 
(male) 

-0.7080 
(floater),  
-0.2696 
(helper) 0.0403 0.3351 -0.4145 0.1583 

   

Reproductive rates  Fixed effects 
Random 
effects 

 Intercept 
No. 

helpers 
Maternal 

age 
Maternal 

age^2 
Paternal 

age 
Paternal 

age^2 Site 
probability of initiating 
a first nest 1.569 0.2636 2.4662 -1.6603 1.442 -1.2382 0.2276 

clutch size of first nest 1.1554623  0.188215 -0.1206764   0.0003352 
 total clutch size of 
second and later nests 1.236297      0.0003706 

fraction of eggs 
surviving to fledge from 
first nest 

0.42465 0.21728  -0.03182 0.35093 -0.30796 0.1282 

fraction of eggs 
surviving to fledge from 
second and later nests 

0.1505 0.1632     0 

probability of initiating 
second and later nests 
given failure of first 
nest 

-0.9981  1.8325 -1.4913 0.7651 -0.574 0 

probability of double 
brooding  -7.2369  0.6983  5.0427 -5.0709 0 

probability of first nest 
success 0.9799 0.3129 0.6699 -0.4947 0.6261 -0.6241 0.2989 

probability of second 
and later nest success 0.8971 0.4  -0.1859 -0.7794 1.0023 0.06136 
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8.14 Appendix 8.14 List of publications and conference abstracts. 
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